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Abstract
This paper explores challenges and opportunities within the 
software testing space that rely on artificial intelligence — 
specifically machine-learning algorithms.

What is Artificial Intelligence?
Artificial Intelligence (or AI) is a loose term for any 
computer system that mimics human thinking. For decades, 
technologists have been leveraging AI for things like logical 
reasoning, pattern recognition and proximity calculation.

Rule-based AI
AI originated as rule-based artificial intelligence — where a 
computer is fed logical reasoning rules and follows them 
to track down answers to complex questions. Rule-based 
AI can quickly achieve things that are impossible for the 
human brain, but it is still deterministic and dependent on 
the rules you feed it. 

The Rise of Machine Learning
Next, the emergence of big data resulted in the development 
of another type of AI: machine learning (or ML). While the 
mathematical models for ML had already been around for 
decades, the technology only became functional once the 
availability of data and computing power caught up. 

In a nutshell, ML is a software guided by labeled data 
instead of logical reasoning rules. For example, ML can 
learn to identify anything from an image of a cat or a data 
record for a fraudulent bank transaction. The more cats 
and transactions the software sees, the better it gets at 
recognizing them.

Today, many innovative companies are harnessing the 
power of AI and ML to perform complex logical reasoning 
and make sense of their data. One key area of opportunity 
is in the realm of software testing.

Software Testing + AI
Software testing and artificial intelligence make an 
interesting pair. While test case design and test result 
analysis are still largely performed by humans, more and 
more businesses are turning to AI to save time and drive 
quality.

However, the connection between software testing and AI 
goes far deeper than simple use cases.  The discipline of 
software testing is based on the idea that the tester is able 
to know — or at least guess — the expected result of a test in 
advance. Typically, the specifications of the software being 
tested explain how it’s supposed to behave. The tester aims 
at finding a deviation between specified behavior and actual 
behavior.

When you throw AI into the mix, it mirrors human brain 
waves for better or worse. If AI is executing a task that 
would be easy for a human brain (image or text recognition), 
the tester’s job is simple and straightforward. But if the AI is 
doing something difficult for the human brain (pinpointing 
patterns in scientific data), the tester may need to 
reconstruct the AI’s logic to figure out the expected result. 
Such an effort may be impossible — or at least very slow.

While ML applications are trained with an initial data set, 
you need to re-train it with more information to improve the 
algorithm. Keep in mind — introducing new data may impact 
the way the algorithm treats the initial data set. What’s more, 
some ML algorithms are programmed to learn something 
new every time they are used. 

In each instance, the algorithm’s thinking ability is stochastic 
— it contains a fair amount of randomness. This means ML 
software isn’t fully deterministic like rule-based AI. Just like 
the human brain, it can be influenced by false data and fake 
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news. As a result, ML applications can learn to make wrong 
conclusions. 

And just like humans, ML applications can fall short in 
their efforts to explain how they came to their conclusion 
— making it a challenge to determine whether changes and 
improvements made the intelligence better or worse.

A System that Thinks Is Too 
Complex for the Human Mind
In many ways, attempting to reconstruct the logic of AI is 
like trying to understand how another person thinks. The 
outcome is clear. The input data is clear. But the process in 
between remains murky and mysterious. The algorithm is 
simply too complex to be followed and imitated by a human 
mind. In addition, AI learns every time it’s fed new data — 
which may change the output of subsequent runs. 

Let’s explore a real-life example: an AI algorithm that is fed 
information about a credit card transaction and determines 
how likely a transaction is a fraud. 

The input data may include the content and location of 
the transaction, the card number and the card holder’s 
transaction history. The algorithm has also likely been 
programmed to identify suspicious transactions and trained 
with a wealth of data to distinguish between fraudulent and 
legitimate transactions.

In this example, even the most advanced algorithm is 
unlikely to be 100% reliable. Why? Because human behavior 
is hard to predict — and identity thieves are often adept at 
replicating the buying patterns of the cardholder. 

To combat cybercrime, you can create a self-learning 
algorithm (known as unsupervised ML) or retrain the 
algorithm frequently. In an ideal world, the algorithm would 
expand its knowledge every time a proper transaction is 
processed. But in reality, ML algorithms often do a poor job 
of explaining how and why they arrived at their conclusion. 
An infamous example of this is Tay — an experimental 
Twitter bot launched by Microsoft in 2016. But unfortunately, 
Tay was quickly influenced by the wrong crowd:

The Seven Steps of Software 
Testing
Testing the functionality of a piece of software is a simple 
process — at least in principle. Here are the seven core 
steps: 

For instance, when testing a login screen, you can 
(usually) type in a username and a password and 
click an OK or Cancel button.

On the login screen, you only need username and 
password info.

Even the simplest applications include several 
action flows. A tester looks  at the normal flow as 
well as exceptional or abnormal flows. You may 
test the software by clicking OK without entering 
any username or password or you could check to 
see if it makes any difference whether you enter 
the password first and the username second.
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“Tay was an AI chatterbot that was 
originally released by Microsoft via 
Twitter on March 23, 2016. It caused 
subsequent controversy when the 
bot began to post inflammatory 
and offensive tweets through its 
Twitter account, causing Microsoft 
to shut down the service only 16 
hours after its launch. According 
to Microsoft, this was caused by 
trolls who “attacked” the service as 
the bot made replies based on its 
interactions with people on Twitter.

Figure out how to interact with the
software.1

2 Determine what data you need to 
successfully interact.

3 Plan a flow of user actions and related 
input data.



If you don’t decide the expected result in 
advance, you risk accepting erroneous behavior 
as “expected.” If you click OK without entering a 
username at all, the expected result is an error 
message and an opportunity to try again.

An error or defect is found if the expected and 
actual outcomes are different.

How Do You Determine Correct 
Behavior?
Number 4 is often the trickiest step. How does the tester 
know what should happen? 

A software specification may describe the correct behavior 
— or the tester might refer back to a previous version of 
the software that behaves correctly. While most testers 
understand how a login screen is supposed to behave, 
things could get dicey if you’re testing a more complex 
flow. 

Sometimes, the tester makes a guess about the correct 
behavior and assumes most users would follow the same 
line of thinking. This principle is known as exploratory 
testing.

Any source that defines the correct behavior of the system 
being tested is known as a “test oracle.”  When testing 
AI applications, a test oracle may be hard to track down. 
For instance, it is both tedious and difficult to construct 
credit card transactions and label them as fraudulent or 
non-fraudulent.

Designing Test Cases
Selecting, designing and maintaining test cases is a tester’s 
most important task. The test case design is always based 
on the existence of a test oracle that knows the expected 
outcome of the test case.

In our example of credit card fraud detection, there is no 
explicit definition of a fraudulent (or possibly fraudulent) 
transaction. Finding the right outcome is like investigating 
a crime scene: you must collect information, use small 
clues to build the big picture, make a verdict and estimate 
probability.

In most ML applications, the functional logic of a test case 
is simple. You feed it data and it spits out an answer: “The 
probability that this is an image of a cat is 94.2%.” The hard 
part is finding, creating and labeling an input data set that is 
representative enough: especially when the subject matter 
is more complex than cat identification.

The Pitfalls of Limited Testing
Testing ML software requires a large number of diverse, 
high-quality test cases. It is usually possible to have a 
limited set of cases (10 credit card transactions) that are 
known to be fraudulent and 10 that are known to be proper. 
Testing these 20 cases can give you confidence in the 
correct behavior of the software and helps detect whether 
a new version of the software is still working as expected.

Unfortunately, these limited tests tell you nothing about how 
the software has improved or if any new problems have 
reared their heads. Without a proper test oracle, crafting new 
tests can be tedious — if not impossible.
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4 Learn what is supposed to happen when
you execute the flow.

5 Execute the flow and record what
happened.

6 Compare what happened to what should
have happened.

7 Need to test again? Go back to step 3.



4 Ways to Construct Test Data 
for an ML System
There are at least four different approaches to assemble 
test data for a learning system: manually crafted test data, 
testing with real production data, combinatorial test data 
and AI-assisted test data design.

Manually Crafted Test Data
Let’s examine these approaches in the context of our credit 
card fraud detection example. In all likelihood, the test 
input data arrives in the form of transaction records and 
structured files (XML or JSON format). It may even contain 
natural language. A human can certainly construct such 
data and label it as proper or suspicious — but the effort 
may be extremely demanding and technical skills may be 
required.

Testing with Real Production 
Data
If real production data is available, testing with it can be 
a great choice. In our fraud detection example, this would 
mean taking real data from old transactions that have either 
been proven legitimate or fraudulent. However, this approach 
is illegal in many countries with laws and regulations that 
protect the privacy of personal and financial data.

 Combinatorial Test Data
For this approach, you divide the needed test data into 
separate parts ( transactions, card info, purchase locations, 
purchase history, etc.) and combine individual parts to 
generate large data sets. In addition, you could have a 
software generator add random data or randomly mutated 
data.

There’s just one problem with this approach: these ”data 
atoms” are rarely independent. Building test data by 
combining one person’s card transaction with someone 
else’s purchase history and a third individual’s card data 
might not result in a viable test case.

AI-assisted Test Data Design
Finally, with AI-assisted test data design, you use the beast 
to tame itself. 
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For this approach, you leverage an intelligent algorithm to 
process test data and results and generate new test data 
based on the old one. This is essentially the combinatorial 
approach on steroids. However, the more machine 
intelligence in the test data generation, the harder it is for a 
human to follow the applied logic. 

This mimics the concept of Generative Adversarial Networks 
where one algorithm tries to fake real data and the other tries 
to detect which data is genuine and which is false.

No matter which approach you choose, the basic challenges 
remain the same: how do you create enough diverse test 
data and label it reliably?

Dealing with Regression: Does 
My Software Still Work?
A software tester seeks answers to two big questions: 

When testing new versions of the same software, a tester 
looks at what has changed. There might be new functionality 
that has never been tested before or old functionality that 
used to be defective but has been fixed. The older software 
gets, the more important it is to make sure what worked 
yesterday still works the same way today. 

If the software has a large number of users, it may even be 
practical to leave old defects as-is and verify they’re still 
there. For example, you could have an environment-sensing 
device that reports certain temperatures as Fahrenheit 
due to a design error but uses Centigrade across all other 
functions. This error might be a nuisance, but if numerous 
people and applications already know about it and have 
worked around it, correcting it could break the behavioral 
assumptions and cause many applications to fail.

Regression testing ensures that the behavior of the software 
hasn’t changed unintentionally between subsequent 
versions. But with ML applications, regression testing 
features a new twist: how do you know if a change was 
intentional? 

1 Does the software do what is expected?

2 Does the software do something
unexpected?
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It’s common practice to use an older version of the software 
as a test oracle and compare how the behavior of a newer 
version differs. This is an effective strategy when the new 
software behaves the same way as the old — but it can’t help 
you out if the new version includes different functionality.

Let’s boomerang back to our credit card example one last 
time. 

Imagine that a new version of the software classifies a 
transaction as valid while the previous version classified 
it as possibly fraudulent. How do you know if this is an 
improvement or an error? You’ll most likely need to go deep 
into the test data and decision-making rules to make a 
judgement call. 

To make matters worse, the fact that the software made 
a false conclusion could mean that the algorithm is 
less accurate than before. You’ll have to consider how 
many transactions the new algorithm classified correctly 
compared to the old one — and how the cost of erroneously 
classified transactions changed.

Searching for a Recipe
There is no one-size-fits-all solution to a challenge as broad 
as testing AI software. However, all viable solutions have a 
few things in common.

Always test with your initial data set
If your application uses any kind of ML, it has been trained 
with an initial data set. This is your first test asset and in 

some cases may be the only reliable test data you have. 
Keep in mind — testing with the initial data set can only 
tell if your software can still do the things it was able to do 
when it was created. 

Accumulate test data continuously
At this point, you need more test data. For most AI 
applications, collecting enough data is a bigger challenge 
than figuring out the test case logic. Sometimes you can 
pick real data from production, in other cases it has to be 
engineered by the testing team. Sometimes your software 
may malfunction in production.

Any data the software can’t process correctly is potential 
input for future tests. If possible, use combinatorial 
techniques to generate more test data from existing sets. 
And take good care of the quality of your data! Accumulating 
any old data may make your test set large — but it isn’t likely 
to result in precise outcomes. 

Use many test oracles
Depending on what your software does, it may be very easy 
or very difficult to determine the expected outcome of each 
test. Can you manually label your test data? You’ll be fine. If 
that’s not possible, you’ll need to come up with a different 
plan. You may also have an opportunity to use several ML 
algorithms for the same data and compare their outputs. 
Sometimes, the best you can do is to rely on the earlier 
versions of the same software as the “source of truth.”

Compare subsequent test runs
Any change in test results between runs tells that your 
software has evolved. You may not be able to tell if the 
change was for better or worse — but you’ll notice that 
something has changed. Explainability is the Achilles’ heel 
of most AI applications, so be prepared for tedious digging. 
An application with built-in explainability will help to test 
and accelerate time-to-value.

Leverage AI and automation in testing
The world is full of marvelous testing tools that can 
automate many mundane software testing tasks. However, 
none of them are particularly well equipped for testing AI 
applications. You may need to complement commercial 
products with custom-built tools and scripts that generate 
suitable test data or automate the analysis of test results. 
Perhaps you can find a way to leverage AI to test AI.
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Artificial Intelligence Is Just 
Algorithms and Data
In many ways, AI is no different than any other software. It 
consists of programmatic algorithms and data that were 
applied to train those algorithms.

The key differences are in learning, randomness and 
explainability. Unlike traditional computing algorithms, AI’s 
behavior may change when it learns from new data. There 
is a random element in many AI algorithms — making them 
only partially deterministic. And finally, because of learning 
and randomness, their logic may be hard for a human being 
to reconstruct or explain.

These characteristics can make AI a challenge to test. 
While the traditional methods of software testing still apply 
for AI, the amount and quality of test data are much more 
important. 

Automating testing tasks can drive speed and efficiency 
since many aspects of AI testing are too tedious or 
overwhelming for the human mind. As the practice of using 
AI to test AI evolves, this discipline could open completely 
new avenues in software testing and will also likely be 
leveraged to test traditional software systems.
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