
 Drift Protocol
 Security Assessment

 February 15, 2023

 Prepared for:

 Drift Protocol

 Prepared by: Anders Helsing and Samuel Moelius

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Drift Protocol Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Drift
 Protocol under the terms of the project statement of work and has been made public at
 Drift Protocol’s request. Material within this report may not be reproduced or distributed in
 part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Drift Protocol Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 3

 Project Summary 5

 Project Goals 6

 Project Targets 8

 Project Coverage 8

 Codebase Maturity Evaluation 11

 Summary of Findings 13

 Detailed Findings 15

 1. Lack of build instructions 15

 2. Inadequate testing 17

 3. Invalid audit.toml prevents cargo audit from being run 19

 4. Race condition in Drift SDK 21

 5. Loose size coupling between function invocation and requirement 23

 6. The zero-copy feature in Anchor is experimental 25

 7. Hard-coded indices into account data 27

 8. Missing verification of maker and maker_stats accounts 28

 9. Panics used for error handling 30

 10. Testing code used in production 32

 11. Inconsistent use of checked arithmetic 34

 12. Inconsistent and incomplete exchange status checks 36

 13. Spot market access controls are incomplete 40

 Trail of Bits 3 Drift Protocol Security Assessment
 PUBLIC

 14. Oracles can be invalid in at most one way 41

 15. Code duplication 43

 16. Inconsistent use of integer types 46

 17. Use of opaque constants in tests 48

 18. Accounts from contexts are not always used by the instruction 49

 19. Unaligned references are allowed 51

 20. Size of created accounts derived from in-memory representation 52

 Summary of Recommendations 55

 A. Vulnerability Categories 56

 B. Code Maturity Categories 59

 C. Non-Security-Related Findings 61

 D. Code Quality Recommendations 64

 Project Layout 64

 Function Comments 65

 Function Complexity 66

 Example: user liquidation status 67

 General Inconsistencies 69

 Style Guides 70

 E. Fix Review Results 71

 Detailed Fix Review Results 72

 Trail of Bits 4 Drift Protocol Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 Drift Protocol engaged Trail of Bits to review the security of its decentralized exchange and
 smart contract. From November 7 to December 2, 2022, a team of two consultants
 conducted a security review of the client-provided source code, with six person-weeks of
 effort. Details of the project’s timeline, test targets, and coverage are provided in
 subsequent sections of this report.

 From January 23 to January 25, 2023, Trail of Bits reviewed the fixes and mitigations
 implemented by Drift Protocol to resolve the issues described in this report. A detailed
 review of the current status of each issue is provided in Appendix E .

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We had access
 to the source code and documentation. We conducted this audit with full knowledge of the
 target system, including access to the source code and documentation. We performed
 static and dynamic testing of the target system and its codebase, using both automated
 and manual processes.

 Summary of Findings
 The audit did not uncover any high-severity flaws that could impact system confidentiality,
 integrity, or availability. A summary of the findings and details on notable findings are
 provided below.

 Trail of Bits 5 Drift Protocol Security Assessment
 PUBLIC

 EXPOSURE ANALYSIS

 Severity Count

 Medium 1

 Informational 15

 Undetermined 4

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 3

 Auditing and Logging 1

 Configuration 1

 Data Validation 3

 Error Reporting 1

 Patching 2

 Testing 3

 Undefined Behavior 6

 Notable Findings
 Notable flaws that could impact system confidentiality, integrity, or availability are listed
 below.

 ● TOB-DRIFT-2
 The Anchor tests are not run as part of Drift Protocol’s CI process.

 ● TOB-DRIFT-4
 A race condition in the Drift SDK causes client programs to operate on non-existent
 or possibly stale data. The race condition affects many of the project’s Anchor tests,
 making them unreliable.

 Trail of Bits 6 Drift Protocol Security Assessment
 PUBLIC

 ● TOB-DRIFT-12
 The exchange’s status is represented using an enum , which does not allow more
 than one individual operation to be paused. The exchange’s status is checked in
 multiple, inconsistent ways (e.g., in function annotations and in function bodies).

 ● TOB-DRIFT-13
 Spot market access controls are only partially implemented.

 ● TOB-DRIFT-16
 The codebase uses integer types inconsistently; data of similar kinds is represented
 using differently sized types, or types with different signedness. There are nearly
 700 casts from one integer type to another, each of which could cause its enclosing
 operation to fail.

 Trail of Bits 7 Drift Protocol Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Anders Helsing , Consultant Samuel Moelius , Consultant
 anders.helsing@trailofbits.com samuel.moelius@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 October 27, 2022 Pre-project kickoff call

 November 16, 2022 Status update meeting #1

 November 28, 2022 Status update meeting #2

 December 5, 2022 Delivery of report draft

 December 5, 2022 Report readout meeting

 January 6, 2023 Delivery of revised draft report

 February 15, 2023 Delivery of final report

 Trail of Bits 8 Drift Protocol Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Drift Protocol
 decentralized exchange and smart contract. We conducted the assessment through a
 combination of manual and automated review, including applying a comprehensive suite of
 tools to automatically uncover bugs, review of the architecture of the system for design
 flaws, a detailed manual code review, and identification and evaluation of security and
 correctness properties. We used the following non-exhaustive list of questions to drive our
 investigation throughout the assessment:

 ● Can a malicious actor withdraw funds from the Drift Protocol contract in a manner
 other than intended?

 ● Can funds become frozen?

 ● Can math operations within the contract instructions result in overflow or underflow
 conditions?

 ● Is it possible to bypass the checks on accounts used by instructions?

 ● Can instructions use the wrong type of accounts?

 ● Does Drift Protocol use oracles safely?

 Trail of Bits 9 Drift Protocol Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 Drift Protocol v2

 Repository https://github.com/drift-labs/protocol-v2

 Version 57dd5c647253d6e4d9c12b75e17ce603eeb60315

 Type Rust

 Platform Solana

 Trail of Bits 10 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Static analysis. We ran Clippy over the codebase with -W pedantic and reviewed
 the warnings that were produced.

 ● Test review. We ran the Cargo tests and verified that they passed. We attempted
 the same with the Anchor tests.

 ● Manual review. We manually reviewed the Drift Protocol contract with a focus on
 answering the questions listed under Project Goals .

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● We reviewed the authentication of all the user, IF staker, and admin instructions.
 However, the admin instructions are only cursorily examined to ensure that the
 provided admin account has signed the transaction and that it is tied to the state
 account.

 ● Much of the code is written in an inconsistent style. One would expect that if two
 functions fulfill similar roles, then they would exhibit similar structure. However, it is
 difficult to discern such patterns from the current codebase (see TOB-DRIFT-12 for
 an example). This fact considerably hindered manual review.

 ● We were unable to reliably run the Anchor tests, we suspect because of
 TOB-DRIFT-4 . Thus, our ability to test the contract dynamically was limited to using
 the Cargo tests.

 Trail of Bits 11 Drift Protocol Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 A codebase maturity evaluation is a holistic assessment that seeks to identify systemic
 issues and/or opportunities for improvement in a client’s codebase and their overall
 approach to software development. While the Detailed Findings section provides
 information about specific issues along with tactical steps to remediate them, the codebase
 maturity evaluation offers strategic recommendations for widespread problems that will
 provide long-lasting value.

 Trail of Bits indicates the maturity of the codebase across various categories using a
 traffic-light protocol (akin to standards such as TLP Version 2.0) that has been specifically
 tailored to provide a clear understanding of the areas in which the codebase is mature,
 underdeveloped, or somewhere in between. Deficiencies identified in the evaluation often
 stem from root causes within the software development life cycle (SDLC) that should be
 addressed through standardization measures (e.g., the use of common libraries, functions,
 or frameworks) or training and awareness programs.

 Mature codebases align with industry best practices in software development and security;
 as a result, they tend to be better positioned to avoid security issues (e.g., they are less
 likely to introduce bugs) and to mitigate security issues that do arise (e.g., through robust
 controls and procedures that mitigate impact to the system and its users).

 For more information about the Codebase Maturity Evaluation categories and rating
 criteria, refer to Appendix B .

 Category Summary Result

 Arithmetic The code uses unchecked arithmetic and converts
 between integer types more often than seems necessary
 (TOB-DRIFT-11 , TOB-DRIFT-16).

 Weak

 Auditing The project emits events for most (if not all) critical
 operations.

 Satisfactory

 Authentication /
 Access Controls

 Access controls are implemented inconsistently
 (TOB-DRIFT-12) and, in some places, are only partially
 implemented (TOB-DRIFT-13).

 Weak/
 Missing

 Trail of Bits 12 Drift Protocol Security Assessment
 PUBLIC

https://www.first.org/tlp/

 Complexity
 Management

 Code is duplicated both literally and logically, suggesting
 that it does not employ the right abstractions
 (TOB-DRIFT-15). Testing code is mixed with production
 code (TOB-DRIFT-10). Some instructions require accounts
 that are unused (TOB-DRIFT-18). The code does not
 employ common best practices, such as having build
 instructions (TOB-DRIFT-1), reliable tests (TOB-DRIFT-4), a
 reliable CI process (TOB-DRIFT-2), or a method for
 uncovering vulnerable dependencies (TOB-DRIFT-3).

 Weak

 Cryptography
 and Key
 Management

 We found no issues related to cryptography or key
 management. Where signatures need to be performed,
 the platform appears to check them correctly.

 Satisfactory

 Decentralization The platform is administered by a central authority. Drift
 Protocol has indicated that they plan to develop a DAO.
 Further investigation is required to determine whether
 any aspect of the administrative APIs would be
 unsuitable for control by a DAO.

 Further
 Investigation
 Required

 Documentation The project has comprehensive user documentation . A
 “ Drift v2 Instructions ” document was shared with us. We
 recommend incorporating it into the project’s
 documentation.

 Satisfactory

 Front-Running
 Resistance

 Some amount of front-running risk is inherent to a
 platform of this kind. We found no issues that would
 elevate that risk.

 Satisfactory

 Low-Level
 Manipulation

 The code uses several questionable low-level constructs
 that, even if they are not currently vulnerable, could lead
 to future problems. Examples include use of Anchor’s
 experimental zero-copy feature (TOB-DRIFT-6), using
 offsets into serialized data (TOB-DRIFT-7), and expecting
 the in-memory size of data structures to be the same as
 their serialized size (TOB-DRIFT-20).

 Moderate

 Trail of Bits 13 Drift Protocol Security Assessment
 PUBLIC

https://docs.drift.trade/
https://driftprotocol.notion.site/Drift-v2-Instructions-d7408b3bf59549b0949098f4f39fefbe

 Testing and
 Verification

 Tests are not run as part of the project’s CI process
 (TOB-DRIFT-2). The integration tests are unreliable as
 they depend on a library with race conditions
 (TOB-DRIFT-4). Many tests use opaque constants, making
 it difficult to tell whether the tests are checking for
 correct behavior (TOB-DRIFT-17). The code would benefit
 from more advanced testing methods, such as fuzzing
 and property-based testing. Drift Protocol does, however,
 have a simulation framework that was not considered as
 part of this assessment.

 Weak

 Trail of Bits 14 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/drift-sim/tree/5d67e68b328ab4be5164e987d06b271765458342

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 No build instructions Testing Informational

 2 Inadequate testing Testing Informational

 3 Invalid audit.toml prevents cargo audit from being
 run

 Auditing and
 Logging

 Informational

 4 Race condition in Drift SDK Undefined
 Behavior

 Undetermined

 5 Loose size coupling between function invocation
 and requirement

 Undefined
 Behavior

 Informational

 6 The zero-copy feature in Anchor is experimental Undefined
 Behavior

 Informational

 7 Hardcoded indices into account data Undefined
 Behavior

 Informational

 8 Missing verification of maker and maker_stats
 accounts

 Data Validation Undetermined

 9 Panics used for error handling Error Reporting Informational

 10 Testing code used in production Patching Undetermined

 11 Inconsistent use of checked arithmetic Data Validation Undetermined

 12 Inconsistent and incomplete exchange status
 checks

 Access Controls Medium

 Trail of Bits 15 Drift Protocol Security Assessment
 PUBLIC

 13 Spot market access controls are incomplete Access Controls Informational

 14 Oracles can be invalid in at most one way Data Validation Informational

 15 Code duplication Patching Informational

 16 Inconsistent use of integer types Undefined
 Behavior

 Informational

 17 Use of opaque constants in tests Testing Informational

 18 Accounts from contexts are not always used by
 the instruction

 Access Controls Informational

 19 Unaligned references are allowed Undefined
 Behavior

 Informational

 20 Size of created accounts derived from in-memory
 representation

 Configuration Informational

 Trail of Bits 16 Drift Protocol Security Assessment
 PUBLIC

 Detailed Findings

 1. Lack of build instructions

 Severity: Informational Difficulty: High

 Type: Testing Finding ID: TOB-DRIFT-1

 Target: README.md

 Description
 The Drift Protocol repository does not contain instructions to build, compile, test, or run
 the project. The project’s README should include at least the following information:

 ● Instructions for building the project
 ● Instructions for running the built artifacts
 ● Instructions for running the project’s tests

 The closest thing we have found to build instructions appears in a script in the drift-sim
 repository (figure 1.1). As shown in the figure below, building the project is non-trivial.
 Users should not be required to rediscover these steps on their own.

 git submodule update --init --recursive
 # build v2
 cd driftpy/protocol-v2
 yarn && anchor build
 # build dependencies for v2
 cd deps/serum-dex/dex && anchor build && cd ../../..
 # go back to top-level
 cd ../../

 Figure 1.1: drift-sim/setup.sh

 Additionally, the project relies on serum-dex , which currently has an open issue regarding
 outdated build instructions. Thus, if a user visits the serum-dex repository to learn how to
 build the dependency, they will be misled.

 Exploit Scenario
 Alice attempts to build and deploy her own copy of the Drift Protocol smart contract.
 Without instructions, Alice deploys it incorrectly. Users of Alice’s copy of the smart contract
 suffer financial loss.

 Trail of Bits 17 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/drift-sim/blob/5d67e68b328ab4be5164e987d06b271765458342/setup.sh#L1-L8
https://github.com/project-serum/serum-dex/issues/187

 Recommendations
 Short term, add the minimal information listed above to the project’s README . This will help
 users to build, run, and test the project .

 Long term, as the project evolves, ensure that the README is updated. This will help ensure
 that the README does not communicate incorrect information to users .

 References
 ● Documentation points to do.sh

 Trail of Bits 18 Drift Protocol Security Assessment
 PUBLIC

https://github.com/project-serum/serum-dex/issues/187

 2. Inadequate testing

 Severity: Informational Difficulty: High

 Type: Testing Finding ID: TOB-DRIFT-2

 Target: .github/workflows/main.yml , test-scripts/run-anchor-tests.sh

 Description
 The Anchor tests are not run as part of Drift Protocol’s CI process. Moreover, the script
 responsible for running the Anchor tests does not run all of them. Integrating all Anchor
 tests into the CI process and updating the script so it runs all tests will help ensure they are
 run regularly and consistently.

 Figure 2.1 shows a portion of the project’s main GitHub workflow, which runs the project’s
 unit tests. However, the file makes no reference to the project’s Anchor tests.

 - name : Run unit tests
 run : cargo test --lib # run unit tests

 Figure 2.1: .github/workflows/main.yml#L52–L53

 Furthermore, the script used to run the Anchor tests runs only some of them. The relevant
 part of the script appears in figure 2.2. The test_files array contains the names of nearly
 all of the files containing tests in the tests directory. However, the array lacks the
 following entries, and consequently does not run their tests:

 ● ksolver.ts
 ● tokenFaucet.ts

 test_files =(
 postOnlyAmmFulfillment.ts
 imbalancePerpPnl.ts
 ... # 42 entries
 cancelAllOrders.ts

)

 Figure 2.2: test-scripts/run-anchor-tests.sh#L7–L53

 Exploit Scenario
 Alice, a Drift Protocol developer, unwittingly introduces a bug into the codebase. The test
 would be revealed by the Anchor tests. However, because the Anchor tests are not run in
 CI, the bug goes unnoticed.

 Trail of Bits 19 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/.github/workflows/main.yml#L52-L53
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/test-scripts/run-anchor-tests.sh#L7-L53

 Recommendations
 Short term:

 ● Adjust the main GitHub workflow so that it runs the Anchor tests.
 ● Adjust the run-anchor-tests.sh script so that it runs all Anchor tests (including

 those in ksolver.ts and tokenFaucet.ts).

 Taking these steps will help to ensure that all Anchor tests are run regularly and
 consistently.

 Long term, revise the run-anchor-tests.sh script so that the test_files array is not
 needed. Move files that do not contain tests into a separate directory, so that only files
 containing tests remain. Then, run the tests in all files in the tests directory. Adopting
 such an approach will ensure that newly added tests are automatically run.

 Trail of Bits 20 Drift Protocol Security Assessment
 PUBLIC

 3. Invalid audit.toml prevents cargo audit from being run

 Severity: Informational Difficulty: High

 Type: Auditing and Logging Finding ID: TOB-DRIFT-3

 Target: audit.toml

 Description
 The project’s anchor.toml file contains an invalid key. This makes running cargo audit
 on the project impossible.

 The relevant part of the audit.toml file appears in figure 3.1. The packages key is
 unrecognized by cargo audit . As a result, cargo audit produces the error in figure 3.2
 when run on the protocol-v2 repository.

 [packages]
 source = "all" # "all", "public" or "local"

 Figure 3.1: .cargo/audit.toml#L27–L28

 error: cargo-audit fatal error: parse error: unknown field `packages`, expected one
 of `advisories`, `database`, `output`, `target`, `yanked` at line 30 column 1

 Figure 3.2: Error produced by cargo audit when run on the protocol-v2 repository

 Exploit Scenario
 A vulnerability is discovered in a protocol-v2 dependency. A RUSTSEC advisory is issued
 for the vulnerability, but because cargo audit cannot be run on the repository, the
 vulnerability goes unnoticed. Users suffer financial loss.

 Recommendations
 Short term, either remove the packages table from the anchor.toml file or replace it with
 a table recognized by cargo audit . In the project’s current state, cargo audit cannot be
 run on the project.

 Long term, regularly run cargo audit in CI and verify that it runs to completion without
 producing any errors or warnings. This will help the project receive the full benefits of
 running cargo audit by identifying dependencies with RUSTSEC advisories.

 Trail of Bits 21 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/.cargo/audit.toml#L27-L28

 4. Race condition in Drift SDK

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-DRIFT-4

 Target: sdk directory

 Description
 A race condition in the Drift SDK causes client programs to operate on non-existent or
 possibly stale data. The race condition affects many of the project’s Anchor tests, making
 them unreliable. Use of the SDK in production could have financial implications.

 When running the Anchor tests, the error in figure 4.1 appears frequently. The data field
 that the error refers to is read by the getUserAccount function (figure 4.2). This function
 tries to read the data field from a DataAndSlot object obtained by calling
 getUserAccountAndSlot (figure 4.3). That DataAndSlot object is set by the
 handleRpcResponse function (figure 4.4).

 TypeError: Cannot read properties of undefined (reading 'data')
 at User.getUserAccount (sdk/src/user.ts:122:56)
 at DriftClient.getUserAccount (sdk/src/driftClient.ts:663:37)
 at DriftClient.<anonymous> (sdk/src/driftClient.ts:1005:25)
 at Generator.next (<anonymous>)
 at fulfilled (sdk/src/driftClient.ts:28:58)
 at processTicksAndRejections (node:internal/process/task_queues:96:5)

 Figure 4.1: Error that appears frequently when running the Anchor tests

 public getUserAccount(): UserAccount {
 return this .accountSubscriber.getUserAccountAndSlot(). data ;

 }

 Figure 4.2: sdk/src/user.ts#L121–L123

 public getUserAccountAndSlot(): DataAndSlot<UserAccount> {
 this .assertIsSubscribed();
 return this .userDataAccountSubscriber. dataAndSlot ;

 }

 Figure 4.3: sdk/src/accounts/webSocketUserAccountSubscriber.ts#L72–L75

 handleRpcResponse(context: Context , accountInfo?: AccountInfo <Buffer>): void {
 ...
 if (newBuffer && (!oldBuffer || !newBuffer.equals(oldBuffer))) {

 Trail of Bits 22 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/sdk/src/user.ts#L121-L123
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/sdk/src/accounts/webSocketUserAccountSubscriber.ts#L72-L75

 this .bufferAndSlot = {
 buffer: newBuffer ,
 slot: newSlot ,

 };
 const account = this .decodeBuffer(newBuffer);
 this .dataAndSlot = {

 data: account ,
 slot: newSlot ,

 };
 this .onChange(account);

 }
 }

 Figure 4.4: sdk/src/accounts/webSocketAccountSubscriber.ts#L55–L95

 If a developer calls getUserAccount but handleRpcResponse has not been called since
 the last time the account was updated, stale data will be returned. If handleRpcResponse
 has never been called for the account in question, an error like that shown in figure 4.1
 arises.

 Note that a developer can avoid the race by calling
 WebSocketAccountSubscriber.fetch (figure 4.5). However, the developer must
 manually identify locations where such calls are necessary. Errors like the one shown in
 figure 4.1 appear frequently when running the Anchor tests, which suggests that identifying
 such locations is nontrivial.

 async fetch(): Promise < void > {
 const rpcResponse =

 await this .program.provider.connection.getAccountInfoAndContext(
 this .accountPublicKey,
 (this .program.provider as AnchorProvider).opts.commitment

);
 this .handleRpcResponse(rpcResponse.context, rpcResponse?.value);

 }

 Figure 4.5: sdk/src/accounts/webSocketAccountSubscriber.ts#L46–L53

 We suspect this problem applies to not just user accounts, but any account fetched via a
 subscription mechanism (e.g., state accounts or perp market accounts).

 Note that despite the apparent race condition, Drift Protocol states that the tests run
 reliably for them.

 Exploit Scenario
 Alice, unaware of the race condition, writes client code that uses the Drift SDK. Alice’s code
 unknowingly operates on stale data and proceeds with a transaction, believing it will result
 in financial gain. However, when processed with actual on-chain data, the transaction
 results in financial loss for Alice.

 Trail of Bits 23 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/sdk/src/accounts/webSocketAccountSubscriber.ts#L55-L95
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/sdk/src/accounts/webSocketAccountSubscriber.ts#L46-L53

 Recommendations
 Short term, rewrite all account getter functions so that they automatically call
 WebSocketAccountSubscriber.fetch . This will eliminate the need for developers to
 deal with the race manually.

 Long term, investigate whether using a subscription mechanism is actually needed.
 Another Solana RPC call could solve the same problem yet be more efficient than a
 subscription combined with a manual fetch.

 Trail of Bits 24 Drift Protocol Security Assessment
 PUBLIC

 5. Loose size coupling between function invocation and requirement

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DRIFT-5

 Target: programs/drift/src/state/events.rs

 Description
 The implementation of the emit_stack function relies on the caller to use a sufficiently
 large buffer space to hold a Base64-encoded representation of the discriminator along with
 the serialized event. Failure to provide sufficient space will result in an out-of-bounds
 attempt on either the write operation or the in the base64::encode_config_slice call.

 emit_stack::<_, 424 >(order_action_record);

 Figure 5.1: programs/drift/src/controller/orders.rs#L545

 pub fn emit_stack <T: AnchorSerialize + Discriminator, const N: usize >(event: T) {
 let mut data_buf = [0 u8 ; N];
 let mut out_buf = [0 u8 ; N];

 emit_buffers(event, & mut data_buf[..], & mut out_buf[..])
 }

 pub fn emit_buffers <T: AnchorSerialize + Discriminator>(
 event: T ,
 data_buf: & mut [u8],
 out_buf: & mut [u8],

) {
 let mut data_writer = std::io::Cursor::new(data_buf);
 data_writer

 .write_all(&<T as Discriminator>::discriminator())
 .unwrap();

 borsh::to_writer(& mut data_writer, &event).unwrap();
 let data_len = data_writer.position() as usize ;

 let out_len = base64::encode_config_slice(
 &data_writer.into_inner()[0 ..data_len],
 base64::STANDARD,
 out_buf,

);

 let msg_bytes = &out_buf[0 ..out_len];
 let msg_str = unsafe { std:: str ::from_utf8_unchecked(msg_bytes) };

 msg!(msg_str);

 Trail of Bits 25 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L545

 }

 Figure 5.2: programs/drift/src/state/events.rs#L482–L511

 Exploit Scenario
 A maintainer of the smart contract is unaware of this implicit size requirement and adds a
 call to emit_stack using too small a buffer, or changes are made to a type without a
 corresponding change to all places where emit_stack uses that type. If the changed code
 is not covered by tests, the problem will manifest during contract operation, and could
 cause an instruction to panic, thereby reverting the transaction.

 Recommendations
 Short term, add a size constant to the type, and calculate the amount of space required for
 holding the respective buffers. This ensures that changes to a type's size can be made
 throughout the code.

 Long term, create a trait to be used by the types with which emit_stack is intended to
 work. This can be used to handle the size of the type, and also any other future
 requirement for types used by emit_stack .

 Trail of Bits 26 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/events.rs#L482-L511

 6. The zero-copy feature in Anchor is experimental

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DRIFT-6

 Target: State structs

 Description
 Several structs for keeping state use Anchor’s zero-copy functionality. The Anchor
 documentation states that this is still an experimental feature that should be used only
 when Borsh serialization cannot be used without hitting the stack or heap limits.

 Exploit Scenario
 The Anchor framework has a bug in the zero-copy feature, or updates it with a breaking
 change, in a way that affects the security model of the Drift smart contract. An attacker
 discovers this problem and leverages it to steal funds from the contract.

 #[account(zero_copy)]
 #[derive(Default, Eq, PartialEq, Debug)]
 #[repr(C)]
 pub struct User {

 pub authority: Pubkey ,
 pub delegate: Pubkey ,
 pub name: [u8 ; 32],
 pub spot_positions: [SpotPosition; 8],
 pub perp_positions: [PerpPosition; 8],
 pub orders: [Order; 32],
 pub last_add_perp_lp_shares_ts: i64 ,
 pub total_deposits: u64 ,
 pub total_withdraws: u64 ,
 pub total_social_loss: u64 ,
 // Fees (taker fees, maker rebate, referrer reward, filler reward) and pnl for

 perps
 pub settled_perp_pnl: i64 ,
 // Fees (taker fees, maker rebate, filler reward) for spot
 pub cumulative_spot_fees: i64 ,
 pub cumulative_perp_funding: i64 ,
 pub liquidation_margin_freed: u64 , // currently unimplemented
 pub liquidation_start_ts: i64 , // currently unimplemented
 pub next_order_id: u32 ,
 pub max_margin_ratio: u32 ,
 pub next_liquidation_id: u16 ,
 pub sub_account_id: u16 ,
 pub status: UserStatus ,
 pub is_margin_trading_enabled: bool ,

 Trail of Bits 27 Drift Protocol Security Assessment
 PUBLIC

https://docs.rs/anchor-lang/latest/anchor_lang/attr.account.html
https://docs.rs/anchor-lang/latest/anchor_lang/attr.account.html

 pub padding: [u8 ; 26],
 }

 Figure 6.1: Example of a struct using zero copy

 Recommendations
 Short term, evaluate if it is possible to move away from using zero copy without hitting the
 stack or heap limits, and do so if possible. Not relying on experimental features reduces the
 risk of exposure to bugs in the Anchor framework.

 Long term, adopt a conservative stance by using stable versions of packages and features.
 This reduces both risk and time spent on maintaining compatibility with code still in flux.

 Trail of Bits 28 Drift Protocol Security Assessment
 PUBLIC

 7. Hard-coded indices into account data

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DRIFT-7

 Target: perp_market_map.rs, spot_market_map.rs

 Description
 The implementations for both PerpMarketMap and SpotMarketMap use hard-coded
 indices into the accounts data in order to retrieve the marked_index property without
 having to deserialize all the data.

 // market index 1160 bytes from front of account
 let market_index = u16 ::from_le_bytes(*array_ref![data, 1160 , 2]);

 Figure 7.1: programs/drift/src/state/perp_market_map.rs#L110–L111

 let market_index = u16 ::from_le_bytes(*array_ref![data, 684 , 2]);

 Figure 7.2: programs/drift/src/state/spot_market_map.rs#L174

 Exploit Scenario
 Alice, a Drift Protocol developer, changes the layout of the structure or the width of the
 market_index property but fails to update one or more of the hard-coded indices. Mallory
 notices this bug and finds a way to use it to steal funds.

 Recommendations
 Short term, add consts that include the value of the indices and the type size. Also add
 comments explaining the calculation of the values. This ensures that by updating the
 constants, all code relying on the operation will retrieve the correct part of the unlying data.

 Long term, add an implementation to the struct to unpack the market_index from the
 serialized state. This reduces the maintenance burden of updating the code that accesses
 data in this way.

 Trail of Bits 29 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/perp_market_map.rs#L110-L111
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/spot_market_map.rs#L174

 8. Missing verification of maker and maker_stats accounts

 Severity: Undetermined Difficulty: Medium

 Type: Data Validation Finding ID: TOB-DRIFT-8

 Target: programs/drift/src/instructions/user.rs

 Description
 The handle_place_and_take_perp_order and
 handle_place_and_take_spot_order functions retrieve two additional accounts that
 are passed to the instruction: maker and maker_stats . However, there is no check that
 the two accounts are linked (i.e., that their authority is the same). Due to time
 constraints, we were unable to determine the impact of this finding.

 pub fn get_maker_and_maker_stats <'a>(
 account_info_iter: & mut Peekable<Iter<AccountInfo<'a>>>,

) -> DriftResult <(AccountLoader<'a, User>, AccountLoader<'a, UserStats>)> {
 let maker_account_info =

 next_account_info(account_info_iter).or(Err (ErrorCode::MakerNotFound))?;

 validate!(
 maker_account_info.is_writable,
 ErrorCode::MakerMustBeWritable

)?;

 let maker: AccountLoader <User> =

 AccountLoader::try_from(maker_account_info).or(Err (ErrorCode::CouldNotDeserializeMak
 er))?;

 let maker_stats_account_info =

 next_account_info(account_info_iter).or(Err (ErrorCode::MakerStatsNotFound))?;

 validate!(
 maker_stats_account_info.is_writable,
 ErrorCode::MakerStatsMustBeWritable

)?;

 let maker_stats: AccountLoader <UserStats> =
 AccountLoader::try_from(maker_stats_account_info)

 .or(Err (ErrorCode::CouldNotDeserializeMakerStats))?;

 Ok ((maker, maker_stats))
 }

 Figure 8.1: programs/drift/src/instructions/optional_accounts.rs#L47–L74

 Trail of Bits 30 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/optional_accounts.rs#L47-L74

 Exploit Scenario
 Mallory passes two unlinked accounts of the correct type in the places for maker and
 maker_stats , respectively. This causes the contract to operate outside of its intended use.

 Recommendations
 Short term, add a check that the authority of the accounts are the same.

 Long term, add all code for authentication of accounts to the front of instruction handlers.
 This increases the clarity of the checks and helps with auditing the authentication.

 Trail of Bits 31 Drift Protocol Security Assessment
 PUBLIC

 9. Panics used for error handling

 Severity: Informational Difficulty: High

 Type: Error Reporting Finding ID: TOB-DRIFT-9

 Target: Various files in programs/drift

 Description
 In several places, the code panics when an arithmetic overflow or underflow occurs. Panics
 should be reserved for programmer errors (e.g., assertion violations). Panicking on user
 errors dilutes the utility of the panic operation.

 An example appears in figure 9.1. The adjust_amm function uses both the question mark
 operator (?) and unwrap to handle errors resulting from “peg” related calculations. An
 overflow or underflow could result from an invalid input to the function. An error should be
 returned in such cases.

 budget_delta_peg = budget_i128
 .safe_add(adjustment_cost.abs())?
 .safe_mul(PEG_PRECISION_I128)?
 .safe_div(per_peg_cost)?;

 budget_delta_peg_magnitude = budget_delta_peg.unsigned_abs();
 new_peg = if budget_delta_peg > 0 {

 ...
 } else if market.amm.peg_multiplier > budget_delta_peg_magnitude {

 market
 .amm
 .peg_multiplier
 .safe_sub(budget_delta_peg_magnitude)
 .unwrap()

 } else {
 1

 };

 Figure 9.1: programs/drift/src/math/repeg.rs#L349–L369

 Running Clippy with the following command identifies 66 locations in the drift package
 where expect or unwrap is used:

 cargo clippy -p drift -- -A clippy::all -W
 clippy::expect_used -W clippy::unwrap_used

 Many of those uses appear to be related to invalid input.

 Trail of Bits 32 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/repeg.rs#L349-L369

 Exploit Scenario
 Alice, a Drift Protocol developer, observes a panic in the Drift Protocol codebase. Alice
 ignores the panic, believing that it is caused by user error, but it is actually caused by a bug
 she introduced.

 Recommendations
 Short term, reserve the use of panics for programmer errors. Have relevant areas of the
 code return Result::Err on user errors. Adopting such a policy will help to distinguish
 the two types of errors when they occur.

 Long term, consider denying the following Clippy lints:

 ● clippy::expect_used
 ● clippy::unwrap_used
 ● clippy::panic

 Although this will not prevent all panics, it will prevent many of them.

 Trail of Bits 33 Drift Protocol Security Assessment
 PUBLIC

https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
https://rust-lang.github.io/rust-clippy/master/#expect_used
https://rust-lang.github.io/rust-clippy/master/#unwrap_used
https://rust-lang.github.io/rust-clippy/master/#panic

 10. Testing code used in production

 Severity: Undetermined Difficulty: Undetermined

 Type: Patching Finding ID: TOB-DRIFT-10

 Target: programs/drift/src/state/{oracle_map.rs, perp_market.rs}

 Description
 In some locations in the Drift Protocol codebase, testing code is mixed with production
 code with no way to discern between them. Testing code should be clearly indicated as
 such and guarded by #[cfg(test)] to avoid being called in production.

 Examples appear in figures 10.1 and 10.2. The OracleMap struct has a
 quote_asset_price_data field that is used only when get_price_data is passed a
 default Pubkey . Similarly, the AMM implementation contains functions that are used only
 for testing and are not guarded by #[cfg(test)] .

 pub struct OracleMap <'a> {
 oracles: BTreeMap <Pubkey, AccountInfoAndOracleSource<'a>>,
 price_data: BTreeMap <Pubkey, OraclePriceData>,
 pub slot: u64 ,
 pub oracle_guard_rails: OracleGuardRails ,
 pub quote_asset_price_data: OraclePriceData ,

 }

 impl <'a> OracleMap<'a> {
 ...
 pub fn get_price_data (& mut self , pubkey: & Pubkey) ->

 DriftResult <&OraclePriceData> {
 if pubkey == &Pubkey::default() {

 return Ok (& self .quote_asset_price_data);
 }

 Figure 10.1: programs/drift/src/state/oracle_map.rs#L22–L47

 impl AMM {
 pub fn default_test () -> Self {

 let default_reserves = 100 * AMM_RESERVE_PRECISION;
 // make sure tests dont have the default sqrt_k = 0
 AMM {

 Figure 10.2: programs/drift/src/state/perp_market.rs#L490–L494

 Drift Protocol has indicated that the quote_asset_price_data field (figure 10.1) is used
 in production. This raises concerns because there is currently no way to set the contents of

 Trail of Bits 34 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/oracle_map.rs#L22-L47
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/perp_market.rs#L490-L494

 this field, and no asset’s price is perfectly constant (e.g., even stablecoins’ prices fluctuate).
 For this reason, we have changed this finding’s severity from Informational to
 Undetermined.

 Exploit Scenario
 Alice, a Drift Protocol developer, introduces code that calls the default_test function,
 not realizing it is intended only for testing. Alice introduces a bug as a result.

 Recommendations
 Short term, to the extent possible, avoid mixing testing and production code by, for
 example, using separate data types and storing the code in separate files. When testing
 and production code must be mixed, clearly mark the testing code as such, and guard it
 with #[cfg(test)] . These steps will help to ensure that testing code is not deployed in
 production.

 Long term, as new code is added to the codebase, ensure that the aforementioned
 standards are maintained. Testing code is not typically held to the same standards as
 production code, so it is more likely to include bugs.

 Trail of Bits 35 Drift Protocol Security Assessment
 PUBLIC

 11. Inconsistent use of checked arithmetic

 Severity: Undetermined Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-DRIFT-11

 Target: Various files in programs/drift

 Description
 In several locations, the Drift Protocol codebase uses unchecked arithmetic. For example,
 in calculate_margin_requirement_and_total_collateral_and_liability_info
 (figure 11.1), the variable num_perp_liabilities is used as an operand in both a
 checked and an unchecked operation. To protect against overflows and underflows,
 unchecked arithmetic should be used sparingly.

 num_perp_liabilities += 1 ;
 }

 with_isolated_liability &=
 margin_requirement > 0 && market.contract_tier == ContractTier::Isolated;

 }

 if num_spot_liabilities > 0 {
 validate!(

 margin_requirement > 0 ,
 ErrorCode::InvalidMarginRatio,
 "num_spot_liabilities={} but margin_requirement=0" ,
 num_spot_liabilities

)?;
 }

 let num_of_liabilities = num_perp_liabilities.safe_add(num_spot_liabilities) ?;

 Figure 11.1: programs/drift/src/math/margin.rs#L499–L515

 Note that adding the following to the crate root will cause Clippy to fail the build whenever
 unchecked arithmetic is used:

 #![deny(clippy::integer_arithmetic)]

 Exploit Scenario
 Alice, a Drift Protocol developer, unwittingly introduces an arithmetic overflow bug into the
 codebase. The bug would have been revealed by the use of checked arithmetic. However,
 because unchecked arithmetic is used, the bug goes unnoticed.

 Trail of Bits 36 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/margin.rs#L499-L515

 Recommendations
 Short term, add the #![deny(clippy::integer_arithmetic)] attribute to the drift
 crate root. Add #[allow(clippy::integer_arithmetic)] in rare situations where
 code is performance critical and its safety can be guaranteed through other means. Taking
 these steps will reduce the likelihood of overflow or underflow bugs residing in the
 codebase.

 Long term, if additional Solana programs are added to the codebase, ensure the
 #![deny(clippy::integer_arithmetic)] attribute is also added to them. This will
 reduce the likelihood that newly introduced crates contain overflow or underflow bugs.

 Trail of Bits 37 Drift Protocol Security Assessment
 PUBLIC

 12. Inconsistent and incomplete exchange status checks

 Severity: Medium Difficulty: High

 Type: Access Controls Finding ID: TOB-DRIFT-12

 Target: programs/drift/src/instructions/{admin.rs , keeper.rs , user.rs},
 programs/drift/src/state/state.rs

 Description
 Drift Protocol’s representation of the exchange’s status has several problems:

 ● The exchange’s status is represented using an enum , which does not allow more
 than one individual operation to be paused (figures 12.1 and 12.2). As a result, an
 administrator could inadvertently unpause one operation by trying to pause
 another (figure 12.3).

 ● The ExchangeStatus variants do not map cleanly to exchange operations. For
 example, handle_transfer_deposit checks whether the exchange status is
 WithdrawPaused (figure 12.4). The function’s name suggests that the function
 checks whether “transfers” or “deposits” are paused.

 ● The ExchangeStatus is checked in multiple inconsistent ways. For example, in
 handle_update_funding_rate (figure 12.5), both an access_control attribute
 and the body of the function include a check for whether the exchange status is
 FundingPaused .

 pub enum ExchangeStatus {
 Active,
 FundingPaused,
 AmmPaused,
 FillPaused,
 LiqPaused,
 WithdrawPaused,
 Paused,

 }

 Figure 12.1: programs/drift/src/state/state.rs#L36–L44

 #[account]
 #[derive(Default)]
 #[repr(C)]
 pub struct State {

 pub admin: Pubkey ,
 pub whitelist_mint: Pubkey ,
 ...

 Trail of Bits 38 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/state.rs#L36-L44

 pub exchange_status: ExchangeStatus ,
 pub padding: [u8 ; 17],

 }

 Figure 12.2: programs/drift/src/state/state.rs#L8–L33

 pub fn handle_update_exchange_status (
 ctx: Context <AdminUpdateState>,
 exchange_status: ExchangeStatus ,

) -> Result <()> {
 ctx.accounts.state.exchange_status = exchange_status;
 Ok (())

 }

 Figure 12.3: programs/drift/src/instructions/admin.rs#L1917–L1923

 #[access_control(
 withdraw_not_paused (&ctx.accounts.state)

)]
 pub fn handle_transfer_deposit (

 ctx: Context <TransferDeposit>,
 market_index: u16 ,
 amount: u64 ,

) -> anchor_lang :: Result <()> {

 Figure 12.4: programs/drift/src/instructions/user.rs#L466–L473

 #[access_control(
 market_valid(&ctx.accounts.perp_market)
 funding_not_paused (&ctx.accounts.state)
 valid_oracle_for_perp_market(&ctx.accounts.oracle, &ctx.accounts.perp_market)

)]
 pub fn handle_update_funding_rate (

 ctx: Context <UpdateFundingRate>,
 perp_market_index: u16 ,

) -> Result <()> {
 ...
 let is_updated = controller::funding::update_funding_rate(

 perp_market_index,
 perp_market,
 & mut oracle_map,
 now,
 &state.oracle_guard_rails,
 matches! (state.exchange_status, ExchangeStatus::FundingPaused),
 None ,

)?;
 ...

 }

 Figure 12.5: programs/drift/src/instructions/keeper.rs#L1027–L1078

 Trail of Bits 39 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/state.rs#L8-L33
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/admin.rs#L1917-L1923
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/user.rs#L466-L473
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/keeper.rs#L1027-L1078

 The Medium post describing the incident that occurred around May 11, 2022 suggests that
 the exchange’s pausing mechanisms contributed to the incident’s subsequent fallout:

 The protocol did not have a kill-switch where only withdrawals were halted. The
 protocol was paused in the second pause to prevent a further drain of user
 funds…

 This suggests that the pausing mechanisms should receive heightened attention to reduce
 the damage should another incident occur.

 Exploit Scenario
 Mallory tricks an administrator into pausing funding after withdrawals have already been
 paused. By pausing funding, the administrator unwittingly unpauses withdrawals.

 Recommendations
 Short term:

 ● Represent the exchange’s status as a set of flags. This will allow individual
 operations to be paused independently of one another.

 ● Ensure exchange statuses map cleanly to the operations that can be paused. Add
 documentation where there is potential for confusion. This will help ensure
 developers check the proper exchange statuses.

 ● Adopt a single approach for checking the exchange’s status and apply it consistently
 throughout the codebase. If an exception must be made for a check, explain why in
 a comment near that check. Adopting such a policy will reduce the likelihood that a
 missing check goes unnoticed.

 Long term, periodically review the exchange status checks. Since the exchange status
 checks represent a form of access control, they deserve heightened scrutiny. Moreover, the
 exchange’s pausing mechanisms played a role in past incidents.

 Trail of Bits 40 Drift Protocol Security Assessment
 PUBLIC

https://driftprotocol.medium.com/drift-protocol-technical-incident-report-2022-05-11-eedea078b6d4

 13. Spot market access controls are incomplete

 Severity: Informational Difficulty: Undetermined

 Type: Access Controls Finding ID: TOB-DRIFT-13

 Target: programs/drift/src/instructions/{admin.rs , user.rs}

 Description
 Functions in admin.rs involving perpetual markets verify that the market is valid, i.e., not
 delisted (figure 13.1). However, functions involving spot markets do not include such checks
 (e.g., figure 13.2). Drift Protocol has indicated that the spot market implementation is
 incomplete.

 #[access_control(
 market_valid(&ctx.accounts.perp_market)

)]
 pub fn handle_update_perp_market_expiry (

 ctx: Context <AdminUpdatePerpMarket>,
 expiry_ts: i64 ,

) -> Result <()> {

 Figure 13.1: programs/drift/src/instructions/admin.rs#L676–L682

 _
 pub fn handle_update_spot_market_expiry (

 ctx: Context <AdminUpdateSpotMarket>,
 expiry_ts: i64 ,

) -> Result <()> {

 Figure 13.2: programs/drift/src/instructions/admin.rs#L656–L660

 A similar example concerning whether the exchange is paused appears in figure 13.3 and
 13.4.

 #[access_control(
 exchange_not_paused(&ctx.accounts.state)

)]
 pub fn handle_place_perp_order (ctx: Context <PlaceOrder>, params: OrderParams) ->
 Result <()> {

 Figure 13.3: programs/drift/src/instructions/user.rs#L687–L690

 _
 pub fn handle_place_spot_order (ctx: Context <PlaceOrder>, params: OrderParams) ->
 Result <()> {

 Trail of Bits 41 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/admin.rs#L676-L682
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/admin.rs#L656-L660
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/user.rs#L687-L690

 Figure 13.4: programs/drift/src/instructions/user.rs#L1022–L1023

 Exploit Scenario
 Mallory tricks an administrator into making a call that re-enables an expiring spot market.
 Mallory profits by trading against the should-be-expired spot market.

 Recommendations
 Short term, add the missing access controls to the spot market functions in admin.rs . This
 will ensure that an administrator cannot accidentally perform an operation on an expired
 spot market.

 Long term, add tests to verify that each function involving spot markets fails when invoked
 on an expired spot market. This will increase confidence that the access controls have been
 implemented correctly.

 Trail of Bits 42 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/user.rs#L1022-L1023

 14. Oracles can be invalid in at most one way

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-DRIFT-14

 Target: programs/drift/src/math/oracle.rs

 Description
 The Drift Protocol codebase represents oracle validity using an enum , which does not allow
 an oracle to be invalid in more than one way. Furthermore, the code that determines an
 oracle’s validity imposes an implicit hierarchy on the ways an oracle could be invalid. This
 design is fragile and likely to cause future problems.

 The OracleValidity enum is shown in figure 14.1, and the code that determines an
 oracle’s validity is shown in figure 14.2. Note that if an oracle is, for example, both “too
 volatile” and “too uncertain,” the oracle will be labeled simply TooVolatile . A caller that
 does not account for this fact and simply checks whether an oracle is TooUncertain could
 overlook oracles that are both “too volatile” and “too uncertain.”

 pub enum OracleValidity {
 Invalid,
 TooVolatile,
 TooUncertain,
 StaleForMargin,
 InsufficientDataPoints,
 StaleForAMM,
 Valid,

 }

 Figure 14.1: programs/drift/src/math/oracle.rs#L21–L29

 pub fn oracle_validity (
 last_oracle_twap: i64 ,
 oracle_price_data: & OraclePriceData ,
 valid_oracle_guard_rails: & ValidityGuardRails ,

) -> DriftResult <OracleValidity> {
 ...
 let oracle_validity = if is_oracle_price_nonpositive {

 OracleValidity::Invalid
 } else if is_oracle_price_too_volatile {

 OracleValidity::TooVolatile
 } else if is_conf_too_large {

 OracleValidity::TooUncertain
 } else if is_stale_for_margin {

 OracleValidity::StaleForMargin

 Trail of Bits 43 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/oracle.rs#L21-L29

 } else if !has_sufficient_number_of_data_points {
 OracleValidity::InsufficientDataPoints

 } else if is_stale_for_amm {
 OracleValidity::StaleForAMM

 } else {
 OracleValidity::Valid

 };

 Ok (oracle_validity)
 }

 Figure 14.2: programs/drift/src/math/oracle.rs#L163–L230

 Exploit Scenario
 Alice, a Drift Protocol developer, is unaware of the implicit hierarchy among the
 OracleValidity variants. Alice writes code like oracle_validity !=
 OracleValidity::TooUncertain and unknowingly introduces a bug into the codebase.

 Recommendations
 Short term, represent oracle validity as a set of flags. This will allow oracles to be invalid in
 more than one way, which will result in more robust and maintainable code.

 Long term, thoroughly test all code that relies on oracle validity. This will help ensure the
 code’s correctness following the aforementioned change.

 Trail of Bits 44 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/oracle.rs#L163-L230

 15. Code duplication

 Severity: Informational Difficulty: High

 Type: Patching Finding ID: TOB-DRIFT-15

 Target: Various files in programs/drift

 Description
 Various files in the programs/drift directory contain duplicate code, which can lead to
 incomplete fixes or inconsistent behavior (e.g., because the code is modified in one
 location but not all).

 As an example, the code in figure 15.1 appears nearly verbatim in the functions
 liquidate_perp , liquidate_spot , liquidate_borrow_for_perp_pnl , and
 liquidate_perp_pnl_for_deposit .

 // check if user exited liquidation territory
 let (intermediate_total_collateral, intermediate_margin_requirement_with_buffer) =

 if !canceled_order_ids.is_empty() || lp_shares > 0 {
 ... // 37 lines
 (

 intermediate_total_collateral,
 intermediate_margin_requirement_plus_buffer,

)
 } else {

 (total_collateral, margin_requirement_plus_buffer)
 };

 Figure 15.1: programs/drift/src/controller/liquidation.rs#L201–L246

 In some places, the text itself is not obviously duplicated, but the logic it implements is
 clearly duplicated. An example appears in figures 15.2 and 15.3. Such “logical” code
 duplication suggests the code does not use the right abstractions.

 // Update Market open interest
 if let PositionUpdateType::Open = update_type {

 if position.quote_asset_amount == 0 && position.base_asset_amount == 0 {
 market.number_of_users = market.number_of_users.safe_add(1)?;

 }

 market.number_of_users_with_base =
 market.number_of_users_with_base.safe_add(1)?;
 } else if let PositionUpdateType::Close = update_type {

 if new_base_asset_amount == 0 && new_quote_asset_amount == 0 {
 market.number_of_users = market.number_of_users.safe_sub(1)?;

 Trail of Bits 45 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/liquidation.rs#L201-L246

 }

 market.number_of_users_with_base =
 market.number_of_users_with_base.safe_sub(1)?;
 }

 Figure 15.2: programs/drift/src/controller/position.rs#L162–L175

 if position.quote_asset_amount == 0 && position.base_asset_amount == 0 {
 market.number_of_users = market.number_of_users.safe_add(1)?;

 }

 position.quote_asset_amount = position.quote_asset_amount.safe_add(delta)?;

 market.amm.quote_asset_amount =
 market.amm.quote_asset_amount.safe_add(delta.cast()?)?;

 if position.quote_asset_amount == 0 && position.base_asset_amount == 0 {
 market.number_of_users = market.number_of_users.safe_sub(1)?;

 }

 Figure 15.3: programs/drift/src/controller/position.rs#L537–L547

 Exploit Scenario
 Alice, a Drift Protocol developer, is asked to fix a bug in liquidate_perp . Alice does not
 realize that the bug also applies to liquidate_spot ,
 liquidate_borrow_for_perp_pnl , and liquidate_perp_pnl_for_deposit , and
 fixes the bug in only liquidate_perp . Eve discovers that the bug is not fixed in one of the
 other three functions and exploits it.

 Recommendations
 Short term:

 ● Refactor liquidate_perp , liquidate_spot ,
 liquidate_borrow_for_perp_pnl , and liquidate_perp_pnl_for_deposit to
 eliminate the code duplication. This will reduce the likelihood of an incomplete fix
 for a bug affecting more than one of these functions.

 ● Identify cases where the code uses the same logic, and implement abstractions to
 capture that logic. Ensure that code that relies on such logic uses the new
 abstractions. Consolidating similar pieces of code will make the overall codebase
 easier to reason about.

 Long term, adopt code practices that discourage code duplication. This will help to prevent
 this problem from recurring.

 Trail of Bits 46 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/position.rs#L162-L175
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/position.rs#L537-L547

 16. Inconsistent use of integer types

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DRIFT-16

 Target: Various files in programs/drift

 Description
 The Drift Protocol codebase uses integer types inconsistently; data of similar kinds is
 represented using differently sized types or types with different signedness. Conversions
 from one integer type to another present an opportunity for the contracts to fail and
 should be avoided.

 For example, the pow method expects a u32 argument. However, in some places u128
 values must be cast to u32 values, even though those values are intended to be used as
 exponents (figures 16.1, 16.2, and 16.3).

 let expo_diff = (spot_market.insurance_fund.shares_base -
 insurance_fund_stake.if_base)

 . cast::< u32 >() ?;

 let rebase_divisor = 10_ u128 .pow(expo_diff);

 Figure 16.1: programs/drift/src/controller/insurance.rs#L154–L157

 #[zero_copy]
 #[derive(Default, Eq, PartialEq, Debug)]
 #[repr(C)]
 pub struct InsuranceFund {

 pub vault: Pubkey ,
 pub total_shares: u128 ,
 pub user_shares: u128 ,
 pub shares_base: u128 , // exponent for lp shares (for rebasing)
 pub unstaking_period: i64 , // if_unstaking_period
 pub last_revenue_settle_ts: i64 ,
 pub revenue_settle_period: i64 ,
 pub total_factor: u32 , // percentage of interest for total insurance
 pub user_factor: u32 , // percentage of interest for user staked insurance

 }

 Figure 16.2: programs/drift/src/state/spot_market.rs#L352–L365

 #[account(zero_copy)]
 #[derive(Default, Eq, PartialEq, Debug)]
 #[repr(C)]

 Trail of Bits 47 Drift Protocol Security Assessment
 PUBLIC

https://doc.rust-lang.org/stable/std/primitive.u128.html#method.pow
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/insurance.rs#L154-L157
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/spot_market.rs#L352-L365

 pub struct InsuranceFundStake {
 pub authority: Pubkey ,
 if_shares: u128 ,
 pub last_withdraw_request_shares: u128 , // get zero as 0 when not in escrow
 pub if_base: u128 , // exponent for if_shares decimal places

 (for rebase)
 pub last_valid_ts: i64 ,
 pub last_withdraw_request_value: u64 ,
 pub last_withdraw_request_ts: i64 ,
 pub cost_basis: i64 ,
 pub market_index: u16 ,
 pub padding: [u8 ; 14],

 }

 Figure 16.3: programs/drift/src/state/insurance_fund_stake.rs#L10–L24

 The following command reveals 689 locations where the cast method appears to be used:

 grep -r -I '\.cast\>' programs/drift

 Each such use could lead to a denial of service if an attacker puts the contract into a state
 where the cast always errors. Many of these uses could be eliminated by more consistent
 use of integer types.

 Note that Drift Protocol has indicated that some of the observed inconsistencies are
 related to reducing rent costs.

 Exploit Scenario
 Mallory manages to put the contract into a state such that one of the nearly 700 uses of
 cast always returns an error. The contract becomes unusable for Alice, who needs to
 execute a code path involving the vulnerable cast .

 Recommendations
 Short term, review all uses of cast to see which might be eliminated by changing the types
 of the operands. This will reduce the overall number of cast s and reduce the likelihood
 that one could lead to denial of service.

 Long term, as new code is introduced into the codebase, review the types used to hold
 similar kinds of data. This will reduce the likelihood that new cast s are needed.

 Trail of Bits 48 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/insurance_fund_stake.rs#L10-L24

 17. Use of opaque constants in tests

 Severity: Informational Difficulty: High

 Type: Testing Finding ID: TOB-DRIFT-17

 Target: programs/drift/src/controller/liquidation/tests.rs

 Description
 Several of the Drift Protocol tests use constants with no explanation for how they were
 derived, which makes it difficult to assess whether the tests are functioning correctly.

 Ten examples appear in figure 17.1. In each case, a variable or field is compared against a
 constant consisting of 6–12 random-looking digits. Without an explanation for how these
 digits were obtained, it is difficult to tell whether the constant expresses the correct value.

 assert_eq! (user.spot_positions[0].scaled_balance, 45558159000);
 assert_eq! (user.spot_positions[1].scaled_balance, 406768999);
 ...
 assert_eq! (margin_requirement, 44744590);
 assert_eq! (total_collateral, 45558159);
 assert_eq! (margin_requirement_plus_buffer, 45558128);
 ...
 assert_eq! (token_amount, 406769);
 assert_eq! (token_value, 40676900);
 assert_eq! (strict_token_value_1, 4067690); // if oracle price is more favorable than
 twap
 ...
 assert_eq! (liquidator.spot_positions[0].scaled_balance, 159441841000);
 ...
 assert_eq! (liquidator.spot_positions[1].scaled_balance, 593824001);

 Figure 17.1: programs/drift/src/controller/liquidation/tests.rs#L1618–L1687

 Exploit Scenario
 Mallory discovers that a constant used in a Drift Protocol test was incorrectly derived and
 that the tests were actually verifying incorrect behavior. Mallory uses the bug to siphon
 funds from the Drift Protocol exchange.

 Recommendations
 Short term, where possible, compute values using an explicit formula rather than an
 opaque constant. If using an explicit formula is not possible, include a comment explaining
 how the constant was derived. This will help to ensure that correct behavior is being tested
 for. Moreover, the process of giving such explicit formulas could reveal errors.

 Trail of Bits 49 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/liquidation/tests.rs#L1618-L1687

 Long term, write scripts to identify constants with high entropy, and run those scripts as
 part of your CI process. This will help to ensure the aforementioned standards are
 maintained.

 Trail of Bits 50 Drift Protocol Security Assessment
 PUBLIC

 18. Accounts from contexts are not always used by the instruction

 Severity: Informational Difficulty: High

 Type: Access Controls Finding ID: TOB-DRIFT-18

 Target: programs/drift/src/instructions/admin.rs

 Description
 The context definition for the initialize instruction defines a drift_signer account.
 However, this account is not used by the instruction. It appears to be a remnant used to
 pass the address of the state PDA account; however, the need to do this was eliminated by
 the use of find_program_address to calculate the address. Also, in the
 initialize_insurance_fund_stake instruction, the spot_market , user_stats , and
 state accounts from the context are not used by the instruction.

 #[derive(Accounts)]
 pub struct Initialize <'info> {

 #[account(mut)]
 pub admin: Signer <'info>,
 #[account(

 init,
 seeds = [b "drift_state" .as_ref()],
 space = std::mem::size_of::<State>() + 8,
 bump,
 payer = admin

)]
 pub state: Box <Account<'info, State>>,
 pub quote_asset_mint: Box <Account<'info, Mint>>,
 /// CHECK: checked in `initialize`
 pub drift_signer: AccountInfo <'info>,
 pub rent: Sysvar <'info, Rent>,
 pub system_program: Program <'info, System>,
 pub token_program: Program <'info, Token>,

 }

 Figure 18.1: programs/drift/src/instructions/admin.rs#L1989–L2007

 Exploit Scenario
 Alice, a Drift Protocol developer, assumes that the drift_signer account is used by the
 instruction, and she uses a different address for the account, expecting this account to hold
 the contract state after the initialize instruction has been called.

 Trail of Bits 51 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/admin.rs#L1989-L2007

 Recommendations
 Short term, remove the unused account from the context. This eliminates the possibility of
 confusion around the use of the accounts.

 Long term, employ a process where a refactoring of an instruction’s code is followed by a
 review of the corresponding context definition. This ensures that the context is in sync with
 the instruction handlers.

 Trail of Bits 52 Drift Protocol Security Assessment
 PUBLIC

 19. Unaligned references are allowed

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DRIFT-19

 Target: programs/drift/src/lib.rs

 Description
 The Drift Protocol codebase uses the #![allow(unaligned_references)] attribute.
 This allows the use of unaligned references throughout the program and could mask
 serious problems in future updates to the contract.

 #![allow(clippy::too_many_arguments)]
 #![allow(unaligned_references)]
 #![allow(clippy::bool_assert_comparison)]
 #![allow(clippy::comparison_chain)]

 Figure 19.1: programs/drift/src/lib.rs#L1–L4

 Exploit Scenario
 Alice, a Drift Protocol developer, accidentally introduces errors caused by the use of
 unaligned references, affecting the contract operation and leading to a loss of funds.

 Recommendations
 Short term, remove the attributes. This ensures that the check for unaligned references
 correctly flag such cases.

 Long term, be conservative with the use of attributes used to suppress warnings or errors
 throughout the codebase. If possible, apply them to only the minimum possible amount of
 code. This minimizes the risk of problems stemming from the suppressed checks.

 Trail of Bits 53 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/lib.rs#L1-L4

 20. Size of created accounts derived from in-memory representation

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-DRIFT-20

 Target: Files in /programs/drift/src/state/

 Description
 When state accounts are initialized, the size of the account is set to
 std::mem::size_of::<ACCOUNT_TYPE>() + 8 , where the eight extra bytes are used
 for the discriminator. The structs for the state types all have a trailing field with padding,
 seemingly to ensure the account size is aligned to eight bytes and to determine the size of
 the account. In other places, the code relies on the size_of function to determine the type
 of accounts passed to the instruction.

 While we could not find any security-related problem with the scheme today, this does
 mean that every account’s in-memory representation is inflated by the amount of padding,
 which could become a problem with respect to the limitation of the stack or heap size.
 Furthermore, if any of the accounts are updated in such a way that the repr(C) layout size
 differs from the Anchor space reference , it could cause a problem. For example, if the
 SpotMarket struct is changed so that its in-memory representation is smaller than the
 required Anchor size, the initialize_spot_market would fail because the created
 account would be too small to hold the serialized representation of the data.

 #[account]
 #[derive(Default)]
 #[repr(C)]
 pub struct State {

 pub admin: Pubkey ,
 pub whitelist_mint: Pubkey ,
 pub discount_mint: Pubkey ,
 pub signer: Pubkey ,
 pub srm_vault: Pubkey ,
 pub perp_fee_structure: FeeStructure ,
 pub spot_fee_structure: FeeStructure ,
 pub oracle_guard_rails: OracleGuardRails ,
 pub number_of_authorities: u64 ,
 pub number_of_sub_accounts: u64 ,
 pub lp_cooldown_time: u64 ,
 pub liquidation_margin_buffer_ratio: u32 ,
 pub settlement_duration: u16 ,
 pub number_of_markets: u16 ,

 Trail of Bits 54 Drift Protocol Security Assessment
 PUBLIC

https://book.anchor-lang.com/anchor_references/space.html

 pub number_of_spot_markets: u16 ,
 pub signer_nonce: u8 ,
 pub min_perp_auction_duration: u8 ,
 pub default_market_order_time_in_force: u8 ,
 pub default_spot_auction_duration: u8 ,
 pub exchange_status: ExchangeStatus ,
 pub padding : [u8 ; 17],

 }

 Figure 20.1: The State struct, with corresponding padding

 #[account(
 init,
 seeds = [b "drift_state" .as_ref()],
 space = std::mem::size_of::<State>() + 8 ,
 bump,
 payer = admin

)]
 pub state: Box <Account<'info, State>>,

 Figure 20.2: The creation of the State account, using the in-memory size

 if data.len() < std::mem::size_of::<UserStats>() + 8 {
 return Ok ((None , None));

 }

 Figure 20.3: An example of the in-memory size used to determine the account type

 Exploit Scenario
 Alice, a Drift Protocol developer, unaware of the implicit requirements of the in-memory
 size, makes changes to a state account’s structure or adds a state structure account such
 that the in-memory size is smaller than the size needed for the serialized data. As a result,
 instructions in the contract that save data to the account will fail.

 Recommendations
 Short term, add an implementation to each state struct that returns the size to be used for
 the corresponding Solana account. This avoids the overhead of the padding and removes
 the dependency on assumption about the in-memory size.

 Long term, avoid using assumptions about in-memory representation of type within
 programs created in Rust. This ensures that changes to the representation do not affect
 the program's operation.

 Trail of Bits 55 Drift Protocol Security Assessment
 PUBLIC

 Summary of Recommendations

 Drift Protocol is a distributed exchange with multiple planned iterations. Trail of Bits
 recommends that Drift Protocol address the findings detailed in this report as they
 continue to secure their exchange.

 The following is a summary of this report’s main recommendations:

 ● Ensure that the Anchor tests function reliably, and run them as part of the project’s
 CI process. Require the tests to pass before merging changes into the codebase.
 This will greatly reduce the possibility of bugs being introduced into the codebase.
 (TOB-DRIFT-2 , TOB-DRIFT-4)

 ● Reduce the use of opaque constants in tests; prefer explicit formulae instead. This
 will increase confidence that the tests are verifying correct behavior. (TOB-DRIFT-17)

 ● Enforce consistency in how the exchange’s status is checked. This will make it easier
 to verify that the correct checks are performed for the correct operations.
 (TOB-DRIFT-12)

 ● Implement access controls for the spot markets. Try to use the same patterns used
 for the perp markets’ access controls. The absence of access controls could allow
 the spot markets to be exploited. Using the same patterns used for the perp
 markets will make it easier to verify the spot market’s access controls’ correctness.
 (TOB-DRIFT-13)

 ● Establish greater consistency among the uses of integer types. Try to use the same
 integer types for the similar kinds of data (e.g., amounts, prices, conversion rates,
 etc.). This will reduce the number cast operations required, and reduce the
 likelihood that any operation using them could fail. (TOB-DRIFT-16)

 ● Look for opportunities to consolidate code. Identify and eliminate code that has
 been copied and pasted. When similar code resides in two different functions, try to
 determine whether that code belongs in a third function. These steps will produce
 code that is easier to maintain and reason about. (TOB-DRIFT-15)

 We would like to emphasize the last bullet. As mentioned under Coverage Limitations ,
 much of the code is written in an inconsistent style, and it is difficult to discern patterns
 from the codebase. We recommend that Drift Protocol consider what patterns they would
 like the code to exhibit (e.g., where/how various checks should be performed), and refactor
 the code so that it exhibits them. Appendix D contains additional recommendations for
 improving the codebase’s readability.

 Trail of Bits 56 Drift Protocol Security Assessment
 PUBLIC

 Although we found no high-severity vulnerabilities, we recommend seeking a re-review of
 the code after it has been refactored/redesigned but before deployment, due to the nature
 and scope of the recommended changes.

 Trail of Bits 57 Drift Protocol Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 58 Drift Protocol Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 59 Drift Protocol Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Front-Running
 Resistance

 The system’s resistance to front-running attacks

 Low-Level
 Manipulation

 The justified use of inline assembly and low-level calls

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Trail of Bits 60 Drift Protocol Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 61 Drift Protocol Security Assessment
 PUBLIC

 C. Non-Security-Related Findings

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 ● Some statements are missing an ending semicolon. Use cargo clippy -- -A
 clippy::all -W clippy::semicolon_if_nothing_returned to identify the
 lines.

 ● The liquidate_perp function contains a local variable named user_order_id .
 However, when instantiating the Order struct, this variable is not used for the
 user_order_id field of the struct, but for the order_id field. Rename the variable
 order_id to better match its use.

 ● In several places, variables with leading underscores are used. Per the following
 Clippy warning, “a leading underscore signals that a binding will not be used”:

 warning: used binding `_base_asset_amount` which is prefixed with an
 underscore. A leading underscore signals that a binding will not be used

 --> programs/drift/src/controller/orders.rs:3050 :56
 |

 3050 | base_asset_amount =
 base_asset_amount.safe_add(_base_asset_amount)?;

 |
 ̂^^^^^^^^^^^^^^^^^

 |
 = note: `-W clippy::used-underscore-binding` implied by `-W

 clippy::pedantic`
 = help: for further information visit

 https://rust-lang.github.io/rust-clippy/master/index.html#used_underscore
 _binding

 ● In several places, the following is pattern is used to change the type of an error:

 match loader.load() {
 Ok (perp_market) => Ok (perp_market),
 Err (e) => {

 let caller = Location::caller();
 msg!("{:?}" , e);
 msg!(

 "Could not load perp market {} at {}:{}" ,
 market_index,
 caller.file(),
 caller.line()

);
 Err (ErrorCode::UnableToLoadPerpMarketAccount)

 }
 }

 Trail of Bits 62 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/liquidation.rs#L405
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/liquidation.rs#L412-L423
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L3050
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/perp_market_map.rs#L39-L52

 Such code could be written more concisely using map_err , as follows:

 loader.load().map_err(|e| {
 let caller = Location::caller();
 msg!("{:?}", e);
 msg!(

 "Could not load perp market {} at {}:{}",
 market_index,
 caller.file(),
 caller.line()

);
 ErrorCode::UnableToLoadPerpMarketAccount

 })

 ● In the following error message , “greater or equal to” should be “greater than”:

 validate!(
 revenue_amount <= depositors_amount,
 ErrorCode::SpotMarketVaultInvariantViolated,
 "revenue_amount={} greater or equal to the depositors_amount={}

 (depositors_claim={}, spot_market.deposit_balance={})" ,
 revenue_amount,
 depositors_amount,
 depositors_claim,
 spot_market.deposit_balance

)?;

 ● Within the Drift AMM documentation , the following formulae could be simplified:

 bid_quote_reserve = quote_reserve - (quote_reserve / (100%/short_spread))
 ask_quote_reserve = quote_reserve + (quote_reserve / (100%/long_spread))

 Specifically, they could be rewritten as:

 bid_quote_reserve = quote_reserve * (1 - short_spread)
 ask_quote_reserve = quote_reserve * (1 + long_spread)

 ● In several places, a fraction is represented as a pair of fields, one for a numerator
 and one for a denominator. For example :

 pub struct FeeTier {
 pub fee_numerator: u32 ,
 pub fee_denominator: u32 ,
 pub maker_rebate_numerator: u32 ,
 pub maker_rebate_denominator: u32 ,
 pub referrer_reward_numerator: u32 ,
 pub referrer_reward_denominator: u32 ,
 pub referee_fee_numerator: u32 ,
 pub referee_fee_denominator: u32 ,

 }

 Trail of Bits 63 Drift Protocol Security Assessment
 PUBLIC

https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/spot_withdraw.rs#L160-L168
https://docs.drift.trade/drift-amm
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/state.rs#L104-L113

 The code would be clearer if each such pair of fields were replaced with a fraction
 data type.

 Trail of Bits 64 Drift Protocol Security Assessment
 PUBLIC

 D. Code Quality Recommendations

 This appendix contains additional recommendations for improving the Drift Protocol
 codebase’s readability. The appendix specifically addresses project layout , function
 comments , function complexity , and general inconsistencies . Functions involving a user’s
 liquidation status are addressed in some detail.

 Before performing any refactoring based on these recommendations, we strongly
 encourage taking the following steps:

 ● Ensure that the project’s Anchor tests run reliably.
 ● Incorporate the Anchor tests into the project’s CI process.
 ● Require all tests to pass on a code change before merging the change into the

 codebase.

 Project Layout
 The project’s layout is unclear and undocumented. In particular, the purposes of the
 controller , math , and verification subdirectories are unclear. These subdirectories
 have several filenames in common. However, for a function X and file Y, it is unclear
 whether X should reside in controller/ Y, math/ Y, or verification/ Y. The lack of a
 clear rationale for the layout makes navigating the project difficult, as it can be hard to
 locate any given component or function.

 Within the programs/drift folder, several files are devoted to tests. Most of these are
 named tests.rs , but some are not, e.g.:

 ● controller/pnl/delisting.rs
 ● controller/orders/amm_jit_tests.rs

 In at least two cases, a test file contains a redundant module named test :

 ● math/amm_spread/tests.rs
 ● math/margin/tests.rs

 Function Comments
 It is a common Rust convention to precede a function with a comment describing the
 function’s purpose and how it works. However, the Drift Protocol codebase mostly does not
 follow this convention; the drift crate contains approximately 778 functions, and only 34
 of those are preceded by descriptive comments.

 Function Complexity
 The following quote is from the book “The Pragmatic Programmer”:

 Trail of Bits 65 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/pnl/delisting.rs
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders/amm_jit_tests.rs
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/amm_spread/tests.rs
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/margin/tests.rs

 Design components that are self-contained, independent, and have a single,
 well-defined purpose.

 We argue that the Drift Protocol codebase does not adhere to this principle.

 A function’s line count is one heuristic for its complexity. When run on the drift crate,
 Clippy’s too-many-lines lint produces 29 warnings. Thus, there are at least 29 functions
 that should be considered for refactoring into smaller functions.

 Another heuristic for function complexity is long function names. While descriptive function
 names are good, a long name can indicate a function whose operation is overly complex, or
 whose integration into the larger system has not been well thought out.

 Several functions in the Drift Protocol codebase have exceedingly long names. The
 following table includes the ten longest lengths and the number of functions with a name
 of that length (with tests filtered out): 1

 Function name length Number of functions

 68 1

 65 1

 56 1

 53 2

 52 3

 51 2

 50 1

 49 7

 48 1

 47 3

 Table D.1: The ten longest function name lengths and the number of functions with a
 name of that length

 The function with the longest name (68 characters) is the following:

 1 Following the removal of all test files: find . -name '*.rs' -exec sed -n 's/^.*fn
 \([a-z0-9_]\+\).*$/\1/;T;p' {} \; | while read X; do echo -n "$X" | wc -c;
 done | sort -n | uniq -c | sort -k2 -n -r | head -n 10

 Trail of Bits 66 Drift Protocol Security Assessment
 PUBLIC

 calculate_margin_requirement_and_total_collateral_and_liability_info

 The function is rather long (277 lines). Its name begs whether there should instead exist
 functions to compute the following:

 ● Margin requirement
 ● Total collateral
 ● Total liability

 Note that addressing this issue is not merely about renaming functions.

 Example: user liquidation status
 As examples of functions that are overly complex or whose integration into the larger
 system does not appear to have been well thought out, consider the three functions whose
 name includes being_liquidated :

 ● User::is_being_liquidated
 ● is_user_being_liquidated
 ● validate_user_not_being_liquidated

 We address each of these functions individually.

 User::is_being_liquidated returns true whenever the user’s status is
 UserStatus::BeingLiquidated or UserStatus::Bankrupt . The function’s name
 suggests that the function should check only for UserStatus::BeingLiquidated , and
 not UserStatus::Bankrupt . Also note that there is a User::is_bankrupt function,
 which (as its name suggests) checks only for UserStatus::Bankrupt .

 is_user_being_liquidated performs a calculation independent of a user’s status. Note
 the similarity to the just-described function, which suggests that the two functions should
 perform similar operations, though they do not.

 validate_user_not_being_liquidated (figure D.1) first calls
 User::is_being_liquidated . If the call returns false ,
 validate_user_not_being_liquidated returns Ok(()) . Otherwise, the function calls
 is_user_being_liquidated . If the latter call returns true , the function returns an error.
 If the latter call returns false , the function updates the user’s status to
 UserStatus::Active and returns Ok(()) .

 pub fn validate_user_not_being_liquidated (
 user: & mut User,
 market_map: & PerpMarketMap ,
 spot_market_map: & SpotMarketMap ,
 oracle_map: & mut OracleMap,
 liquidation_margin_buffer_ratio: u32 ,

) -> DriftResult {

 Trail of Bits 67 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/state/user.rs#L71-L76
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/liquidation.rs#L188-L207
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/liquidation.rs#L217-L243

 if !user.is_being_liquidated() {
 return Ok (());

 }

 let is_still_being_liquidated = is_user_being_liquidated(
 user,
 market_map,
 spot_market_map,
 oracle_map,
 liquidation_margin_buffer_ratio,

)?;

 if is_still_being_liquidated {
 return Err (ErrorCode::UserIsBeingLiquidated);

 } else {
 user.status = UserStatus::Active;

 }

 Ok (())
 }

 Figure D.1: programs/drift/src/math/liquidation.rs#L217–L243

 There are several problems with validate_user_not_being_liquidated :

 ● The verb “validate” suggests that the function performs only validation. However,
 the function actually performs a state change. A verb like “update” or “refresh”
 would more accurately reflect what the function does.

 ● The function has essentially no effect when the user’s status is
 UserStatus::Active . This has the potential for confusion. A user that is active is
 not being liquidated. Thus, the function’s name suggests such a status should be
 “validated.” In fact, however, such a status is trusted as being accurate.

 ● validate_user_not_being_liquidated inherits the problems of
 User::is_being_liquidated by calling it. That is,
 validate_user_not_being_liquidated proceeds to call
 is_user_being_liquidated if the user’s status is
 UserStatus::BeingLiquidated or UserStatus::Bankrupt .

 To summarize, a developer must keep at least three pieces of information in mind when
 reviewing calls to validate_user_not_being_liquidated :

 ● It performs a state change.
 ● It short circuits (i.e., has essentially no effect) when the user’s status is

 UserStatus::Active .
 ● It treats UserStatus::BeingLiquidated and UserStatus::Bankrupt the same,

 despite mentioning only “being liquidated” in the name.

 Trail of Bits 68 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/math/liquidation.rs#L217-L243

 Having to remember such facts creates undue cognitive load. Generally speaking, such
 cognitive load can be reduced by, e.g., ensuring each function performs a single, logically
 coherent task, and choosing function names that accurately reflect those tasks.

 Finally, none of the functions discussed in this section are documented. The fact that these
 functions are complex and could be misused increases the need for them to be
 documented.

 General Inconsistencies
 As mentioned under Coverage Limitations , much of the code is written in an inconsistent
 style. This issue is more about consistency than style. That is, changes in style from one
 part of the code to the next can be jarring, thereby making the code harder to read.

 To illustrate this point, consider the calls to validate_user_not_being_liquidated
 (mentioned in the previous section). The function is called in seven places. In each place,
 the context is significantly different. This can be seen, for example, in the variation in the
 calls’ line offsets within their enclosing function bodies (table D.2).

 Call to validate_user_not_being_liquidated Line offset within
 enclosing function

 src/controller/orders.rs:100 6

 src/controller/orders.rs:660 59

 src/controller/orders.rs:2104 41

 src/controller/orders.rs:2337 6

 src/controller/orders.rs:2687 56

 src/controller/orders.rs:3870 41

 src/instructions/user.rs:1327 20

 Table D.2: The seven calls to validate_user_not_being_liquidated and their line
 offsets within their enclosing function bodies

 The differences in context make it difficult to tell whether calls to
 validate_user_not_being_liquidated are missing, and whether

 Trail of Bits 69 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L100-L106
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L660-L666
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L2104-L2110
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L2337-L2343
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L2687-L2693
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/controller/orders.rs#L3870-L3876
https://github.com/drift-labs/protocol-v2/blob/57dd5c647253d6e4d9c12b75e17ce603eeb60315/programs/drift/src/instructions/user.rs#L1327-L1333

 validate_user_not_being_liquidated is being used correctly. If, for example,
 validate_user_not_being_liquidated was always the first function called in an
 enclosing function, it would be easier to tell whether such a call was missing.

 To add to the above:

 ● Three of the seven calls are preceded by a check of user.is_bankrupt() . Four of
 the seven calls are followed by a check of user.is_bankrupt() .

 Recall from the previous section that validate_user_not_being_liquidated treats
 UserStatus::Bankrupt specially. Moreover, validate_user_not_being_liquidated
 performs a state change. Thus, deciding whether the seven calls to
 validate_user_not_being_liquidated could be moved before or after the call to
 user.is_bankrupt() is non-trivial.

 Finally, for reasons that are unclear:

 ● Five of the seven calls return an error on failure. Two of the seven calls return Ok(0)
 on failure.

 To summarize, the irregular way that validate_user_not_being_liquidated is now
 called makes it difficult to tell whether validate_user_not_being_liquidated is being
 used correctly, and whether it is used in all places where needed. Moreover, the fact that
 validate_user_not_being_liquidated performs non-obvious state changes makes
 imposing consistency on its uses more difficult.

 Style Guides
 The following style guides provide recommendations beyond those of this appendix:

 ● The Pragmatic Programmer documents “processes that are virtually universal, and
 ideas that are almost axiomatic” on design, project management, and coding.

 ● Rust API Guidelines is “a set of recommendations on how to design and present APIs
 for the Rust programming language.”

 ● The Rust Reference contains many examples of idiomatic Rust code.
 ● Many of Clippy ’s pedantic lints flag code that could be written in a simpler or more

 idiomatic way.

 Trail of Bits 70 Drift Protocol Security Assessment
 PUBLIC

https://www.amazon.com/gp/product/0135957052
https://rust-lang.github.io/api-guidelines/about.html
https://doc.rust-lang.org/reference/introduction.html
https://github.com/rust-lang/rust-clippy

 E. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From January 23 to January 25, 2023 , Trail of Bits reviewed the fixes and mitigations
 implemented by Drift Protocol for the issues identified in this report. We reviewed each fix
 to determine its effectiveness in resolving the associated issue.

 In summary, Drift Protocol has resolved 11 of the issues described in this report, has
 partially resolved two issues, and has not resolved the remaining seven issues. For
 additional information, please see the Detailed Fix Review Results below.

 ID Title Severity Status

 1 No build instructions Informational Resolved

 2 Inadequate testing Informational Resolved

 3 Invalid audit.toml prevents cargo audit from being
 run

 Informational Resolved

 4 Race condition in Drift SDK Undetermined Resolved

 5 Loose size coupling between function invocation
 and requirement

 Informational Resolved

 6 The zero-copy feature in Anchor is experimental Informational Unresolved

 7 Hardcoded indices into account data Informational Resolved

 8 Missing verification of maker and maker_stats
 accounts

 Undetermined Resolved

 9 Panics used for error handling Informational Resolved

 Trail of Bits 71 Drift Protocol Security Assessment
 PUBLIC

 10 Testing code used in production Undetermined Partially
 Resolved

 11 Inconsistent use of checked arithmetic Undetermined Unresolved

 12 Inconsistent and incomplete exchange status
 checks

 Medium Resolved

 13 Spot market access controls are incomplete Informational Partially
 Resolved

 14 Oracles can be invalid in at most one way Informational Unresolved

 15 Code duplication Informational Unresolved

 16 Inconsistent use of integer types Informational Unresolved

 17 Use of opaque constants in tests Informational Unresolved

 18 Accounts from contexts are not always used by the
 instruction

 Informational Unresolved

 19 Unaligned references are allowed Informational Resolved

 20 Size of created accounts derived from in-memory
 representation

 Informational Resolved

 Trail of Bits 72 Drift Protocol Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-DRIFT-1: No build instructions
 Resolved in 5209b9bc17e81fe3c11e9817d98833d0eaf94fd1 . The project’s README now
 includes instructions for building it, and for running its Rust and Anchor tests. We verified
 that the provided commands work as described.

 TOB-DRIFT-2: Inadequate testing
 Resolved in af85e4c518dfeb70d80e30fb8544f53c116c973c (which also resolves
 TOB-DRIFT-4 below). The Anchor tests are now run as part of CI. We reviewed recent
 GitHub logs to verify that the tests are capable of passing in CI.

 For reasons we did not investigate, some test files were removed (adminWidthdraw.ts ,
 ksolver,ts , and tokenFaucet.ts).

 Also, the run-anchor-tests.sh script still uses the test_files array (figure E.1). We
 continue to recommend that the script be revised so that the array is not needed.

 test_files =(
 postOnlyAmmFulfillment.ts
 imbalancePerpPnl.ts
 ...
 cancelAllOrders.ts

)

 Figure E.1: test-scripts/run-anchor-tests.sh#L7-L52

 TOB-DRIFT-3: Invalid audit.toml prevents cargo audit from being run
 Resolved in 0df896decaf21649fd772c709837d8c1b8d44452 . The offending
 audit.toml entry was removed, and cargo audit now completes without error when
 run on the project.

 TOB-DRIFT-4: Race condition in Drift SDK
 Resolved in af85e4c518dfeb70d80e30fb8544f53c116c973c (which also resolves
 TOB-DRIFT-2 above). forceGetUserAccount functions were added to user.ts and
 driftClient.ts . These new functions call WebSocketAccountSubscriber.fetch
 before accessing UserAccount data. Calls to WebSocketAccountSubscriber.fetch
 were added in other places as well. The Anchor tests now pass, suggesting such calls were
 inserted where needed.

 TOB-DRIFT-5: Loose size coupling between function invocation and requirement
 Resolved in 5f25f2a2d5548d9e82933e3d907fd01354e04a7a (which also resolves
 TOB-DRIFT-20 below). A Size trait was added that allows a type to specify its storage size in
 a SIZE constant. Tests are used to verify that the values of types’ SIZE constants match the
 sizes of the types’ in-memory representations. The use of emit_stack was updated to use
 OrderActionRecord::SIZE instead of a hard-coded constant.

 Trail of Bits 73 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/commit/5209b9bc17e81fe3c11e9817d98833d0eaf94fd1
https://github.com/drift-labs/protocol-v2/commit/af85e4c518dfeb70d80e30fb8544f53c116c973c
https://github.com/drift-labs/protocol-v2/blob/af85e4c518dfeb70d80e30fb8544f53c116c973c/test-scripts/run-anchor-tests.sh#L7-L52
https://github.com/drift-labs/protocol-v2/commit/0df896decaf21649fd772c709837d8c1b8d44452
https://github.com/drift-labs/protocol-v2/commit/af85e4c518dfeb70d80e30fb8544f53c116c973c
https://github.com/drift-labs/protocol-v2/commit/5f25f2a2d5548d9e82933e3d907fd01354e04a7a

 TOB-DRIFT-6: The zero-copy feature in Anchor is experimental
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-7: Hardcoded indices into account data
 Resolved in 8e4f15771cce51f6c74628c19b74c5e83c51ed69 . A MarketIndexOffset
 trait was added that allows a type to specify its market index offset in a
 MARKET_INDEX_OFFSET constant. The trait is implemented for the PerpMarket and
 SpotMarket types. Tests are used to help verify that the named constants are set correctly
 (see figure E.2).

 #[test]
 fn spot_market () {

 let mut spot_market = SpotMarket {
 market_index: 11 ,
 ..SpotMarket::default()

 };
 create_anchor_account_info!(spot_market, SpotMarket, spot_market_account_info);

 let data = spot_market_account_info.try_borrow_data().unwrap();
 let market_index =

 u16 ::from_le_bytes(*array_ref![data, SpotMarket::MARKET_INDEX_OFFSET, 2]);
 assert_eq! (market_index, spot_market.market_index);

 }

 Figure E.2: programs/drift/src/state/traits/tests.rs#L76-L88

 While we consider the issue resolved, the tests could be further improved to help increase
 confidence in the constants’ values. Specifically, assertions could be added to verify that the
 market index changes during the test. For example, the following line could be added as
 the first line of the spot_market test:

 assert_ne!(SpotMarket::default().market_index, 11);

 TOB-DRIFT-8: Missing verification of maker and maker_stats accounts
 Resolved in 40f0054799f786e113ec489e03167da8c929ad59 . In both locations named in
 the finding, the code now checks that the maker and maker_stats accounts have the
 same authority.

 TOB-DRIFT-9: Panics used for error handling
 Resolved in f63b160024afb4001973a6a3ba80d2db149434e8 . A SafeUnwrap trait was
 added to, e.g., convert Option s into Result s. Calls to safe_unwrap are not used where
 panics were used before. We verified that Clippy’s expect_used , unwrap_used , and
 panic lints produce no warnings when applied to the drift crate.

 While we consider the issue resolved, we recommend against implementing SafeUnwrap
 for Result (figure E.3). If safe_unwrap were accidentally called on a Result where no call

 Trail of Bits 74 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/commit/8e4f15771cce51f6c74628c19b74c5e83c51ed69
https://github.com/drift-labs/protocol-v2/blob/8e4f15771cce51f6c74628c19b74c5e83c51ed69/programs/drift/src/state/traits/tests.rs#L76-L88
https://github.com/drift-labs/protocol-v2/commit/40f0054799f786e113ec489e03167da8c929ad59
https://github.com/drift-labs/protocol-v2/commit/f63b160024afb4001973a6a3ba80d2db149434e8

 was needed, the call would effectively hide the original error by turning it into
 ErrorCode::FailedUnwrap .

 impl <T, U> SafeUnwrap for Result <T, U> {
 type Item = T;

 #[track_caller]
 #[inline(always)]
 fn safe_unwrap (self) -> DriftResult <T> {

 match self {
 Ok (v) => Ok (v),
 Err (_) => {

 let caller = Location::caller();
 msg!("Unwrap error thrown at {}:{}" , caller.file(), caller.line());
 Err (ErrorCode::FailedUnwrap)

 }
 }

 }
 }

 Figure E.3: programs/drift/src/math/safe_unwrap.rs#L28-L43

 Instead, we recommend using Result::map_err wherever such a conversion is
 necessary. Thus, safe_unwrap would be used only for Option s, and map_err would be
 used for Result s. Adopting this strategy would make it impossible to accidentally call
 safe_unwrap on a Result where no call was needed.

 Also, we noticed that a Git hook was added to run Clippy before each commit (figure E.4).
 However, the commands in the hook fail when run. In particular, running Clippy with -D
 warnings fails. This suggests that either the hook is not being set correctly, or the failure is
 not being caught.

 cargo +stable clippy -p drift -- -D warnings -D clippy::unwrap_used -D
 clippy::expect_used -D clippy::panic

 Figure E.4: .husky/pre-commit#L5

 TOB-DRIFT-10: Testing code used in production
 Partially resolved in 39f7292a2084cd0d275d5671dc58aa2e648787d8 . The
 implementation of the default_test function in figure 10.2 is now guarded by
 #[cfg(test)] . Other functions are now guarded by #[cfg(test)] as well.

 However, as noted in TOB-DRIFT-10, the quote_asset_price_data field (figure 10.1) is
 used in production, contrary to our initial understanding. This raises concerns because
 there is currently no way to set the contents of this field, and no asset’s price is perfectly
 constant. Commit 39f7292a2084cd0d275d5671dc58aa2e648787d8 does not introduce a
 way to set the field. Hence, we consider this issue only partially resolved.

 Trail of Bits 75 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/f63b160024afb4001973a6a3ba80d2db149434e8/programs/drift/src/math/safe_unwrap.rs#L28-L43
https://github.com/drift-labs/protocol-v2/blob/f63b160024afb4001973a6a3ba80d2db149434e8/.husky/pre-commit#L5
https://github.com/drift-labs/protocol-v2/commit/39f7292a2084cd0d275d5671dc58aa2e648787d8
https://github.com/drift-labs/protocol-v2/commit/39f7292a2084cd0d275d5671dc58aa2e648787d8

 TOB-DRIFT-11: Inconsistent use of checked arithmetic
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-12: Inconsistent and incomplete exchange status checks
 Resolved in 7f7a04d5dc87962f3fa511139c06e699d312c738 . The exchange’s status is
 now represented using a u8 . Individual bits are set using an enum generated by the
 enumflags2 crate. Furthermore, some consistency was imposed between statuses and
 pausable operations. For example, handle_transfer_deposit now checks whether the
 DepositPaused flag is set.

 The flags are still checked in multiple ways. For example,
 handle_resolve_perp_bankruptcy (figure E.5) and
 handle_update_spot_market_cumulative_interest (figure E.6). However, in the
 former case, the check within the body appears redundant, and thus could be removed. In
 the latter case, it appears the check could not be moved into an access_control
 annotation, because an action is performed even when the exchange is paused.

 #[access_control(
 perp_market_valid(&ctx.accounts.perp_market)
 funding_not_paused(&ctx.accounts.state)
 valid_oracle_for_perp_market(&ctx.accounts.oracle, &ctx.accounts.perp_market)

)]
 pub fn handle_update_funding_rate (

 ctx: Context <UpdateFundingRate>,
 perp_market_index: u16 ,

) -> Result <()> {
 ...
 let is_updated = controller::funding::update_funding_rate(

 perp_market_index,
 perp_market,
 & mut oracle_map,
 now,
 &state.oracle_guard_rails,
 state.funding_paused() ?,
 None ,

)?;

 if !is_updated {
 return Err (ErrorCode::InvalidFundingProfitability.into());

 }

 Ok (())
 }

 Figure E.5: programs/drift/src/instructions/keeper.rs#L1027-L1078

 #[access_control(
 spot_market_valid(&ctx.accounts.spot_market)
 exchange_not_paused(&ctx.accounts.state)

 Trail of Bits 76 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/commit/7f7a04d5dc87962f3fa511139c06e699d312c738
https://github.com/drift-labs/protocol-v2/blob/7f7a04d5dc87962f3fa511139c06e699d312c738/programs/drift/src/instructions/keeper.rs#L1027-L1078

 valid_oracle_for_spot_market(&ctx.accounts.oracle, &ctx.accounts.spot_market)
)]
 pub fn handle_update_spot_market_cumulative_interest (

 ctx: Context <UpdateSpotMarketCumulativeInterest>,
) -> Result <()> {

 ...
 if ! state.funding_paused() ? {

 controller::spot_balance::update_spot_market_cumulative_interest(
 spot_market,
 Some (oracle_price_data),
 now,

)?;
 } else {

 // even if funding is paused still update twap stats
 controller::spot_balance::update_spot_market_twap_stats(

 spot_market,
 Some (oracle_price_data),
 now,

)?;
 }

 Ok (())
 }

 Figure E.6: programs/drift/src/instructions/keeper.rs#L1150-L1188

 Note that the original finding was about the exchange’s status, and we therefore consider it
 resolved. However, we recommend incorporating enumflags2 into the representation of
 the markets’ statuses as well (see figure E.7).

 pub enum MarketStatus {
 Initialized, // warm up period for initialization, fills are paused
 Active, // all operations allowed
 FundingPaused, // perp: pause funding rate updates | spot: pause interest

 updates
 AmmPaused, // amm fills are prevented/blocked
 FillPaused, // fills are blocked
 WithdrawPaused, // perp: pause settling positive pnl | spot: pause withdrawing

 asset
 ReduceOnly, // fills only able to reduce liability
 Settlement, // market has determined settlement price and positions are expired

 must be settled
 Delisted, // market has no remaining participants

 }

 Figure E.7: programs/drift/src/state/perp_market.rs#L32-L42

 TOB-DRIFT-13: Spot market access controls are incomplete
 Partially resolved in cb0cb29049fe9feae18cf62bfdf060e53bcc3422 . access_control
 annotations were added to most functions involving spot markets. Functions involving
 perpetual and spot markets now largely coincide in terms of the exchange statuses they

 Trail of Bits 77 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/7f7a04d5dc87962f3fa511139c06e699d312c738/programs/drift/src/instructions/keeper.rs#L1150-L1188
https://github.com/drift-labs/protocol-v2/blob/7f7a04d5dc87962f3fa511139c06e699d312c738/programs/drift/src/state/perp_market.rs#L32-L42
https://github.com/drift-labs/protocol-v2/commit/cb0cb29049fe9feae18cf62bfdf060e53bcc3422

 check. However, there still appear to be some discrepancies. In particular, the example
 from figures 13.3 and 13.4 (repeated in figures E.8 and E.9) still applies to the updated
 code.

 #[access_control(
 exchange_not_paused(&ctx.accounts.state)

)]
 pub fn handle_place_perp_order (ctx: Context <PlaceOrder>, params: OrderParams) ->
 Result <()> {

 Figure E.8: programs/drift/src/instructions/user.rs#L688-L691

 _
 pub fn handle_place_spot_order (ctx: Context <PlaceOrder>, params: OrderParams) ->
 Result <()> {

 Figure E.9: programs/drift/src/instructions/user.rs#L1023-L1024

 TOB-DRIFT-14: Oracles can be invalid in at most one way
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-15: Code duplication
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-16: Inconsistent use of integer types
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-17: Use of opaque constants in tests
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-18: Accounts from contexts are not always used by the instruction
 Unresolved. Drift Protocol has not resolved this issue.

 TOB-DRIFT-19: Unaligned references are allowed
 Resolved in 8d0b518b765879cb6fbff8eced30bdaa397006ce . The
 #![allow(unaligned_references)] crate level attribute was removed.

 TOB-DRIFT-20: Size of created accounts derived from in-memory representation
 Resolved in 5f25f2a2d5548d9e82933e3d907fd01354e04a7a (which also resolves
 TOB-DRIFT-5 above). A Size trait was added that allows a type to specify its storage size in
 a SIZE constant. Tests are used to verify that the values of types’ SIZE constants match the
 sizes of the types’ in-memory representations. These SIZE constants are now used where
 expressions involving std::mem::size_of were used before.

 Trail of Bits 78 Drift Protocol Security Assessment
 PUBLIC

https://github.com/drift-labs/protocol-v2/blob/cb0cb29049fe9feae18cf62bfdf060e53bcc3422/programs/drift/src/instructions/user.rs#L688-L691
https://github.com/drift-labs/protocol-v2/blob/cb0cb29049fe9feae18cf62bfdf060e53bcc3422/programs/drift/src/instructions/user.rs#L1023-L1024
https://github.com/drift-labs/protocol-v2/commit/8d0b518b765879cb6fbff8eced30bdaa397006ce
https://github.com/drift-labs/protocol-v2/commit/5f25f2a2d5548d9e82933e3d907fd01354e04a7a

