

Overview of recent global FMD events:

Donald King

FAO World Reference Laboratory for FMD (WRLFMD)
WOAH Reference Laboratory for FMD
The Pirbright Institute

Global status of FMD

 FMD is endemic in much of Asia and Africa (and parts of South America)

- Seven endemic pools requiring tailored diagnostics and vaccines
- Six circulating FMDV serotypes with an unequal distribution
 - Serotype C has not been detected globally since 2004

WOAH/FAO FMD Laboratory Network

www.foot-and-mouth.org

Network Members and affiliates:

Core activities:

- Collation and exchange of data
- Test improvement and harmonization
- Vaccine performance
- Review of FMD risks
- Support to GF-TADs regional RoadMaps

2022 Network Meeting, Lelystad, The Netherlands

Trans-pool movements are important

Long distance (trans-pool) FMDV movements (since 2015)

- Impact/change regional FMD risks including FMD free countries
- Selection of vaccines to control outbreaks

Spread beyond Pool 2 – 10-year historical context

Pool 1: dominance of O/ME-SA/Ind-2001e

- Origins in SEA reviewed in Bachenek-Bankowska et al., 2018
- Multiple introductions from Pool 2 events started in 2015-17
- Serotype O data for SEACFMD countries (WRLFMD data):

Data for 2022: this was the only FMDV lineage detected in samples submitted from Mongolia (2022) and Thailand (2022) – as well as sequences from Malaysia (2022)

O/ME-SA/Ind-2001e in Indonesia

- Previously FMD free (without vaccination) since 1990 (last outbreak in 1986)
- 17.7 million head cattle
- FMD cases detected on 3rd May (simultaneously on Java and Sumatra)
- Outbreaks detected in >200 districts located on 6 main islands (Sumatra, Java, Lombok and Kalimantan, Bali and Sulawesi)
- FMD Reference laboratories providing support to demonstrate that candidate vaccines generate adequate heterologous responses

Pool 2/3: O/ME-SA/SA-2018: an emerging lineage?

- New serotype O lineage detected in Pool 2 (India, Bangladesh and Sri Lanka)
- Detected in UAE (2021) in small ruminants (sheep and goats)
- Scope to spread more widely following pathways for O/ME-SA/Ind-2001 (d and e)
- Vaccine matching for lineage:

	Vaccine					
	BI	ВІ	MSD	BG	BI	ВІ
	O-Manisa	O-3039	O-TUR-5/09	O-Campos	O-Campos	O-Panasia-2
Matched	4	4	4	2		2
Not-matched					2	

- What factors influence virus dynamics?
 - learning lessons from other successful lineages

New FMD outbreaks due to SAT2/XIV

- VP1 sequence data and samples:

 kindly shared by colleagues at: Central Veterinary laboratory and Researches Veterinary Dept, Iraq; FMD (ŞAP) Institute, Türkiye; JUST, Jordan, Central Laboratory of Animal Health, Oman; Sultan Qaboos University, Oman; ANSES, France and AHI, Ethiopia
- Most closely related to sequences recovered from samples collected in SW Ethiopia in 2022
- To our knowledge, this is the first time that serotype SAT 2 has been detected in Iraq, Jordan or Türkiye
- Topotype XIV has been detected on only one other previous occasion – in 1991

SAT 2 outbreaks in North Africa/Middle East

SAT2/XIV – a quickly changing situation

Some points to consider....

- 1. SAT2/XIV is spreading in naïve animals without any immunity conferred by previous infection/vaccination
- 2. Reports of mortality associated with SAT2/XIV infection (or secondary infection) and corresponding disease severity particularly in large ruminants (cattle/buffalo) – similar to reports in Egypt in 2012 associated with SAT2/VII outbreaks?
- Source (and timing) of the virus in the region is currently still being investigated as well as the risk pathways by which SAT2/XIV has been introduced into the region
- 4. Transmission pathways within affected countries (and within region) are not well understood
- 5. There is uncertainty about the status of neighbouring countries in the region (wrt SAT2/XIV)

Headline global events (2021/23)

www.pirbright.ac.uk

Selection of FMD vaccines is complex

(different antigens, formulation, potency)

Inherent genetic (and antigenic) diversity in field viruses from different FMD serotypes (O, A, SAT 1, SAT 2 [SAT 3])

www.pirbright.ac.uk

Vaccine selection for endemic pools

Obvious gaps and challenges:

- The quality and performance of FMDV vaccines cannot be easily assessed through direct testing – immunisation of animals usually needed
- Homologous/monovalent QA/QC (OIE Manual) vs heterologous vaccine performance in the field with multivalent products
- 3. WRLFMD only tests a limited number of vaccines

Proposed testing by FMD Reference Laboratories:

- Increased focus on measurement of <u>heterologous responses</u>
- Using <u>final formulated product supplied to customers</u>
- Use common/standardized FMDV viruses (<u>Antigen Panels</u>) representative
 of the antigenic threats in a region proposal for reference antigens for
 East Africa (<u>https://www.wrlfmd.org/node/2096/</u>)
- Adopt standardized protocols for post-vaccination testing (numbers of animals and sampling time points [including booster doses])

Summary....

- 1. FMD epidemiology is very dynamic -
 - FMD viral lineages that arise in endemic pools can spread to other locations
- 2. Real-time exchange of lab and epi data can be used to enhance our understanding of FMD epidemiology and risk
 - Increasing costs and logistics provide impetus for alternative approaches to collect FMD surveillance data
 - New web-based dashboards (sequences, phylogenetics, FMD vaccines and surveillance) will be available shortly

Final remarks...

- Clinical cases are more difficult to spot in vaccinated animals
- Low probability events often underpin transboundary transmission pathways
- Impacts of FMD are high is it possible to eliminate all risks?

Further information.....

- FMD reports and lab testing (<u>https://www.wrlfmd.org/ref-lab-reports</u>)
 - Genotyping reports, Vaccine matching and Serotyping reports
- Other data sources:
 - Quarterly WRLFMD/EuFMD report (<u>https://www.wrlfmd.org/ref-lab-reports</u>)
 - Annual report of the WOAH/FAO FMD Laboratory Network (http://foot-and-mouth.org/)

Acknowledgements

- Collaborating FMD
 Reference Laboratories
 and field teams
- Partners within the WOAH/FAO FMD Lab Network
- Support for the WRLFMD and research projects

