The Economic Burden of Adverse Events Requiring Acute Care Service from Outpatient Parenteral Antibiotic Treatment (OPAT)

Mauricio Rodriguez¹, Michael Nowak¹, Georgia Buscaglia², Steven Tolle², Darren Michael²

¹Spero Therapeutics, Cambridge, MA; ² Forte Analytics, Denver, CO

Background

- Antimicrobial resistance (AMR) is a growing threat, especially among extended-spectrum beta-lactamase (ESBL)-producing *Enterbacterales* species within the community setting.¹
- Between 2012–2017, ESBL-producing Enterobacterales infections in hospitalized patients were the only major multidrug-resistant (MDR) pathogen in the U.S. with increasing incidence, driven by a 64% increase in community-onset infections.
- Preferred treatments for many MDR gram-negative infections are often currently available in the U.S. only as intravenous (IV) or intramuscular (IM) formulations.^{2,3}
- Patients requiring outpatient parenteral antibiotic treatment (OPAT) services will proportionally increase based on AMR to oral antibiotic treatment options.
- Complications that arise from OPAT, often necessitate acute care services. These complications have been well established in the literature. However, only frequency rates have been described.^{4,5}
- We sought to quantify the costs associated with OPAT adverse events (AEs).

Methods

- A multicenter retrospective claims analysis from the state of Utah's (UT) Public Indicator-Based Information System for Public Health (IBIS) database was performed for 2020.
- OPAT AEs described in the literature were used to query charges. All UT hospitals and common OPAT AE principal diagnosis codes were included in the analysis.
- Continuous longitudinal claims during 2020 were followed for each patient from the index date of diagnosis throughout the hospital length of stay (LOS), as well as discharge status.
- Estimated inpatient (IP) costs associated with common OPAT AEs were calculated from a cost-to-charge ratio by using publicly available data from the Centers for Medicare & Medicaid Services.
- Event counts reported for UT were scaled to estimate total events for the U.S. population.
- Emergency department (ED) incidence rates for OPAT AEs from 2016 to 2020 were also examined.

Results

- During the study period, 248,843 patients met study inclusion for an OPAT AE principal diagnosis (PDx) code.
- The mean age was 60 with majority of patients being white and a slightly higher representation of females at 53.4%.
- Medicare was the most common payer that accounted for 51.2% and discharge status to home or routine represented most patients (54.3%), while discharge to home health was second highest at 32%.
- Other baseline patient demographics are displayed in Table 1.
- Both IV complications and central line—associated bloodstream infections accounted for the longest hospital IP LOS at 6.43 days and 7.04 days, respectively.
- Phlebitis had the third longest LOS at 4.51 days. (Table 2)
- Among IV-related complications, catheter phlebitis accounted for highest median cost per IP event at \$14,051.
- Other PDx, in order of descending median costs, included catheter blockage and central line-associated bloodstream infections at \$11,237 and \$10,103, respectively, followed by \$9,371 for complications post-injection.
- Thrombotic event costs totaled \$11,915 for deep venous thrombosis and pulmonary embolism, combined. Lastly, C. difficile infections accounted for a median cost of \$5,284. (Figure 1)
- Age-adjusted rates of ED activity related to AEs rose to 17.6 per 10,000 in 2020; this marked an 18% increase from 2016. **(Figure 2)**

Table 1. Patient demographics

Demographics	Utah 2020	U.S. 2020	(%)
N	2,404	247,913	
Mean Age	60.3	60.3	
Sex			
Male	1,114	114,881	46.3%
Female	1,283	132,309	53.4%
Race			
American Indian / Alaska	18	1,856	0.7%
Asian	24	2,475	1.0%
Black / African American	44	4,538	1.8%
White	2,168	223,575	90.2%
Other	99	10,209	4.1%
Unknown	8	825	0.3%
Native Hawaiian or Other Pacific Islander	45	4,641	1.9%
Payer			
Medicare	1,232	127,050	51.2%
Medicaid	308	31,763	12.8%
Other Government	39	4,022	1.6%
Private Health Insurance	651	67,134	27.1%
Blue Cross / Blue Shield	113	11,653	4.7%
Managed Care, Unspecified	3	309	0.1%
Unknown	52	5,363	2.2%
Other	5	516	0.2%
Discharge Status			
Routine	1,306	134,681	54.3%
Transfer to Short-Term Hospital	39	4,022	1.6%
Skilled Nursing Facility (SNF), Intermediate Care Facility (ICF)	245	25,266	10.2%
Home Health	769	79,303	32.0%
Against Medical Advice	11	1,134	0.5%
Died	33	3,403	1.4%
Discharge Destination Unknown	1	103	0.04%

Table 2. Mean inpatient hospital LOS associated with OPAT AEs

Adverse Event	ICD-10 Code	Mean LOS (days, 95% CI)	
C. difficile	A04.72	4.30 (3.78–4.82)	
Blockage	T83.091A	2.57 (1.17–3.97)	
Phlebitis	T82.868A	4.51 (3.84–5.17)	
IV Complications	T80	6.43 (5.87–6.98)	
Thrombosis	182.409, 126.9	2.95 (2.81–3.10)	
Central Line–Associated Bloodstream Infection	T80.211A	7.04 (6.39–7.70)	

Note: CI is confidence interval. LL is lower limit. UL is upper limit.

Figure 1. Inpatient charges and estimated costs related to OPAT AEs, 2020

Figure 2. ED activity related to complications following infusions or therapeutic injections, 2016-2020*

Summary and Conclusions

- Viable oral antibiotic treatment options in the community setting are limited.
- Patients will require additional OPAT services as AMR rates continue to escalate.
- OPAT services are not without added risks of complications, as many patients will require acute care services.
- These services will increase health care expenditures as seen with IP hospital LOS ranging from 2.57 days to
- The median cost for an OPAT AE was \$8,852. These costs may be minimized by the addition of new oral antibiotic treatments that overcome AMR, thus improving patient outcomes.

References

- 1. Jernigan JA, Hatfield KM, Wolford H, et al. N Engl J Med. 2020 Apr 2;382(14):1309-1319.
- 2. Tamma PD, Aitken SL, Bonomo RA, et al. Clin Infect Dis. 2022 Aug 25;75(2):187-212.
- 3. Tamma PD, Aitken SL, Bonomo RA, et al. Clin Infect Dis. 2022 Jul 6;74(12):2089-2114. 4. Underwood J, Marks M, Collins S, et al. J Antimicrob Chemother. 2019 Mar 1;74(3):787-790.
- 5. Allison GM, Muldoon EG, Kent DM, et al. Clin Infect Dis. 2014 Mar;58(6):812-9.

