Effect of tebipenem on the normal gut microbiota of healthy adult population

Tsegaye Sewunet, Mohammad Razavi, Angela Camporeale, Staffan Rosenborg, Michael Nowak, David Melnick, Leanne Gasink, Paul Eckburg, Ian Critchley, Carl Erik Nord, Christian Giske

Tsegaye Sewunet (PhD)
Postdoc, Christian Giske’s group
Division of Clinical Microbiology
Department of Laboratory Medicine,
Karolinska Institute, Stockholm, Sweden
The study was funded by Spero Therapeutics
- Michael Nowak, David Melnick and Ian Critchley are all employees of Spero Therapeutics
- Paul Eckburg and Leanne Gasink are consultants of Spero Therapeutics

- Spero Therapeutics has not been involved directly or indirectly in activities related to investigation and analysis of the data.
Introduction

- Oral tebipenem pivoxil hydrobromide is an investigational carbapenem antibiotic currently in development for the treatment of cUTI, including acute pyelonephritis

- Broad-spectrum antimicrobials, including carbapenems, may impair the gut microbiota with alterations dependent not only on anti-anaerobic properties but also parameters with marked interindividual variability

- Perturbation of gut microbiome may be associated with several health complications and diminished colonization resistance
 - Compositions
 - Load of each taxa
 - Relative abundance
 - Selection of resistance

- Evaluation of collateral damage is important
Introduction

- A greater understanding of how antibiotics alter the composition and function of the gut microbiome is of important clinical and societal utility
 - Extent of collateral damage on the gut microbiome
 - Rate of recovery to baseline microbiome composition after treatment

- We aimed to assess the potential ecological effects of oral tebipenem pivoxil hydrobromide on the gut microbiome of adult healthy population compared to amoxicillin-clavulanic acid (ClinicalTrials.gov Identifier: NCT04376554)

- Hypothesis:
 - The impact of oral tebipenem pivoxil hydrobromide on pertubations of the gut microbiome is comparable to that of amoxicillin-clavulanic acid.

- Quantitative culture and 16S rDNA metagenomics were used
Methods

- Phase 1, single-center, open-label, randomized, parallel-group, active-control study

- Healthy study subjects were randomized (1:1) to a treatment arm:
 - Oral tebipenem pivoxil hydrobromide 600mg q8h
 - Oral amoxicillin/clavulanate 500/125mg q8h

Flowchart:

```
Screened (N=49)  
  -----------------  
  Randomized (N=30)  
  |                |                |
  |  Amoxicillin-clavulanate (N=15) |  Tebipenem pivoxil hydrobromide (N=30) |
  |                |                |
  | Treatment      | Treatment       |
  | Completed (N=14)| Completed (N=15)|
  | Withdrew (N=1) | Withdrew (N=0) |
  |                |                |
  | Follow-Up      | Follow-Up       |
  | Entered (N=15) | Entered (N=15) |
  | Completed (N=15)| Completed (N=15) |

Failed screening (N=19)
```
Methods

Study Population, Sample Collection, and Lab analysis

A. Randomized - two group
 - Study group
 - Healthy Individual
 - treated with Tebipenem
 - Control group
 - treated with Amoxicillin-clavulanic acid

B. Data and sample collection
 - Fecal samples were collected at 9 sampling points:
 - Baseline, Day 3, Day 4, Day 7, Day 10, Day 14, Day 21,
 - Day 90, Day 180

C. Analysis
 - Phenotypic microbiota analysis
 - 16S rRNA metagenomic analysis
Results

- More pronounced reductions in CFU observed in tebipenem group as compared to AMOX/CLAV for:
 - **Enterobacterales**
 - Day4 (TukeyHSD; p-value=0.000433),
 - Day7 (TukeyHSD; p-value=0.000509)
 - Day10 (TukeyHSD; p-value=0.00902)
 - **Enterococcus spp.**
 - Day4 (TukeyHSD; p-value=0.0247),
 - Day7 (TukeyHSD; p-value=0.00027),
 - Day10 (TukeyHSD; p-value=0.00436), and
 - Day14 (TukeyHSD; p-value=0.00305)

- All measured genera showed recovery after 14 days in both groups (CFU counts reverted to baseline after treatment)

- Variable impact on *Bacteroides*, *Lactobacillus*, and *Bifidobacterium* (not significant)
Phenotypic microbiome: clinically important taxa

Tebipenem pivoxil hydrobromide group

Amoxicillin-clavulanate group

Enterobacterales

Enterococcus
Phenotypic microbiome: clinically important taxa

Bacteroides
- Tebipenem
- Amoxicillin-clavulanate

Bifidobacterium
- Tebipenem
- Amoxicillin-clavulanate

Lactobacillus
- Tebipenem
- Amoxicillin-clavulanate

Candida
- Tebipenem
- Amoxicillin-clavulanate
16S rDNA metagenomics

Tebipenem group
Between Day 1 and:
- Day 7 (TukeyHSD; p-value= 0.00489)
- Day 10 (TukeyHSD; p-value= 0.00123)
- Day 14 (TukeyHSD; p-value= 0.0205)

Amoxicillin-clavulanic acid group
Between Day 1 and:
- Day 7 (TukeyHSD; p-value=0.0522)

Tebipenem group
Between Day 1 and:
- Day4 (TukeyHSD; p-value=1.37E-6),
- Day7 (TukeyHSD; p-value=6.26E-4) and
- Day10 (TukeyHSD; p-value=3.83E-7).

Amoxicillin-clavulanic acid group
No significant difference
Differentially abundant taxa (16S rDNA)

Enterobacterales

Enterococcus

- Amoxicillin-clavulanate
- Tebipenem pivoxil hydrobromide
Differentially abundant taxa (16S rDNA)

Bacteroides

Clostridiales

Lactobacillus

Bifidobacterium

- Amoxicillin-clavulanate
- Tebipenem pivoxil hydrobromide
Recovery of the microbiome

- Beta-diversity analysis shows microbiome significantly impacted in both treatment groups with most subjects undergoing recovery after treatment.
- OTU composition of many samples belonging to the beginning of treatment were similar to follow-up samples (i.e., Day 21, Day 90, Day 180).

Principal coordinate analysis (PCoA) plot based on Bray-Curtis measure where each point represents a sample.
Selection or emergence of resistance

- Selection of *Candida spp.* relatively higher in tebipenem group
 - 40.0% in the tebipenem group vs. 11.8% in the amoxicillin-clavulanic acid group

- Selection of *Clostridioides difficile* was low
 - 2.2% in the tebipenem group vs. 0% in the amoxicillin-clavulanic acid group

- Selection of resistant strains of *Enterobacterales* was low in both treatment groups:
 - Cefotaxime resistance - 3.7% for tebipenem group vs. 17.0% for amoxicillin-clavulanate group
 - Meropenem resistance - 5.4% for tebipenem group vs. 1.48% for amoxicillin-clavulanate group
 - Tebipenem resistance - 4.4% for tebipenem group vs. 12.5% for amoxicillin-clavulanate group
 - Very low emergence of decreased susceptibility to tebipenem observed in tebipenem group (*E. coli*, n=1 and *Enterobacter bugandensis*, n=1)
Conclusion

- Effects of tebipenem were more pronounced against *Enterobacterales* and *Enterococcus* spp. compared to amoxicillin/clavulanate but reverted to baseline after 14-21 days
 - Quantitative culture showed more clear recovery compared to the 16S rDNA method

- No apparent impact on *Bifidobacterium* spp. or *Lactobacillus* spp. between treatment groups with minimal difference observed in *Bacteroides* spp.
 - Microbiome balance either unchanged or recovered

- Emergence of resistance low
 - Colonization with MDR pathogens during treatment period (diminished colonization resistance) less likely with intended outpatient use
 - 16S rDNA method provide no information regarding emergence of resistance
Acknowledgements

We acknowledge:

- Study participants for their willingness to participate in the study and adherence to the protocol
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Clinical Microbiology Laboratory, University Hospital, Solna, Stockholm, Sweden
- Substrate Department, University Hospital, Solna, Stockholm, Sweden
- Clinical Pharmacology Trial Unit (CPTU), Karolinska University Hospital, Stockholm, Sweden
 - Peter Johansson and Karin Nordin