
Peccala Group s.r.o. - 15.01.2022 - Version v1.0

Report

Smart Contract Audit

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 1

https://turingpoint.de
https://turingpoint.de

turingpoint GmbH

Rödingsmarkt 9

20459 Hamburg

Deutschland

Tel.: +49 40 52477883

Mail: hello@turingpoint.de

Web: turingpoint.de

Handelsregister: 157676

USt-IdNr: DE325011218

Changelog

1.0 14.01.2022 Final Version

0.9 14.01.2022 QA

0.2 13.01.2022 Vulnerabilities added

0.1 13.01.2022 Initial Draft

©2022 turingpoint GmbH

The reproduction of common names, trade names, trademarks, etc. in this document does not

entitle the user to assume that such names are to be regarded as free in the sense of trademark

and brand protection legislation and may therefore be used by anyone, even without special

identification. All brand and product names are trademarks or registered trademarks of the

respective trademark holders.

2

2

2

2

2

3

3

3

3

4

4

5

5

8

10

11

12

Table of Contents

1 Dashboard

1.1 Metadata

1.2 Targets

1.3 Risiks

1.4 Vulnerabilities (Top 5)

2 Management summary

2.1 Scope and Limitations

2.2 Vulnerabilities

2.3 Strategic Recommendations

3 Objective

3.1 Delimitation

3.2 Graphical Representation of Logic

3.2.1 PeccalaUser.sol

3.2.2 PeccalaHigh.sol

3.3 Read of persistent state following external call

3.4 A floating pragma is set

3.5 Write of persistent state following external call

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 1

Dashboard

Vulnerabilities (Top 5)

Read of persistent state following external call Low

A floating pragma is set Low

Write of persistent state following external call Low

1

Metadata

Analyst Jan Kahmen

Interviewpartner Laura Arcade

Type Smart Contract Audit

Method White-Box

Timeframe 11.01.2022 - 14.01.2022

Targets

Smart Contract

Audit
PeccalaUser.sol#4723f4e5be5180ba3bd88f6acc#sha256sum

Smart Contract

Audit
PeccalaHigh.sol#925f91ff701b2be187dcd3123d#sha256sum

Risiks

Critical Risk 0

High Risik 0

Medium Risik 0

Low Risik 3

Info 0

Total 3

1.1

1.2

1.3

1.4

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 2

file:///home/gaia/turingpoint/reports/smart_contract_audit-mair_holding_u_consulting_gmbh-042021/public/PeccalaUser.sol#4723f4e5be5180ba3bd88f6acc#sha256sum
file:///home/gaia/turingpoint/reports/smart_contract_audit-mair_holding_u_consulting_gmbh-042021/public/PeccalaHigh.sol#925f91ff701b2be187dcd3123d#sha256sum

Management summary

Scope and Limitations

The objective of this review was to identify and assess any safety deficiencies in the

application. Due to the high complexity of the smart contracts, a test period of 4 days was

set.

Vulnerabilities

The security audit identified 3 vulnerabilities of low. No vulnerabilities in the critical,

medium or high risk categories could be identified. To further increase the security level of

the smart contract code, it is recommended to implement the proposed measures.

Strategic Recommendations

In the short term, all hardening measures described should be implemented to ensure the

system security of the tested code. In addition, security checks should already be

implemented in the development process in order to be able to detect vulnerabilities at an

early stage. Furthermore, it is very advisable to have the SWC Registry (Smart Contract

Weakness Classification and Test Cases) in view.

2

2.1

2.2

2.3

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 3

Objective

On behalf of Peccala Group s.r.o., turingpoint GmbH conducted a security audit of the

smart contracts in january 2022. The aim of this audit was to determine the security level

of the applications used, as well as to identify existing vulnerabilities and document

measures that could eliminate vulnerabilities.

Delimitation

A technical security analysis is naturally a random analysis in which an attempt is made to

find as many vulnerabilities as possible within a test object with a finite amount of effort.

Normally only a part of the system properties found can be clearly classified as

vulnerabilities, the other part requires more extensive testing. This involves investigating

to what extent the identified properties of a system are functions that were implemented

as a requirement and to what extent this implementation created vulnerabilities that could

not be created by an alternative implementation. Due to the number of possible

combinations that arise here, a balance must be struck between the number of properties

to be evaluated and the depth of the examination to be performed, within the available

time quota.

3

3.1

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 4

Graphical Representation of Logic

PeccalaUser.sol

3.2

3.2.1

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 5

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 6

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 7

PeccalaHigh.sol

3.2.2

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 8

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 9

Read of persistent state following external call

Description

Risk

Solution

Make sure all internal state changes are performed before the call is executed. This

is known as the Checks-Effects-Interactions pattern.

Use a reentrancy lock (ie. OpenZeppelin’s ReentrancyGuard.

3.3

Risik Low

Path PeccalaUser.sol#86

One of the major dangers of calling external contracts is that they can take over the control

flow.

In the reentrancy attack (a.k.a. recursive call attack), a malicious contract calls back into

the calling contract before the first invocation of the function is finished. This may cause

the different invocations of the function to interact in undesirable ways.

The best practices to avoid Reentrancy weaknesses are:

•

•

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 10

Proof

 createUser(bytes32 userId) external onlyOwner returns(address) {

 User data = new User();

 userById[userId] = address(data);

 userByAddress[address(data)] = userId;

 emit UserCreated(address(data), userId);

 return address(data);

 }

A floating pragma is set

Description

Risk

Solution

* 0.5.16 - 0.5.17

* 0.6.11 - 0.6.12

* 0.7.5 - 0.7.6 Use a simple pragma version that allows any of these versions.

Consider using the latest version of Solidity for testing.

3.4

Risik Low

Path PeccalaHigh.sol#1-4

Path PeccalaUser.sol#1-4

Contracts should be deployed with the same compiler version and flags that they have

been tested with thoroughly. Locking the pragma helps to ensure that contracts do not

accidentally get deployed using, for example, an outdated compiler version that might

introduce bugs that affect the contract system negatively.

Lock the pragma version and also consider known bugs (https://github.com/ethereum/

solidity/releases) for the compiler version that is chosen.

Pragma statements can be allowed to float when a contract is intended for consumption

by other developers, as in the case with contracts in a library or EthPM package. Otherwise,

the developer would need to manually update the pragma in order to compile locally.

Deploy with any of the following Solidity versions:

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 11

https://github.com/ethereum/solidity/releases
https://github.com/ethereum/solidity/releases

Proof

pragma solidity ^0.8.6;

Write of persistent state following external call

Description

Risk

Solution

Make sure all internal state changes are performed before the call is executed. This

is known as the Checks-Effects-Interactions pattern.

Use a reentrancy lock (ie. OpenZeppelin’s ReentrancyGuard.

Proof

3.5

Risik Low

Path PeccalaUser.sol#87

One of the major dangers of calling external contracts is that they can take over the control

flow.

In the reentrancy attack (a.k.a. recursive call attack), a malicious contract calls back into

the calling contract before the first invocation of the function is finished. This may cause

the different invocations of the function to interact in undesirable ways.

The best practices to avoid Reentrancy weaknesses are:

•

•

 createUser(bytes32 userId) external onlyOwner returns(address) {

 User data = new User();

 userById[userId] = address(data);

 userByAddress[address(data)] = userId;

 emit UserCreated(address(data), userId);

 return address(data);

 }

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 12

Version v1.0 Smart_Contract_Audit-Peccala_Group_s.r.o.-012022 Page 13

	Report
	Smart Contract Audit
	Changelog

	Table of Contents
	Dashboard
	Metadata
	Targets
	Risiks
	Vulnerabilities (Top 5)

	Management summary
	Scope and Limitations
	Vulnerabilities
	Strategic Recommendations

	Objective
	Delimitation
	Graphical Representation of Logic
	PeccalaUser.sol
	PeccalaHigh.sol

	Read of persistent state following external call
	Description
	Risk
	Solution
	Proof

	A floating pragma is set
	Description
	Risk
	Solution
	Proof

	Write of persistent state following external call
	Description
	Risk
	Solution
	Proof

