

TAFS forum. Scientific Conference on ASF, Beijing, 2019

Prof. JM. Sánchez-Vizcaíno

Complutense University of Madrid
Visavet Center
OIE-ASF Reference Laboratory
www.sanidadanimal.info
jmvizcaino@.ucm.es

Laboratory diagnosis is essential in the ASF control

Different clinical presentation

Common lesions with other H. disease

A FAST RESPONCE IS NEED

ASF LABORATORY DIAGNOSIS KEY POINTS

No Vaccine Available

Antibodies = INFECTION

No Neutralizing Antibodies

ASFV-specific antibodies do not neutralise virus in the classical concept of neutralization-only a partial neutralization "in vitro" has been demonstrated.

- Viremia for Long period of Time
 - Antibodies Persist During Month, Even Years
 From 7-12 dpi.
 Abs good infectious markeriji
 - Antigen Antibody Immunocomplex Formation

Low sensitivity in the direct antigen detection techniques

ITS ROLE IN THE EARLY DETECTION

FIELD:

- Risk information
- ASF Information
- Sample to Laboratory

LABs:

- Good conection with field
- Good test and procedure

TRAINING: FIELD AND LABORATORY

LACK OF EQUILIBRIUM

ASF FIELD: CLINICAL SIGNS

Different clinical forms

PERACUATE-ACUATE-SUBACUATE

- Virulent isolates
- 80-95% mortality
- Similar to other porcine haemorrhagic diseases
- No pathognomonic lesions

SUBCLINICAL-ASYMPTOMATIC

- Areas where ASF is endemic
 - Less virulent isolates
 - Moderate-Low mortality
 - Innaparent carriers

Acuate-subacuate forms of ASF:

Could be Easily Confused with:

Fever

- Erysipelas
- Salmonellosis
- Actinobacillus (App)
- Other Septicaemic conditions

PDNS

Thereby laboratory diagnosis is essential

ASF LABORATORY DIAGNOSIS

IS in GOOD FORM for the 24 Genotypes

ALWAYS: AB + VIRUS DETECTION IN PARALLEL

ASF LABORATORY DIAGNOSIS

Samples

Samples

- Blood and serum
- Lymph nodes
- Spleen
- Lungs
- Kidney
- Oral fluid
- Faeces

Veterinary Microbiology

Volume 165, Issues 1-2, 26 July 2013, Pages 135-139

NO **BLOOD!!!**

Potential use of oral fluid samples for serological diagnosis of African swine fever

Lina Mur 4-5 X El, Camma Gallands 5-1, Alexandro Spier 5, Jeffrey Zimmermman 5, Virginia Felaus 5, Raquel Nieta h. Jusé Manuel Sánchez-Vacalno * M

Rapid Communication & Full Access

First Detection of Antibodies Against African Swine Fever Virus in Faeces Samples

E. Nieto-Pelegrin & B. Rivera-Arroyo, J. M. Sanchez-Vizcamo

First published: 03 October 2015 | https://doi.org/10.1111/tbed.12429 | Cited by: 4

Go here for SFX

IDENTIFICATION OF ASFV

VIRUS ISOLATION +
HAEMADSORPTION
(HA) TEST

Reference test to confirm ASF presence

Malmquist and Hay, 1960

Susceptible primary culture (monocytes and macrophages)

Cytopathic effect (CPE) → daily observation 7-10 days → CPE after 48 hours HAD

Positive HAD → always ASF POSITIVE
NO POSITIVE HAD → COULD BE ASF POSITIVE (PCR)

Some ASFV No HA. MAINLY ATTENUATED ISOLATES

IDENTIFICATION OF ASFV

PCR CONVENTIONAL and PCR REAL TIME

Conventional PCR [Agüerro et al.,

2003, 2004]

VP72 (73) protein (88,363-88,619 nt) → viral capsid

F → 5'-AGT-TAT-GGG-AAA-CCC-GAC-CC-3'
R → 5'-CCC-TGA-ATC-GGA-GCA-TCC-T-3'

PCR product → 257 base pairs

Real time PCR [King et al., 2003]

- VP72 (73) protein (2041-2290 vp72 gene seq) → viral capsid
- Taqman probe

F → 5'-CTGCTCATGGTATCAATCTTATCGA-

R → 5'-GATACCACAAGATCRGCCGT-3'

PCR product → 250 base pairs

UPL REAL TIME PCR

Currently used

Fernández-Pinero et al., 2013

Protocol described in Fernández-Pinero, 2013

The highest sensitivity

survivor animals
early stages of infection
Based on vp72 encoding region
UPL probe (ProbeFinder Software)
Specific primers

PCR target	Name	Sequence (5'-3')	Nucleotide position	ASFV strains. homology (%)
ASFV UPL PCR	ASF-VP72-F primer	CCCAGGRGATAAAATGACTG	893-912 ^h	100
	ASE-VP72-R primer	CACTRGTTCCCTCCACCGATA	940-960*	100
	UPL#162 probe	6FAM-GGCCAGGA-dark quencher dye. (Roche cat no. 04694490001)	930-937"	100
/I-actin UPL PCR	ACT-162-F primer	GSATGCAGAAGGAGATCACG	1022-1041	NA.
	ACT-162-R primer	ATCTGCTGGAAGGTGGACAG	1132-1151°	NA.
	UPL#162 probe	6FAM-GGCCAGGA-dark quencher dye. (Roche cat no. 04694490001)	1121-1128°	NA

NA, not applicable: UPL, Universal Probe Library.

Positive controls → 30-36 Ct Negative controls ≥ 40 CT Ct > 38 doubtful

^{*}Nucleotide homology for the 38 ASFV sequences aligned with ClustalW 2.0.

^{*}ASFV Spain 70 VP72 gene (GenBank accession no. \$89966).

[&]quot;Sus Scrofa /F-actin gene (GenBank accession no. AY550069)

Comparison of techniques targeting antigen detection

Comparative viremia results determined by the **OIE real-time PCR (red)** and **UPL real-time PCR (blue)** in blood samples collected from exposed (A) and inoculated (B) pigs using the ASFV genotype II Lithuania 2014 isolate

TABLE 4 Comparison of UPL real-time PCR, OIE real-time PCR, OIE conventional PCR, and antigen ELISA results for the detection of ASFV in blood and tissues collected from pigs experimentally infected with genotype II ASFV isolates

ASFV strain by sample type			UPL-PCR		OIE real-time PCR		OIE conventional PCR		Ag-ELISA (Ingenasa)	
	No. of pigs examined	No. of samples examined	No. of positive samples	%	No. of positive samples	%	No. of positive samples	%	No. of positive samples/total no. of animals	%
Blood samples										
Ukr12/Zapo	6	19	10	52.6	10	52.6	10	52.6	9	47.3
Arm07	6	20	10	50	10	50	10	50	10	50
LT14/1490	18	111	42	37.83	39	35.13	32	29.8	29	26.12
Total	30	150	62	41.3	59	39,3	52	34.7	48	32.0
Tissue samples										ı
Ukr12/Zapo	6	90	90	100	90	100	90	100	6/6ª	100
Arm07	6	90	90	100	90	100	90	100	6/6ª	100
LT14/1490	18	270	260	96.29	255	94.4	255	94.4	16/18 ^a	88.8
Total	30	450	440	97.8	435	96,6	435	96.6	28	93.3

[&]quot;In Ag-ELISA, spleen samples for each pig were included in the study.

Genotyping strategy

Distinguishing between **genotypes** → C-terminal end of the gene B646L encoding the major protein p72

So far, 24 genotypes have been

identified

Additional genotyping method Genotype I → sequence the full E183L-gene encoding the p54 protein → subtypes within Genotype I

Distinguishing between closely related isolates

Original Article - th Open Access - (2) (5)

Identification of a New Genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia

j. E. Adhenbach & C. Gallardo, E. Nieto-Pelegrin, B. Rivera-Arroyo, T. Degefa-Negs, M. Anias, S. Jenberie, D. D. Mulisa, Ω. Gizaw, E. Gelaye, T. R. Chibssa, A. Belaye, A. Loitsch, M. Forsa, M. Yami, A. Diallo, A. Soler, C. E. Lamien, J. M. Sánchez Vizcaino, ... See fewer authors. »

First published: 22 May 2016. | https://doi.org/10.1111/tbed.12511. | Cited by: 12

ORIGINAL ARTICLE | 16 Open Access | @ ①

Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype

C. J. Quembo, F. Jori . W. Vosloo, L. Heath

First published: 17 September 2017 | https://doi.org/10.1111/tbed.12700 | Cited by 2

OIE ELISA

IMMUNOBLOTTING

INDIRECT FLUORESCENT ANTIBODY TEST

COMMERCIAL ELISA

NS: Venton adopted by the World Assembly of Delegator of the OIE in May 2012

SECTION 2.8.

SUIDAE

CHAPTER 2.8.1.

AFRICAN SWINE FEVER

CUT OFF= Optical Density negative serum × 1 + Optical Density Positive serum × 0.2.

Cut off calculation .

- Sera with an optical density below the CUT OFF 0.1 can be considered negative.
- Sera with an optical density higher than CUT OFF + 0.1 can be considered positive.
- Sera with an optical density between CUT OFF ± 0.1 can be considered inconclusive and the
 result needs to be confirmed by the IB technique.

COMMERCIAL ELISA

INGENASA PPA COMPACT (blocking ELISA)

Antibodies always synonym of infection

Antigen vp72 (73)

*Commercial ELISA tests for antibody detection: INGEZIM PPA COMPAC K3 (INGENASA): ID Screen, ID-VET; SVANOVIR ASFV-Ab; SVANOVIR I

IMMUNOBLOTTIN G

LOTTIN Confirmatory test

Escribano et al., 1990; Pastor et al., 1989

Antibodies always synonym of infection

High specificity, more objective and easier interpretation than indirect immunofluorescence

Better recognition of weak positive samples

Same antigen than in OIE ELISA test → ASFV polypeptides are place on strips

Useful when samples have been incorrectly handled or preserved

POSITIVE SAMPLES WILL REACT WITH SEVERAL PROTEINS

Comparison of techniques targeting antigen detection

Comparative viremia results determined by the **OIE real-time PCR (red)** and **UPL real-time PCR (blue)** in blood samples collected from exposed (A) and inoculated (B) pigs using the ASFV genotype II Lithuania 2014 isolate

Sample type	OIE real-time PCR		OIE conventional Po	CR CR	Ag-ELISA Ingenasa		
	No. of positive samples/total no.	Ss (% [95% CI]) ^a	No. of positive samples/total no.	Ss (% [95% CI])	No. of positive samples/total no.	Ss (% [95% CI])	
Experimental	494/502	98.4	487/502	97.0	76/92	82.6	
Field	291/295	98.6	284/295	96.3	66/92	71.7	
Total	785/797	98.5 (97.4-99.1)	771/797	96.7 (95.3-97.8)	142/184	77.2 (70.6-82.6)	

[&]quot; Ss, sensitivity.

UPL USED
AS
REFERENCE
TEST

Gallardo et al., 2015

IMMUNOPEROXIDASE TEST Currently used
Alternative confirmatory serological test

Antibodies always synonym of infection

ASFV infected Vero and MS cells

Virions migrates to the membrane cell from which it gets a new envelope

Immune-cytochemistry technique → antigen-antibody formation (peroxidase enzyme)

SOP at http://asfreferencelab.info/asf/en/pr oceduresdiagnosis/diagnosticprocedures

Technique fully validated at the EURL for ASF

Sensitivity 98.2 ASF and IFI)

EU reference lab web

Comparison of techniques targeting antibody detection

Comparative **IPT** and **ELISA** results obtained in serum samples from seroconverted animals experimentally infected with genotype II ASFV isolates

ASFV isolate	Animal identification	dpi/dpe ^a	Result for ^h :							
			IPT	OIE-ELISA	Ingenasa-ELISA	IDvet-ELISA	Svanova-ELISA			
Arm07	Contact pig 5	16	Pos	Neg	Pos	Neg	Neg			
LT14/1490	Inoculated pig 6	18	Pos	Neg	Neg	Neg	Neg			
LT14/1490	Contact pig 2	21	Pos	Neg	Neg	Neg	Neg			
LT14/1490	Contact pig 10	17	Pos	Neg	Neg	Neg	Neg			
LT14/1490	Contact pig 11	17	Pos	Neg	Neg	Neg	Neg			
LT14/1490	Contact pig 11	18	Pos	Pos	Pos	Pos	Pos			
LT14/1490	Contact pig 12	18	Pos	Neg	Neg	Neg	Neg			
LT14/1490	Contact pig 15	17	Pos	Pos	Pos	Pos	Pos			

[&]quot; dpi, days postinfection; dpe, days postexposure.

IPT USED
AS
REFERENC
E TEST

Sample type	OIE-ELISA		Ingenasa-ELISA		IDvet-ELISA		Svanova-ELISA	
	No. of positive samples/total no.	Ss (%)	No. of positive samples/total no.	Ss (%)	No. of positive samples/total no.	Ss (%)	No. of positive samples/total no.	St (%)
Experimental.	2/8	25	3/8	37.5	2/8	25	2/8	25
Field	2/10	20	6/10	60	4/10	40	4/10	10
Total	4/18	22.22	9/18	50	6/18	33.3	6/18	33.3

b Pos, positive; Neg, negative.

PENSIDE TEST

- Direct immunochromatography
- Monoclonal antigen vp72
- Blood
- Tested in DP and WB
- Field conditions!!

INGEZIM ASF CROM ANTIGEN

R.11.ASF.K42

the sensitivity of the assay respect to rt-PCR was 76% and the specificity 96%.

PENSIDE TEST

- Direct immunochromatography
- Antigen vp72
- Serum, plasma and full blood
- Tested in DP and WB
- Field conditions!!

99% correspondence with the OIE ELISA. 82% sensitivity respect to IPMA (wild boars)

99.9% correspondence with INGEZIM® PPA COMPAC and OIE ELISA. 96% specificity respect IPMA (wild boars)

INGEZIM PPA CROM TECHNICAL BASIS & PRODUCT APPLICATION

V Contro

Test Line: VP72 protein of ASFV adsorbed on the nitrocellulose membrane

Y

IPMA =

IPT

Control Line: α-control protein MAb adsorbed on the nitrocellulose membrane.

on the nitrocellulose membrane.

Red latex microparticles covalently coated with VP72 protein.

Blue latex microparticles covalently coated with a control protein.

2. Read results

at 10 minutes

PENSIDE TEST

Add the diluted 1. sample into the round window

INGEZIM PPA CROM

TEST PROCEDURE

3. Interpretation of results

http://www.sanidadanimal.info/cursos/asf/

PROTOCOLS & VIDEOS

Thanks a lot Muchas

jmvizcaino@ucm.es

First Oral Immunization of wild boar Against ASF virus genotype II

TAFS forum. Scientific Conference on ASF Beijing, 2019

Prof. JM. Sánchez-Vizcaíno

Complutense University of Madrid
Visavet Center
OIE-ASF Reference Laboratory
www.sanidadanimal.info
jmvizcaino@.ucm.es

ASF: The most complex disease of swine

Very complex molecular structure

More than 150 proteins; at least 50 proteins in the viral particle structure

Replication in macrophages, encodes multiple virulence factors

NO produces completely effective neutralizing antibodies. But is highly immunogenic

Lack of effective vaccine

Lack of a complete protection

THE EXPERIMENT

18 wild boar piglets:

- -3-4 months old
- -10-15kg to 20-25 kg
- -Origin: Cinegetic farm Lagunes S.L. CR, Spain.

2 strains:

- Attenuated vaccine candidate strain (Lv17/WB/RIE1)
- Virulent challenge strain (Armenia/07)

2 months

& 3 questions to answer

- Is attenuated strain able to generate <u>immune response</u> <u>and no clinical signs</u> nor mortality?
- 2. Is attenuated strain able to be <u>transmitted by direct contact</u>?
- Does attenuated strain confer cross-protection against virulent challenge strain?

The vaccine

Attenuated ASF virus (ASFV) genotype II (non-HAD)from a wild boar detected in Latvia during 2017 (Lv17/WB/RIE1)

Oral vaccination

104 TCDI₅₀ LV17/WB/RIE1

+ In-contact vaccination

Shedder-pig challengeexposure infection model

The challenge strain

Virulent ASF virus (ASFV) genotype II (HAD) (Armenia07)

IM challenge

10 TCDI₅₀ Armenia07

+ In-confact challenge

VACCINATION PERIOD

RESULTS: VACCINATION PERIOD

Slightly increase body temperature (40.1-40.8 °C) was the only clinical reaction detected (8/12)

Weak positive real-time PCR results (Ct = 33.02 ± 4.07) were sporadically detected (8/12)

RESULTS: VACCINATION PERIOD

RESULTS: POST-CHALLENGE PERIOD

VACCINE EFFECTIVENESS

RESULTS: POST-CHALLENGE PERIOD

Immunized VS

POST-MORTEM STUDIES

Armenia/07

Infected wild boar Immunized wild boar

Armenia/07

Infected wild boar Immunized wild boar

Infected wild boar Immunized wild boar

Infected wild boar Immunized wild boar

Armenia/07

POST MORTEN TISSUES EVALUATED by PCR

ANALYSED ORGANS (18)
Spleen
Kidney
Liver
Lung
Heart
Brain
Bone marrow
Bladder
Intestine
Tonsil
Submandibular lymph node
Inguinal lymph node
Retropharyngeal lymph node
Mesenteric lymph node
Gastrohepatic lymph node
Prescapular lymph node
Renal lymph node
Mediastinal lymph node

Level of ASFV determined by real-time PCR from postmortem tissues (n = 16) compared to the number of days from the last viremia detected to necropsy

Real-time PCR (Ct values) for ASFV from different post-mortem tissues

VACCINE RESEARCH ON GOING

- Genetic stability in vitro and in vivo
- Overdoses immunization in WB
- Duration of Immunity (DP and WB)
- Immunization in domestic pig with a large number of animals
- DIVA adaptation

Thanks a lot Muchas gracias

jmvizcaino@ucm.es