
Audit of Threshold ECDSA

Multisig Labs

31 October 2022

Version: 1.1

Presented by:

Kudelski Security Research Team

Kudelski Security - Nagravision Sàrl

Corporate Headquarters

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

For public release

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 4

1.1 Engagement Scope . 4

1.2 Engagement Analysis . 4

1.3 Issue Summary List . 5

2 TECHNICAL DETAILS OF SECURITY FINDINGS 7

2.1 KS-SBCF-F-01: ECDSA signature can be forged for every messages. 7

2.2 KS-SBCF-F-02: Missing proof in round 3 of key generation 8

2.3 KS-SBCF-F-03: Zero-knowledge proofs are replayable 9

2.4 KS-SBCF-F-04: Possible nil dereference in key generation 11

2.5 KS-SBCF-F-05: Collisions in hash function used for commitments 12

2.6 KS-SBCF-F-06: Dependency with vulnerability in codebase 14

2.7 KS-SBCF-F-07: SID is constant by default 15

3 OTHER OBSERVATIONS 17

3.1 KS-SBCF-O-01: Missing security policy 17

3.2 KS-SBCF-O-02: Wrong test error message 17

3.3 KS-SBCF-O-03: Unnecessary large commitments broadcasted 18

3.4 KS-SBCF-O-04: Key generation and signing test suites fail with data race

detector enabled . 19

3.5 KS-SBCF-O-05: Shares are not protected 21

3.6 KS-SBCF-O-06: Taurus implementation does not provide an authenticated

communication channel . 21

3.7 KS-SBCF-O-07: Taurus specification document generates lambda and r

parameters in keygen Round 1 from incorrect groups 22

4 APPENDIX A: ABOUT KUDELSKI SECURITY 23

5 APPENDIX B: METHODOLOGY 24

5.1 Kickoff . 24

5.2 Ramp-up . 24

5.3 Review . 25

5.4 Reporting . 26

5.5 Verify . 27

5.6 Additional Note . 27

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 2 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

6 APPENDIX C: SEVERITY RATING DEFINITIONS 28

REFERENCES 29

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 3 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

1 EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group, was

engaged by Multisig Labs (“the Client”) to conduct an external security assessment in

the form of a code audit of the cryptographic library ECDSA-CGGMP (“the Product”). The

assessment was conducted remotely by the Kudelski Security Team and coordinated

by Sylvain Pelissier, Cryptography Expert, Antonio De La Piedra, Senior Cybersecurity

Engineer and Nathan Hamiel, Senior Director of Research. The audit took place from

August 25, 2022 to September 9, 2022 and invloved 10 person-days of work. The audit

focused on the following objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of

the software solution in exam.

• To check compliance with existing standards.

• To identify potential security or interoperability issues and include improvement

recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed

descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a code audit of the Product written in Go, with a

particular attention to safe implementation protocols and potential for misuse

and leakage of secrets. The target of the audit was the cryptographic code lo-

cated in the sub-branches protocols/cmp/sign and protocols/cmp/keygen at

https://github.com/multisig-labs/multi-party-sig. We audited the commit number:

1c20cbbca313a5bbbdbeae497144294658257100. Particular attention was given to

side-channel attacks, in particular constant timeness and secure erasure of secret data

from memory. The Cryptography primitives implementation and identifiable abort

protocols were not in the scope. Denial of Service attack vectors were not considered

by the client.

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation

about the technological standards and design of the solution in exam was acquired,

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 4 of 29

https://github.com/multisig-labs/multi-party-sig

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

followed by a manual inspection of the code provided by the Client and the drafting of

this report.

As a result of ourwork, we have identified 1High, 4Medium, 2 Low and 7 Informational

findings.

High Medium Low Informational
Severity

N
um

be
r o

f i
ss

ue
s

1

4

2

7
Issue severity distribution

1.3 Issue Summary List

The following security issues were found:

ID Severity Finding Status

KS-SBCF-F-01 High ECDSA signature can be forged for every

messages.

Remediated

KS-SBCF-F-02 Medium Missing proof in round 3 of key generation Remediated

KS-SBCF-F-03 Medium Zero-knowledge proofs are replayable Acknowl-

edged

KS-SBCF-F-04 Medium Possible nil dereference in key generation Remediated

KS-SBCF-F-05 Medium Collisions in hash function used for

commitments

Remediated

KS-SBCF-F-06 Low Dependency with vulnerability in codebase Acknowl-

edged

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 5 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

ID Severity Finding Status

KS-SBCF-F-07 Low SID is constant by default Acknowl-

edged

The following are observations related to general design and improvements:

ID Severity Finding

KS-SBCF-O-01 Informational Missing security policy

KS-SBCF-O-02 Informational Wrong test error message

KS-SBCF-O-03 Informational Unnecessary large commitments broadcasted

KS-SBCF-O-04 Informational Key generation and signing test suites fail with data

race detector enabled

KS-SBCF-O-05 Informational Shares are not protected

KS-SBCF-O-06 Informational Taurus implementation does not provide an

authenticated communication channel

KS-SBCF-O-07 Informational Taurus specification document generates lambda

and r parameters in keygen Round 1 from

incorrect groups

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 6 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

2 TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations

for mitigation.

2.1 KS-SBCF-F-01: ECDSA signature can be forged for every mes-

sages.

Severity: High

Status: Remediated

Location: protocols/cmp/sign/round5.go:154

Description

The signature (𝒪, 0) is a valid signature for all the message and all the public keys.

The problem comes from insufficient check on input values and also that the Invert

function from Scalar interface return the value 0 when the input value is non invert-

ible. In addition, the point at infinity 𝒪 of the curve is represented as (0, 0) in affine

coordinates. Here is a proof of concept:

func TestSignature_Verify_Zero(t *testing.T) {

group := curve.Secp256k1{}

m := []byte("any message is valid")

x := sample.Scalar(rand.Reader, group)

X := x.ActOnBase()

// s = 0

s := group.NewScalar()

assert.Equal(t, true, s.IsZero())

R := s.ActOnBase()

sig := &Signature{

R: R,

S: s,

}

if !sig.Verify(X, m) {

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 7 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

t.Error("verify failed")

}

}

This means anyone is able to forge ECDSA signature for this protocol if the function

Verify is used to verify the signature. This attack was previously described for Java

language as Psychic signature [4].

Recommendation

For an ECDSA signature (𝑅, 𝑠), verify that 𝑠 is an integer in range [1, 𝑞 − 1] and then

that 𝑅 is a point on the curve and not the point at infinity. From a general point of view

a value should be checked to be invertible before calling the the Invert function.

Status

In commit 871e651eb436ab1b6c59e4415f793374d4504eb3 the Client added the fol-

lowing modifications to the Verify function:

r := sig.R.XScalar()

if r.IsZero() || sig.S.IsZero() {

return false

}

// TODO Do we also need to check for R or S > the group

modulus?↪

The functionXScalar call returns a valuewhich is normalized (https://pkg.go.dev/github.com/de-

cred/dcrd/dcrec/secp256k1/v4#FieldVal) thus, it should be less than the modulus.

Then the TODO comment could be removed but a test should be added to ensure this

behavior.

2.2 KS-SBCF-F-02: Missing proof in round 3 of key generation

Severity: Medium

Status: Remediated

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 8 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

Location: protocols/cmp/keygen/round3.go, Taurus specification.

Description

According to Canetti et al. p.24, Figure 6, Round 3, Step 2 [2] the proof fac is performed.

However, in the Taurus specification this proof is not created [1].

The fac proof or “no small factor proof” allows a party to prove that the Paillier modulus

𝑁 = 𝑝 ⋅ 𝑞 contains 𝑝, 𝑞 > 2𝑙. According to the paper section 6.4.1, the ‘fac proof

prevents then small values close to zero to have noticeably more weight than other

values, modulo 𝜙(̂𝑁)

Also, if the other parties could recover her Paillier private key and all the shares of the

affected party are sent to the broadcast channel, they could be decrypted by other

parties, thus having access to one share of the secret. This would be equivalent to

compromise the affected party and steal his share of the secret key.

Recommendation

We recommend to not deviate from protocol specifications.

Status

TheClient added themissing proof in the commit 7cb2349656789af9a77f5152b7a74dcf9210add0

which include deviations in comparison to the paper of Canetti et al.

2.3 KS-SBCF-F-03: Zero-knowledge proofs are replayable

Severity: Medium

Status: Acknowledged

Location: pkg/zk/

Description

The zero-knowledge proofs utilized in the MPC protocol are replayable: the challenge

only contains the parameters that are part of the Fiat-Shamir transformation and

protocol parameter like party identifier, threshold value, … For instance, the Schnorr

proof (sch) implemented at zk/sch.go computes the challenge as:

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 9 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

func challenge(hash *hash.Hash, group curve.Curve, commitment

*Commitment, public, gen curve.Point) (e curve.Scalar, err

error) {

↪

↪

err = hash.WriteAny(commitment.C, public, gen)

e = sample.Scalar(hash.Digest(), group)

return

}

Another example is the prm proof, where the challenge is computed as:

func challenge(hash *hash.Hash, public Public, A

[params.StatParam]*big.Int) (es []bool, err error) {↪

err = hash.WriteAny(public.N, public.S, public.T)

for _, a := range A {

_ = hash.WriteAny(a)

}

tmpBytes := make([]byte, params.StatParam)

_, _ = io.ReadFull(hash.Digest(), tmpBytes)

es = make([]bool, params.StatParam)

for i := range es {

b := (tmpBytes[i] & 1) == 1

es[i] = b

}

return

}

According to RFC 8235 [3]:

Finally, when a security protocol relies on the Schnorr NIZK proof

for proving the knowledge of a discrete logarithm in a non-

interactive way, the threat of replay attacks shall be considered.

For example, the Schnorr NIZK proof might be replayed back to the

prover itself (to introduce some undesirable correlation between

items in a cryptographic protocol). This particular attack is

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 10 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

prevented by the inclusion of the unique UserID in the hash. The

verifier shall check the prover's UserID is a valid identity and is

different from its own. Depending on the context of specific

protocols, other forms of replay attacks should be considered, and

appropriate contextual information included in OtherInfo whenever

necessary.

Recommendation

We recommend the client to include an unique identifier in each proof. Moreover, to

ensure that replays are not possible during several executions of the protocol a counter

or a nonce must be included in the challenge computation.

Status

According to the client, the issue is mitigated by the application that generates a unique

session ID for each execution of the protocol (Issue #10).

2.4 KS-SBCF-F-04: Possible nil dereference in key generation

Severity: Medium

Status: Remediated

Location: protocols/cmp/keygen/round3.go:60

Description

The method StoreBroadcastMessage checks that every parameter in the

broadcast3 structure is not nil:

// check nil

if body.N == nil || body.S == nil || body.T == nil ||

body.VSSPolynomial == nil {↪

return round.ErrNilFields

}

// check RID length

if err := body.RID.Validate(); err != nil {

return fmt.Errorf("rid: %w", err)

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 11 of 29

https://github.com/multisig-labs/multi-party-sig/issues/10

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

}

if err := body.C.Validate(); err != nil {

return fmt.Errorf("chainkey: %w", err)

}

// check decommitment

if err := body.Decommitment.Validate(); err != nil {

return err

}

However, the body.SchnorrCommitments parameter is not validated. If this parame-

ter is set to nil, the following panic happens:

panic: value method github.com/taurusgroup/multi-party-

sig/pkg/zk/sch.Commitment.Domain called using nil *Commitment

pointer

↪

↪

goroutine 12 [running]:

github.com/taurusgroup/multi-party-sig/pkg/zk/sch.(*Commitment) ⌋

.Domain(0xc000362008?)↪

<autogenerated>:1 +0x34

[...]

FAIL

github.com/taurusgroup/multi-party-sig/protocols/cmp/keygen

1.694s

↪

↪

FAIL

Recommendation

We recommend the client to validate that every received parameter is not nil.

Status

This issuewas corrected by commit189f06564c48f257c4efa6f7fed6dca9e5672afb.

2.5 KS-SBCF-F-05: Collisions in hash function used for commitments

Severity: Medium

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 12 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

Status: Remediated

Location: protocols/cmp/keygen/round3.go:154

Description

The hash function WriteAny does not build domain separation properly and collisions

can be easily built. It can allow to make a honest participant looks culprit during the key

generation. The following test is a proof of concept code:

func TestHash_WriteAny_Collision(t *testing.T) {

var err error

testFunc := func(vs ...interface{}) ([]byte, error) {

h := New()

for _, v := range vs {

err = h.WriteAny(v)

if err != nil {

return nil, err

}

}

return h.Sum(), nil

}

b1 := []byte("1)(big.Int\x02*data_added*")

b2 := []byte("3")

n2 := new(big.Int)

n2.SetString(hex.EncodeToString(b2), 16)

h1, err := testFunc(b1, n2)

assert.NoError(t, err)

b1 = []byte("1")

b2 = []byte("*data_added*)(big.Int\x023")

n2 = new(big.Int)

n2.SetString(hex.EncodeToString(b2), 16)

h2, err := testFunc(b1, n2)

assert.NoError(t, err)

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 13 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

assert.Equal(t, h1, h2)

}

Recommendation

Use a hash function with proper domain separation and add the previous test in the

test set.

Status

The commit a428759601b38a4199bb1920794a20eecad3c89c introduced the do-

main separation: <length domain><domain><length data><data> with a length

encoded on 8 bytes to prevent collisions.

2.6 KS-SBCF-F-06: Dependency with vulnerability in codebase

Severity: Low

Status: Acknowledged

Location: General

Description

The golang-x-text dependency (pkg:golang/golang.org/x/text@v0.3.3) is af-

fected by anOut-of-bounds problem as described by CVE-2021-38561 in https://ossind

ex.sonatype.org/vulnerability/CVE-2021-38561?component-type=golang&component-

name=golang.org.

Recommendation

We recommend the client to updated the dependency.

Status details

The client acknowledge the finding and will fix the issued (https://github.com/multisig-

labs/multi-party-sig/issues/14).

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 14 of 29

https://ossindex.sonatype.org/vulnerability/CVE-2021-38561?component-type=golang&component-name=golang.org
https://ossindex.sonatype.org/vulnerability/CVE-2021-38561?component-type=golang&component-name=golang.org
https://ossindex.sonatype.org/vulnerability/CVE-2021-38561?component-type=golang&component-name=golang.org
https://github.com/multisig-labs/multi-party-sig/issues/14
https://github.com/multisig-labs/multi-party-sig/issues/14

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

2.7 KS-SBCF-F-07: SID is constant by default

Severity: Low

Status: Acknowledged

Location: code/protocols/cmp/keygen/keygen.go:19

Description

By default, the session identifier depends on the curve group name, the party identifiers

and the threshold. Thus, for two different sessions with the same threshold, the session

identifier stays constants even though the code comments of the NewSession function

says:

// NewSession creates a new *Helper which can be embedded in the

first Round,↪

// so that the full struct implements Session.

// `sessionID` is an optional byte slice that can be provided by

the user.↪

// When used, it should be unique for each execution of the

protocol.↪

// It could be a simple counter which is incremented after

execution, or a common random string.↪

// `auxInfo` is a variable list of objects which should be

included in the session's hash state.↪

func NewSession(info Info, sessionID []byte, pl *pool.Pool,

auxInfo ...hash.WriterToWithDomain) (*Helper, error) {↪

This would allow to replay some message in different sessions of the protocol. For

example, at round 1 of the key generation, the variable 𝑉𝑖 may be replayed after being

recorded in a previous session.

Recommendation

We recommend to ensure the sessionID value is unique per protocol execution.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 15 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

Status details

According to the client, the issue is mitigated by the application that uses this library

which generates a unique session ID for each execution of the protocol.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 16 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

3 OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security

of the code, and as such have no severity rating or remediation status summary. These

observations are either minor remarks regarding good practice or design choices or

related to implementation and performance. These items do not need to be remediated

for what concerns security, but where applicable we include recommendations.

3.1 KS-SBCF-O-01: Missing security policy

Location: .

Description

Currently there is no instructions for how to report a security vulnerability regarding

the repository nor security contacts.

Recommendation

Create a SECURITY.md file in the root directory with all the necessary information.

See for example: https://docs.github.com/en/code-security/getting-started/adding-a-

security-policy-to-your-repository

Notes

The client will fix the problem.

3.2 KS-SBCF-O-02: Wrong test error message

Location: protocols/cmp/sign/sign_test.go:55

Description

Taproot is mentioned in CMP tests:

for _, r := range rounds {

require.IsType(t, &round.Output{}, r, "expected result

round")↪

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 17 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

resultRound := r.(*round.Output)

require.IsType(t, &ecdsa.Signature{}, resultRound.Result,

"expected taproot signature result")↪

signature := resultRound.Result.(*ecdsa.Signature)

assert.True(t, signature.Verify(publicPoint,

messageHash), "expected valid signature")↪

}

Recommendation

The messages should indicate ECDSA signature.

Notes

The client will fix the problem.

3.3 KS-SBCF-O-03: Unnecessary large commitments broadcasted

Location: code/protocols/cmp/keygen/round1.go:92

Description

Commitment 𝑉𝑖 should be 32-byte long according to Canetti et al. [2] but in the imple-

mentation they are 64-byte long. This creates unnecessary bandwidth consumption.

Recommendation

Commitment length should be reduced.

Notes

For the application, the additional bandwidth of 32 bytes does not matter for the client.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 18 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

3.4 KS-SBCF-O-04: Key generation and signing test suites fail with

data race detector enabled

Location: src/internal/test/round.go lines 40 and 55, src/protocols/cmp/keygen/key-

gen_test.go, src/protocols/cmp/sign/sign_test.go

Description

When running go test -race -run for the tests: TestKeygen, TestRefresh in

keygen_test.go and TestRound in sign_test.go, we obtain:

WARNING: DATA RACE

Write at 0x00c000113110 by goroutine 25:

github.com/taurusgroup/multi-party-

sig/internal/test.Rounds.func1()↪

internal/test/round.go:55 +0x1eb

golang.org/x/sync/errgroup.(*Group).Go.func1()

go/pkg/mod/golang.org/x/sync@v0.0.0-20210220032951-

036812b2e83c/errgroup/errgroup.go:57

+0x91

↪

↪

Previous write at 0x00c000113110 by goroutine 24:

github.com/taurusgroup/multi-party-

sig/internal/test.Rounds.func1()↪

internal/test/round.go:55 +0x1eb

golang.org/x/sync/errgroup.(*Group).Go.func1()

go/pkg/mod/golang.org/x/sync@v0.0.0-20210220032951-

036812b2e83c/errgroup/errgroup.go:57

+0x91

↪

↪

Goroutine 25 (running) created at:

golang.org/x/sync/errgroup.(*Group).Go()

pkg/mod/golang.org/x/sync@v0.0.0-20210220032951-

036812b2e83c/errgroup/errgroup.go:54

+0xee

↪

↪

github.com/taurusgroup/multi-party-sig/internal/test.Rounds()

internal/test/round.go:40 +0x24b

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 19 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

github.com/taurusgroup/multi-party-

sig/protocols/cmp/keygen.TestKeygen()↪

protocols/cmp/keygen/keygen_test.go:80 +0x144

testing.tRunner()

/usr/lib/go-1.18/src/testing/testing.go:1439 +0x213

testing.(*T).Run.func1()

/usr/lib/go-1.18/src/testing/testing.go:1486 +0x47

--- FAIL: TestKeygen (20.49s)

testing.go:1312: race detected during execution of test

This dead race happens due to the testing subsystem of Taurus, defined in

internal/test. More precisely, in the line 55 of the Rounds function:

// get the second set of messages

for id := range rounds {

idx := id

r := rounds[idx]

errGroup.Go(func() error {

var rNew, rNewReal round.Session

if rule != nil {

rReal := getRound(r)

rule.ModifyBefore(rReal)

outFake := make(chan *round.Message, N+1)

rNew, err = r.Finalize(outFake)

close(outFake)

rNewReal = getRound(rNew)

rule.ModifyAfter(rNewReal)

for msg := range outFake {

rule.ModifyContent(rNewReal, msg.To,

getContent(msg.Content))↪

out <- msg

}

} else {

rNew, err = r.Finalize(out)

}

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 20 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

where rNew is updated:

} else {

rNew, err = r.Finalize(out)

}

Notes

The finding will be investigate in the future by the client.

3.5 KS-SBCF-O-05: Shares are not protected

Location: src/protocols/cmp/sign and src/protocols/cmp/keygen

Description

Generated shares after key generation are not protected. We recommend the client to

encrypt and authenticated those after key generation and validate their authenticity

prior to signing.

Notes

The client considered this observation not in scope for the library and it must be

addressed at application level.

3.6 KS-SBCF-O-06: Taurus implementation does not provide an au-

thenticated communication channel

Location:: General

Description

The work of Canetti et al. [2] requires a an authenticated and synchronous broadcast

mechanism for communication (see p. 6, Communication model).

We recommend the client to consider the warnings described in the paper when not

using a synchronous broadcast mechanism:

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 21 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

We note that the use of authenticated communication is in

fact essential for obtaining proactive security. Indeed,

without already-established authenticated communication,

an adversary that formally “left” a previously corrupted

party and controls all the communication between the party

and the rest of the network can continue impersonating that

party indefinitely [15]. Furthermore, the use of a synchronous

broadcast mechanism is essential for accountability: Accountability

by definition requires consensus, and without bounded communication

delay it is impossible to hold a signatory accountable for not

responding.

Finally, we stress the importance of providing authentication and authenticity to the

communication channel that the client relies on.

Notes

The client considered this observation not in scope for the library and it must be

addressed at application level.

3.7 KS-SBCF-O-07: Taurus specification document generates

lambda and r parameters in keygen Round 1 from incorrect

groups

Location: https://github.com/taurusgroup/multi-party-sig/blob/main/docs/Threshold

.pdf

Description

Taurus provides performs the key generation and refresh/auxiliary parameter genera-

tion at the same time in their implementation, which is specified [1].

In [1] p.2, Round 1, third step, 𝜆 is generated from 𝑍∗
𝑁𝑖 and 𝑟 from 𝑍∗

𝜙(𝑁𝑖). However,

according to [2], p.24, Figure 6, Round 1, 𝑟 is generated from 𝑍∗
𝑁𝑖 and 𝜆 from 𝑍∗

𝜙(𝑁𝑖).

We encourage the client to analyze if the implementation follows the document of

Taurus (which is not part of the scope of this audit), hence contradicting the paper of

Canetti et al [2].

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 22 of 29

https://github.com/taurusgroup/multi-party-sig/blob/main/docs/Threshold.pdf
https://github.com/taurusgroup/multi-party-sig/blob/main/docs/Threshold.pdf

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

4 APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and

media security solutions to enterprises and public sector institutions. Our team of

security experts delivers end-to-end consulting, technology, managed services, and

threat intelligence to help organizations build and run successful security programs. Our

global reach and cyber solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision Sàrl, all rights reserved.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 23 of 29

https://www.kudelskisecurity.com

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

5 APPENDIX B: METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in

this section. This is broken up into the following phases.

Figure 1: Methodology flow

5.1 Kickoff

The project was kicked off when all of the sales activities had been concluded. We set

up a kickoff meeting where project stakeholders were gathered to discuss the project

as well as the responsibilities of participants. During this meeting we verified the scope

of the engagement and discussed the project activities. It was an opportunity for both

sides to ask questions and get to know each other. By the end of the kickoff there was

an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

5.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular

project. This included the steps needed for gaining familiarity with the codebase and

technological innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 24 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

5.3 Review

The review phase is where a majority of the work on the engagement was performed.

In this phase we analyzed the project for flaws and issues that could impact the security

posture. This included an analysis of the architecture, a review of the code, and a

specification matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the

experience of the reviewer. No dynamic testing was performed, only the use of custom-

built scripts and tools were used to assist the reviewer during the testing. We discuss

our methodology in more detail in the following subsections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of

the issues we have been looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementa-

tion. We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• Security level of cryptographic primitives and their respective parameters (key

lengths, etc.)

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 25 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the

specification. We checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

5.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an

executive summary, technical details, and observations about the project, which is also

the general structure of the current final report.

The executive summary contains an overview of the engagement, including the number

of findings as well as a statement about our general risk assessment of the project as a

whole.

In the report we not only point out security issues identified but also informational

findings for improvement categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity

ranking and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but

are general best practices and steps, that can be taken to lower the attack surface of

the project.

As an optional step, we can agree on the creation of a public report that can be shared

and distributed with a larger audience.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 26 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

5.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the

Client. After these fixes were verified, we updated the status of the finding in the report.

The output of this phase was the current, final report with any mitigated findings noted.

5.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit

assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained

by resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both

the ease of exploitability and the potential damage caused by an exploit. Since this

is a library, we ranked some of these vulnerabilities potentially higher than usual, as

we expect the code to be reused across different applications with different input

sanitization and parameters.

Correct memory management is left to Go and was therefore not in scope. Zeroization

of secret values from memory is also not enforceable at a low level in a language such

as Go.

While assessment the severity of the findings, we considered the impact, ease of ex-

ploitability, and the probability of attack. This is a solid baseline for severity deter-

mination. Information about the severity ratings can be found in Appendix C of this

document.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 27 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

6 APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified

issues. This is meant to be simple and fast, providing customers with a quick at a

glance view of the risk an issue poses to the system. As with anything risk related, these

findings are situational. We consider multiple factors when assigning a severity level to

an identified vulnerability. A few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

Severity Definition

High The identified issue may be directly exploitable causing an immediate

negative impact on the users, data, and availability of the system for

multiple users.

Medium The identified issue is not directly exploitable but combined with

other vulnerabilities may allow for exploitation of the system or

exploitation may affect singular users. These findings may also

increase in severity in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack

surface of the system. This may be through leaking information that

an attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to

harden the application and improve processes.

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 28 of 29

Multisig Labs | Audit of Threshold ECDSA

31 October 2022

REFERENCES

[1] J. P. Aumasson, A Hamelink, and L Meier. 2021. Adaptations from CGGMP21.

Retrieved from https://raw.githubusercontent.com/multisig-labs/multi-party-

sig/main/docs/Threshold.pdf

[2] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi

Peled. 2020. UC non-interactive, proactive, threshold ECDSA with identifiable

aborts. In Proceedings of the 2020 ACM SIGSAC conference on computer and com-

munications security (CCS ’20), Association for Computing Machinery, New York,

NY, USA, 1769–1787. Retrieved from https://doi.org/10.1145/3372297.3423367

[3] Feng Hao. 2017. Schnorr Non-interactive Zero-Knowledge Proof.

DOI:https://doi.org/10.17487/RFC8235

[4] Neil Madden. 2022. CVE-2022-21449: Psychic signatures in java. Retrieved from

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

© 2022 Nagravision Sàrl / All rights reserved.

For public release

Page 29 of 29

https://raw.githubusercontent.com/multisig-labs/multi-party-sig/main/docs/Threshold.pdf
https://raw.githubusercontent.com/multisig-labs/multi-party-sig/main/docs/Threshold.pdf
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.17487/RFC8235
https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

	EXECUTIVE SUMMARY
	Engagement Scope
	Engagement Analysis
	Issue Summary List

	TECHNICAL DETAILS OF SECURITY FINDINGS
	KS-SBCF-F-01: ECDSA signature can be forged for every messages.
	KS-SBCF-F-02: Missing proof in round 3 of key generation
	KS-SBCF-F-03: Zero-knowledge proofs are replayable
	KS-SBCF-F-04: Possible nil dereference in key generation
	KS-SBCF-F-05: Collisions in hash function used for commitments
	KS-SBCF-F-06: Dependency with vulnerability in codebase
	KS-SBCF-F-07: SID is constant by default

	OTHER OBSERVATIONS
	KS-SBCF-O-01: Missing security policy
	KS-SBCF-O-02: Wrong test error message
	KS-SBCF-O-03: Unnecessary large commitments broadcasted
	KS-SBCF-O-04: Key generation and signing test suites fail with data race detector enabled
	KS-SBCF-O-05: Shares are not protected
	KS-SBCF-O-06: Taurus implementation does not provide an authenticated communication channel
	KS-SBCF-O-07: Taurus specification document generates lambda and r parameters in keygen Round 1 from incorrect groups

	APPENDIX A: ABOUT KUDELSKI SECURITY
	APPENDIX B: METHODOLOGY
	Kickoff
	Ramp-up
	Review
	Reporting
	Verify
	Additional Note

	APPENDIX C: SEVERITY RATING DEFINITIONS
	REFERENCES

