

Staking Smart Contract

Findings and Recommendations Report Presented to:

xBacked Team

June 25, 2022 Version: 0.1

Presented by:

Ulam Labs

Grabiszynska 163/502,

53-332 Wroclaw, POLAND

© Ulam Labs 2022. All Rights Reserved.

2

© Ulam Labs 2022. All Rights Reserved.

3

Executive Summary
Overview

xBacked engaged Ulam Labs to perform a Security Assessment for xBacked
smart contracts.

The assessment was conducted remotely by the Ulam Labs Security Team.
Testing took place on May 16 - June 20, 2022, and focused on the following
objectives:

● Provide the customer with an assessment of their overall security
posture and any risks discovered within the environment during the
engagement.

● Provide a professional opinion on the maturity, adequacy, and efficiency
of the security measures.

● Identify potential issues and include improvement recommendations
based on the result of our tests.

● Confirmation of remediation for all reported issues.

This report summarizes the engagement, tests performed, and findings. It also
contains detailed descriptions of the discovered vulnerabilities, steps the
Ulam Labs Security Teams took to identify and validate each issue, and any
applicable recommendations for remediation.

Scope

The audit has been conducted on the commit
0a610a0111d66c91026bd07966f5185b5e095a51 of xBacked private GitHub
Repository. All the required fixes have been delivered (see Table 1 for details).
However, commits are introducing a lot of new code, so Ulam Labs Security
Team cannot guarantee that any new problem has not been introduced.

© Ulam Labs 2022. All Rights Reserved.

4

commit issue ID

a5471c0 XBS-1, XBS-3, XBS-5, XBS-7, XBS-8, XBS-11

46be0a3 XBS-2, XBS-4

a911a21 XBS-12

37d9ec6 XBS-6

Table 1: Fixes delivery.

© Ulam Labs 2022. All Rights Reserved.

5

Files included in the audit

xbacked-contracts
└── src

├── master_staking.rsh

Key findings

During the Security Assessment, following findings have been discovered:

Chart 1: Findings by severity.

● 2 findings with a CRITICAL severity rating,
● 1 findings with a HIGH severity rating,
● 5 findings with a MEDIUM severity rating,
● 3 findings with a LOW severity rating.
● 1 findings with a INFO severity rating

All findings have been acknowledged and fixed by the xBacked team.

© Ulam Labs 2022. All Rights Reserved.

6

Disclaimer

This report does not constitute legal or investment advice. The preparers of
this report present it as an informational exercise documenting the due
diligence involved in the secure development of the target contract only, and
make no material claims or guarantees concerning the contract’s operation
post-deployment. The preparers of this report assume no liability for any and
all potential consequences of the deployment or use of the contract.

Smart contracts are still a nascent software arena, and their deployment and
public offering carries substantial risk. This report makes no claims that its
analysis is fully comprehensive, and recommends always seeking multiple
opinions and audits.

This report is also not comprehensive in scope, excluding a number of
components critical to the correct operation of this system.

The possibility of human error in the manual review process is very real, and
we recommend seeking multiple independent opinions on any claims which
impact a large quantity of funds.

© Ulam Labs 2022. All Rights Reserved.

7

Technical analysis & findings
Unacceptable precision loss while calculating rewards

Finding ID: XBS-1
Contract: master_staking@0a610a0
Severity: Critical
Status: Fixed

Description

Let’s assume that rewardPerToken is updated in each block and the user
deposits funds as first and withdraws them as last. This is the worst case for
the user, who wants to minimize precision loss. Rewards for users per token
are calculated from formula:

𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡) =
𝑖=1

𝑡

∑
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒

𝑖
* 𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅

𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑜𝑠𝑖𝑡
𝑖

Integer division is causing the error to be up to one.

𝑥 = 𝑎 * 𝑦 + 𝑏
𝑏 < 𝑦
𝑥
𝑦 = 𝑎 + 𝑏

𝑦

𝑒 = 𝑏
𝑦 ≈ 1

If division introduces an error, the sum of divisions accumulates those errors.

𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡) =
𝑖=1

𝑡

∑ 𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛𝐷𝑒𝑙𝑡𝑎
𝑖
 + 𝑒

𝑖

𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛𝐿𝑜𝑠𝑡 = 𝑒
𝑖

* 𝑡 ≈ 𝑡

At the end, rewards are calculated from formula:
© Ulam Labs 2022. All Rights Reserved.

8

𝑡
𝑢

≤ 𝑡

𝑟𝑒𝑤𝑎𝑟𝑑𝑠(𝑡, 𝑡
𝑢
) =

𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡)−𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡
𝑢
)

𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 * 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

As proved above, division is introducing an error. In this case, error is
multiplied by the amount deposited, which makes it significant.

𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝐿𝑜𝑠𝑡 = 𝑒
𝑖
 * 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 ≈ 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

If “multiply first” rule is applied:

𝑟𝑒𝑤𝑎𝑟𝑑𝑠(𝑡, 𝑡
𝑢
) =

(𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡)−𝑟𝑒𝑤𝑎𝑟𝑑𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛(𝑡
𝑢)

) * 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅

𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝐿𝑜𝑠𝑡 = 𝑡 * 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑
𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 + 𝑒

𝑖
≈ 𝑡 * 𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 + 1

The error is divided by scale factor. This is very important to choose the
biggest possible scale factor to get the best precision. However choosing too
big value can lead to integer overflow. The worst case, when total deposit is
one, then following condition must be met:

𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 * 𝑚𝑎𝑥𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒 * 𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 < 264

If contract is not deprecated for one year, with

𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 = 106

𝑚𝑎𝑥𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒 = 106

𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 = 365*24*60*60
𝑏𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒

365*24*60*60*106*106

𝑏𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ≈ 263 < 264

Integer overflow is not possible.

Impact

Precision loss caused by division in line 473 is unacceptable.

© Ulam Labs 2022. All Rights Reserved.

9

Solution

Every time multiplication and division is required within the same consensus
step, function muldiv should be used.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

Unexpectedly low scale factor

Finding ID: XBS-2
Contract: master_staking@0a610a0
Severity: Critical
Status: Fixed

Description

As described in XBS-1, it is very important to use as big a scale factor as
possible. In line 16, scale factor is defined as 1e6, but Reach evaluates it as
246.

Reach is using Text.ParserCombinators.Parsec.Token.numberValue function to
calculate decimal number value from string. Each character is transformed to
integer value using Char.digitToInt. This function is checking if a character is a
valid hex digit, that’s why e is evaluated as 14. Final scale factor is calculated
from expression:

𝑆𝐶𝐴𝐿𝐸_𝐹𝐴𝐶𝑇𝑂𝑅 = 1 * 100 + 0𝑥𝑒 * 10 + 6 = 100 + 140 + 6 = 246

Impact

Scale factor is expected to be 1000000, but it is 246. The calculation precision
is broken.

Solution

Problem was reported to the Reach team. In the meantime as a workaround
1e6 should be replaced with 1000000.
© Ulam Labs 2022. All Rights Reserved.

10

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit 46be0a3 and reviewed by Ulam Labs Security Team.

Integer overflow while withdrawing more rewards than
possible

Finding ID: XBS-3
Contract: master_staking@0a610a0
Severity: Low
Status: Fixed

Description

The stacking contract has three balances. One for network token, the other
two for staking and reward ASA. Balance for staking ASA is shared between
total deposit and remaining rewards. It is extremely important to update a
proper global variable, when staking funds or rewards are deposited or
withdrawn and never use balance to check if some API calls are possible.

Impact

In the line 930 asset withdrawal is validated. Validation is correct for most of
the assets, but not for staking ASA, as described above. User funds could be
used as rewards if remaining rewards are not updated in line 949. Any try to
withdraw more than allowed will cause integer overflow and panic. Because of
panic, staked funds are safe, but such an approach is not recommended since
the end user will get a cryptic error message if a problem occurs.

Solution

Use the remaining rewards array instead of reward balances.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

© Ulam Labs 2022. All Rights Reserved.

11

User rewards are lost if contract has no remaining rewards

Finding ID: XBS-4
Contract: master_staking@a5471c0
Severity: High
Status: Fixed

Description

When user wants to withdraw the rewards, rewards amount stored in the local
state is updated using formula:

𝑢𝑠𝑒𝑟𝑅𝑒𝑤𝑎𝑟𝑑𝑠 = 𝑢𝑠𝑒𝑟𝑅𝑒𝑤𝑎𝑟𝑑𝑠 − 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑇𝑜𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤

It is very important to make sure that the difference between user reward
balance before and after local state update is transferred to the user or
contract fails.

Initially, in version 0a610a0, some rewards were lost, because of division error.
Total number of rewards sent to user is calculated using formula:

𝑎𝑐𝑡𝑢𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑𝑠 =
𝑖=0

2

∑
𝑟𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑖

𝑖
* 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑇𝑜𝑊𝑖𝑡ℎ𝐷𝑟𝑎𝑤

𝑇𝑂𝑇𝐴𝐿_𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐴𝐺𝐸

𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝐿𝑜𝑠𝑡 = 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑇𝑜𝑊𝑖𝑡ℎ𝑟𝑎𝑤 − 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑𝑠 ≈ 3

As shown on XBS-1, each division is introducing an error equal to one, so up to
three tokens could be lost. It is not too much, especially when rewards are
using six decimal places.

However in version a5471c0, while correcting XBS-3, a new problem has been
introduced:

𝑎𝑐𝑡𝑢𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑𝑠 =
𝑖=0

2

∑ 𝑚𝑖𝑛(
𝑟𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑖

𝑖
* 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑇𝑜𝑊𝑖𝑡ℎ𝐷𝑟𝑎𝑤

𝑇𝑂𝑇𝐴𝐿_𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐴𝐺𝐸 , 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑𝑠
𝑖
)

(
𝑖=0

2

∑ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑𝑠
𝑖
) == 0 ⇒ 𝑎𝑐𝑡𝑢𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑𝑠 = 0

© Ulam Labs 2022. All Rights Reserved.

12

𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝐿𝑜𝑠𝑡 ≈ 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑇𝑜𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤

All the rewards can be lost.

Impact

If a user decides to withdraw the rewards, when there are no remaining
rewards in the contract, all the earned rewards are lost.

Solution

To mitigate all the problems with lost rewards, the way how reward balance is
updated should be changed in the code at line 967 using formula:

𝑢𝑠𝑒𝑟𝑅𝑒𝑤𝑎𝑟𝑑𝑠 = 𝑢𝑠𝑒𝑟𝑅𝑒𝑤𝑎𝑟𝑑𝑠 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑𝑠

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit 46be0a3 and reviewed by Ulam Labs Security Team.

Saturation arithmetics is not working

Finding ID: XBS-5
Contract: master_staking@0a610a0
Severity: Medium
Status: Fixed

Description

There are some calculations, which require saturation addition and
multiplication. Intuitive version of saturation addition is:

𝑠𝑎𝑑𝑑
0
(𝑎, 𝑏) = 𝑎 + 𝑏 ≥ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 ? 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 : 𝑎 + 𝑏

There are a few problems here. If integer overflow occurs, AVM will panic. Let’s
improve the function above.

𝑎 + 𝑏 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥

© Ulam Labs 2022. All Rights Reserved.

13

𝑎 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 − 𝑏
𝑠𝑎𝑑𝑑

1
(𝑎, 𝑏) = 𝑎 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 − 𝑏 ? 𝑎 + 𝑏 : 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥

It looks good, but Reach will produce the Teal code, which evaluates all the
expressions, so this version is not going to work either.

𝑠𝑎𝑑𝑑(𝑎, 𝑏) = 𝑎 + 𝑏 𝑖𝑓 𝑎 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 − 𝑏 𝑒𝑙𝑠𝑒 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥

Saturated multiplication can be implemented similarly.

𝑎 * 𝑏 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥
𝑎 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 / 𝑏
𝑠𝑚𝑢𝑙(𝑎, 𝑏) = 0 𝑖𝑓 ! 𝑏 𝑒𝑙𝑠𝑒 𝑎 * 𝑏 𝑖𝑓 𝑎 ≤ 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥 / 𝑏 𝑒𝑙𝑠𝑒 𝑈𝐼𝑛𝑡. 𝑚𝑎𝑥

Impact

Calculations from lines 477 and 504 are using invalid saturation additions and
will not work as expected.

Solution

Implement presented formulas in the contract code.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

Lack of saturation arithmetic can cause permanent fund
freeze

Finding ID: XBS-6
Contract: master_staking@a5471c0
Severity: Medium
Status: Fixed

Description

© Ulam Labs 2022. All Rights Reserved.

14

Algorand virtual machine panics, when integer overflow occurs. In most of the
cases it is recommended to check arguments before calling the arithmetic
function. One of such exceptions, when checking is not necessary, is summing
tokens. No more tokens can be minted than 64bit integers can support, so it is
impossible to cause integer overflow while adding valid balances.

𝑎 < 264 ∧ 𝑎 = 𝑏 + 𝑐 ⇒ 𝑏 + 𝑐 < 264

It is also common to see that elapsed time in seconds is multiplied by some
variables.

𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 * 𝑋 < 264 ∧ 𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 = 1 𝑦𝑒𝑎𝑟 ⇒ 𝑋 < 240 ≈ 1012

It is a problematic case, because if the contract fails, because of integer
overflow caused by time elapsed, the problem is permanent as elapsed time
will never be smaller.

The integer overflow described in XBS-1 while calculating reward per token
also is not yet addressed.

Impact

Operations from lines 761, 807, 823 are safe, because those are operations on
tokens.

However, it is recommended to use saturation arithmetic at line 508
(multiplying by time elapsed and reward per token calculation). The risk that
the problem occurs is not so high, but if it happens, all the funds stored in
contract are lost forever.

Lack of saturation arithmetic at line 508 is very dangerous from the user point
of view. As proved in XBS-1, if the reward rate is too high, calculating reward
per token will always panic.

Leaving the possibility to lock all the user funds forever is dangerous, because
the admin can accidentally set too big reward rate, the admin private key can
be stolen or the admin can just become malicious.

© Ulam Labs 2022. All Rights Reserved.

15

Solution

Implement formulas described in XBS-5 in the contract code at line 508.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit 37d9ec6 and reviewed by Ulam Labs Security Team.

It is impossible to set reward rate as zero after
deployment

Finding ID: XBS-7
Contract: master_staking@0a610a0
Severity: Medium
Status: Fixed

Description

Reward rate is a parameter, which determines how many rewards are available
to claim per block. If reward rate is zero, remaining rewards are distributed
evenly amongst remaining blocks using formula:

𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡𝑒𝑑𝐴𝑡 > 𝑙𝑎𝑠𝑡𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 ⇒

𝑟𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒 = 𝑠𝑢𝑚(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑𝑠)
𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡𝑒𝑑𝐴𝑡 − 𝑙𝑎𝑠𝑡𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘

If the contract is fully deprecated, the calculated reward rate is zero, which is
a bit problematic, because if reward per token is not updated during the
depreciation period, no rewards are distributed for this period.

However it is not a problem, because validations from line 739, there is no way
to set the reward rate as zero.

Impact

Specified functionality is unreachable.

Solution

Reward rate provided by admin should be used as provided without validation.
© Ulam Labs 2022. All Rights Reserved.

16

Check from line 104 is not necessary.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

Rewards not distributed correctly during deprecation
period

Finding ID: XBS-8
Contract: master_staking@0a610a0
Severity: Medium
Status: Fixed

Description

As described in XBS-7, if the reward rate is zero, the final reward rate is
calculated from the current state. It is important not to use raw reward rate
anywhere, because zero value has a special meaning. The other problem is the
calculated reward rate after the depreciation period. It is always zero, but if
reward per token is not updated at the last block, there are some
undistributed rewards.

Impact

In the line 916, raw reward rate is used causing problems described above.

Solution

Always use calculated reward rate.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

Contract cannot be closed if user clears local state

Finding ID: XBS-9

© Ulam Labs 2022. All Rights Reserved.

17

Contract: master_staking@0a610a0
Severity: Medium
Status: Acknowledged

Description

In Algorand it is possible to clear the user's local state, even if the clear
program fails. Reach currently is not handling clear state calls, so total deposit
may never reach zero, keeping the contract alive forever.

Impact

All the untracked funds and remaining rewards are locked forever. There is no
easy way to solve that problem, so it’s better just to assume that once paid,
all the untracked funds, fees and remaining rewards are unreachable for the
admin.

Solution

Wait for reach to introduce clear state handling. Creating a custom handler in
teal is dangerous and not recommended.

Status

The xBacked team is aware of the problem, but as users' funds are not in
danger, correction is not planned.

Reward ratios precision is too low

Finding ID: XBS-10
Contract: master_staking@0a610a0
Severity: Info
Status: Acknowledged

Description

Reward ratios are used to distribute rewards by ratios provided by admin. Sum
of all array elements should be the total percentage.

𝑇𝑂𝑇𝐴𝐿_𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐴𝐺𝐸 = 100
© Ulam Labs 2022. All Rights Reserved.

18

Pending rewards are calculated using formula

𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑
𝑖

= 𝑚𝑢𝑙𝑑𝑖𝑣(𝑟𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑖𝑜
𝑖
, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑇𝑂𝑇𝐴𝐿_𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐴𝐺𝐸)

Impact

What if staking ASA is 1000 times more worthy than ALGOS and we want to
distribute them with 1:1 ratio? It is impossible with a total percentage as 100.
Ratios are used just once, so the total percentage can be any 64 bit integer.

Solution

Increase total percentage at line 13 and add support in frontend for bigger
ratios.

Status

The xBacked team is aware of the problem, but total percentage as 100 is
enough to handle planned business use cases.

Updating reward ratios possible if contract is deprecated

Finding ID: XBS-11
Contract: master_staking@0a610a0
Severity: Low
Status: Fixed

Description

Updating reward ratios is forbidden using generated frontend, but contract
allows it.

Impact

Validation from line 705, not present at line 711.

Solution

Adjust contract checks with frontend checks.

© Ulam Labs 2022. All Rights Reserved.

19

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a5471c0 and reviewed by Ulam Labs Security Team.

Initial parameters not validated during deployment

Finding ID: XBS-12
Contract: master_staking@0a610a0
Severity: Low
Status: Fixed??

Description

Checks present in the frontend code during deployments steps are not in
generated contract code. The parameters needing validation on backed:

● Reward ratios.
● Deprecated time.
● Reward rate.

Impact

Admin is now allowed to set mentioned parameters to any value, breaking
contract logic.

Solution

Adjust contract checks with frontend checks. Duplicate validations from line
242, 250, 253 and put them before making a commitment from line 294.

Status

Addressed by the xBacked team. The fix was applied to the source code with
commit a911a21 and reviewed by Ulam Labs Security Team.

© Ulam Labs 2022. All Rights Reserved.

20

Additional Recommendation
Use multisig wallet for storing admin key

The account managing contract should be a multisig wallet controlled by
xBacked DAO. This can derisk scenarios when a centralized wallet is hacked,
private key is leaked or key holder is coerced to hand over the key.

Status

Acknowledged by xBacked team.

Other
Severity classification

We have adopted a severity classification inspired by the Immunefi
Vulnerability Severity Classification System - v2. It can be found here.

© Ulam Labs 2022. All Rights Reserved.

21

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2/

