
Security Assessment
for Tsunami Finance

Report by Ulam Labs

Margin trading and spot
exchange

Findings and Recommendations Report Presented to:

Tsunami Finance Team

August 4, 2023 Version: 0.1

Presented by:

Ulam Labs

Grabiszynska 163/502,

53-332 Wroclaw, POLAND
© Ulam Labs 2023. All Rights Reserved.

2

© Ulam Labs 2023. All Rights Reserved.

3

Executive Summary

Overview

This report summarizes the engagement, tests performed, and findings. It also
contains detailed descriptions of the discovered vulnerabilities, steps the
Ulam Labs Security Teams took to identify and validate each issue, and any
applicable recommendations for remediation.

Scope

The audit has been conducted on the commit
43ade07d1f465b197a0dfc01100c3e6cd84a075f of Tsunami Finance private
GitHub Repository.

© Ulam Labs 2023. All Rights Reserved.

4

Chart 1: Findings by severity.

Key findings

During the Security Assessment, following findings have been discovered:

● 0 findings with a CRITICAL severity rating,
● 0 findings with a HIGH severity rating,
● 0 findings with a MEDIUM severity rating,
● 2 findings with a LOW severity rating.
● 1 findings with an INFO severity rating.

© Ulam Labs 2023. All Rights Reserved.

5

Disclaimer

This report does not constitute legal or investment advice. The preparers of
this report present it as an informational exercise documenting the due
diligence involved in the secure development of the target contract only, and
make no material claims or guarantees concerning the contract’s operation
post-deployment. The preparers of this report assume no liability for any and
all potential consequences of the deployment or use of the contract.

Smart contracts are still a nascent software arena, and their deployment and
public o�ering carries substantial risk. This report makes no claims that its
analysis is fully comprehensive, and recommends always seeking multiple
opinions and audits.

This report is also not comprehensive in scope, excluding a number of
components critical to the correct operation of this system.

The possibility of human error in the manual review process is very real, and
we recommend seeking multiple independent opinions on any claims which
impact a large quantity of funds.

© Ulam Labs 2023. All Rights Reserved.

6

Technical analysis & findings

Function pow can unexpectedly overflow

Finding ID: TF-1
Module: math.move
Severity: Low
Status: Closed

Description

Function pow takes as its arguments 64-bit base and 8-bit exp. It returns a
128-bit result. Caller may expect that such function should support up to
128-bit results, but actually even valid 64-bit results may cause integer
overflow.

public fun pow(base: u64, exp: u8): u128 {
let result_value: u128 = 1;
while (exp > 0) {

if (exp & 1 == 1) {
result_value = result_value * (base as u128)

};
base = base * base;
exp = exp >> 1

};
result_value

}

The problem lies in base multiplication. As this variable is 64-bit, it is
impossible to create result greater than 64-bit. In addition, as base is
calculated after result_value, some “almost” 128-bit results like pow(2, 63)
also will cause integer overflow.

Impact

Function pow is used by only one function: pow_10. Function pow_10 is used
to convert decimals or precision to number. If any coin or price have decimals
© Ulam Labs 2023. All Rights Reserved.

7

of 19, the contract will always crash.

Solution

There are two steps to make the pow function ready to return a 128-bit result.

First, base should be assigned to 128-bit variable base128 and all the
calculations should be performed on base128 variable. Casting inside the loop
is not required anymore.

Second, exp should be recalculated before base128 and if exp is zero, the loop
should be terminated. Loop condition is not needed anymore.

Status

Problem acknowledged by the team, but as the problem is very unlikely,
correction was not delivered.

Staking rewards does not depend on time

Finding ID: TF-2
Contract: stake_rewards.move
Severity: Info
Status: Closed

Description

Tsunami finance uses following formula to distribute staking rewards:

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑤𝑎𝑟𝑑_𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑖𝑛_𝑟𝑒𝑤𝑎𝑟𝑑_𝑐𝑜𝑖𝑛 * 10𝐹𝐸𝐸_𝑈𝑁𝐼𝑇𝑆_𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁

𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠 = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑤𝑎𝑟𝑑_𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟
𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑎𝑘𝑒𝑑_𝑐𝑜𝑖𝑛_𝑠𝑢𝑝𝑝𝑙𝑦

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠 += 𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

Each user has its own to track how many𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠
rewards have been already claimed.

Pending rewards are calculated using formulas:

𝑑𝑒𝑙𝑡𝑎_𝑏𝑤_𝑢𝑠𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑓𝑒𝑒_𝑢𝑛𝑖𝑡𝑠 = 𝑔. 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

© Ulam Labs 2023. All Rights Reserved.

8

𝑑𝑒𝑙𝑡𝑎_𝑏𝑤_𝑢𝑠𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑓𝑒𝑒_𝑢𝑛𝑖𝑡𝑠 −= 𝑢. 𝑢𝑠𝑒𝑟_𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

𝑛𝑒𝑤_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑓𝑒𝑒𝑠_𝑡𝑜_𝑐𝑙𝑎𝑖𝑚 = 𝑑𝑒𝑙𝑡𝑎_𝑏𝑤_𝑢𝑠𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑓𝑒𝑒_𝑢𝑛𝑖𝑡𝑠*𝑢𝑠𝑒𝑟_𝑠𝑡𝑎𝑘𝑒𝑑_𝑐𝑜𝑖𝑛𝑠_𝑎𝑚𝑜𝑢𝑛𝑡

10𝐹𝐸𝐸_𝑈𝑁𝐼𝑇𝑆_𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁

𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑡𝑜_𝑐𝑙𝑎𝑖𝑚 += 𝑛𝑒𝑤_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑓𝑒𝑒𝑠_𝑡𝑜_𝑐𝑙𝑎𝑖𝑚
𝑢. 𝑢𝑠𝑒𝑟_𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠 = 𝑔. 𝑢𝑠𝑒𝑟_𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

As we can see, user rewards depends only on and𝑢𝑠𝑒𝑟_𝑠𝑡𝑎𝑘𝑒𝑑_𝑐𝑜𝑖𝑛𝑠_𝑎𝑚𝑜𝑢𝑛𝑡
. It means that the user has incentive to𝑢𝑠𝑒𝑟_𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

stake as much as possible, as early as possible. However
does not increase linearly and staking just𝑢𝑠𝑒𝑟_𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑤𝑎𝑟𝑑_𝑢𝑛𝑖𝑡𝑠

one transaction before reward distribution is the same as staking after last
distribution.

It creates the environment, when honest users keep locking their funds for a
long time get the same amount of rewards as malicious users running their
own node and stake just before distribution and un-stake just after.

Impact

Onchain data shows that staking is deployed, but not enabled, so there are no
funds at risk right now.

Solution

Problem has been presented to the team and nothing is planned to be
delivered, because staking functionality will only be interacted with from
another set of whitelisted modules that claim all staking rewards.

Gas usage increases with open position count

Finding ID: TF-3
Contract: position.move
Severity: Low
Status: Closed

Description

Function get_position_id_if_exists returns position id for given user, basket,
position and collateral coin. Positions are checked using a while loop and if a
© Ulam Labs 2023. All Rights Reserved.

9

matching position is found, its id is returned.

The problem with such implementation is that if a malicious user creates lots
of positions, everyone who creates a position afterwards will have to bear
higher gas costs.

Impact

Number of open positions is limited to 20 000, and even if someone wants to
create so many positions, gas costs will increase only up to cents.

Solution

To solve this problem, position location should be found o� chain and
confirmed on chain.

Mentioned proposal has been rejected, because it would complicate the
design and keeper scripts too much without giving too much in return.

General observations

General safety
The Tsunami finance team put in a lot of e�ort to make their smart contracts
safe.
First thing increasing safety is good design. All the entry points have a minimal
set of parameters, which makes the interface easy to use and hard to do
something wrong.
There are also some limitations in contract usage. Only order/position creator,
whitelisted keeper and admin can interact with the system. Of course it does
not eliminate the risk of malicious behavior, but drastically decreases attacker
possibilities to do something harmful and remain anonymous.
Last, probably the most important thing done to increase safety is a huge
amount of tests. Almost each case, when something could go wrong, has been
covered.

© Ulam Labs 2023. All Rights Reserved.

10

Other

Severity classification
We have adopted a severity classification inspired by the Immunefi
Vulnerability Severity Classification System - v2. It can be found here.

© Ulam Labs 2023. All Rights Reserved.

11

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2/

