
+

Artificial Intelligence +
Software Testing:
How to Harness the Power

of Machine Learning

ROBOTIC
TESTING

Abstract
This paper explores challenges and opportunities within the
software testing space that rely on artificial intelligence —
specifically machine-learning algorithms.

What is Artificial Intelligence?
Artificial Intelligence (or AI) is a loose term for any
computer system that mimics human thinking. For decades,
technologists have been leveraging AI for things like logical
reasoning, pattern recognition and proximity calculation.

Rule-based AI
AI originated as rule-based artificial intelligence — where a
computer is fed logical reasoning rules and follows them
to track down answers to complex questions. Rule-based
AI can quickly achieve things that are impossible for the
human brain, but it is still deterministic and dependent on
the rules you feed it.

The Rise of Machine Learning
Next, the emergence of big data resulted in the development
of another type of AI: machine learning (or ML). While the
mathematical models for ML had already been around for
decades, the technology only became functional once the
availability of data and computing power caught up.

In a nutshell, ML is a software guided by labeled data
instead of logical reasoning rules. For example, ML can
learn to identify anything from an image of a cat or a data
record for a fraudulent bank transaction. The more cats
and transactions the software sees, the better it gets at
recognizing them.

Today, many innovative companies are harnessing the
power of AI and ML to perform complex logical reasoning
and make sense of their data. One key area of opportunity
is in the realm of software testing.

Software Testing + AI
Software testing and artificial intelligence make an
interesting pair. While test case design and test result
analysis are still largely performed by humans, more and
more businesses are turning to AI to save time and drive
quality.

However, the connection between software testing and AI
goes far deeper than simple use cases. The discipline of
software testing is based on the idea that the tester is able
to know — or at least guess — the expected result of a test in
advance. Typically, the specifications of the software being
tested explain how it’s supposed to behave. The tester aims
at finding a deviation between specified behavior and actual
behavior.

When you throw AI into the mix, it mirrors human brain
waves for better or worse. If AI is executing a task that
would be easy for a human brain (image or text recognition),
the tester’s job is simple and straightforward. But if the AI is
doing something difficult for the human brain (pinpointing
patterns in scientific data), the tester may need to
reconstruct the AI’s logic to figure out the expected result.
Such an effort may be impossible — or at least very slow.

While ML applications are trained with an initial data set,
you need to re-train it with more information to improve the
algorithm. Keep in mind — introducing new data may impact
the way the algorithm treats the initial data set. What’s more,
some ML algorithms are programmed to learn something
new every time they are used.

In each instance, the algorithm’s thinking ability is stochastic
— it contains a fair amount of randomness. This means ML
software isn’t fully deterministic like rule-based AI. Just like
the human brain, it can be influenced by false data and fake

© 2021 Copado | #1 Native DevOps Solution for Salesforce

news. As a result, ML applications can learn to make wrong
conclusions.

And just like humans, ML applications can fall short in
their efforts to explain how they came to their conclusion
— making it a challenge to determine whether changes and
improvements made the intelligence better or worse.

A System that Thinks Is Too
Complex for the Human Mind
In many ways, attempting to reconstruct the logic of AI is
like trying to understand how another person thinks. The
outcome is clear. The input data is clear. But the process in
between remains murky and mysterious. The algorithm is
simply too complex to be followed and imitated by a human
mind. In addition, AI learns every time it’s fed new data —
which may change the output of subsequent runs.

Let’s explore a real-life example: an AI algorithm that is fed
information about a credit card transaction and determines
how likely a transaction is a fraud.

The input data may include the content and location of
the transaction, the card number and the card holder’s
transaction history. The algorithm has also likely been
programmed to identify suspicious transactions and trained
with a wealth of data to distinguish between fraudulent and
legitimate transactions.

In this example, even the most advanced algorithm is
unlikely to be 100% reliable. Why? Because human behavior
is hard to predict — and identity thieves are often adept at
replicating the buying patterns of the cardholder.

To combat cybercrime, you can create a self-learning
algorithm (known as unsupervised ML) or retrain the
algorithm frequently. In an ideal world, the algorithm would
expand its knowledge every time a proper transaction is
processed. But in reality, ML algorithms often do a poor job
of explaining how and why they arrived at their conclusion.
An infamous example of this is Tay — an experimental
Twitter bot launched by Microsoft in 2016. But unfortunately,
Tay was quickly influenced by the wrong crowd:

The Seven Steps of Software
Testing
Testing the functionality of a piece of software is a simple
process — at least in principle. Here are the seven core
steps:

For instance, when testing a login screen, you can
(usually) type in a username and a password and
click an OK or Cancel button.

On the login screen, you only need username and
password info.

Even the simplest applications include several
action flows. A tester looks at the normal flow as
well as exceptional or abnormal flows. You may
test the software by clicking OK without entering
any username or password or you could check to
see if it makes any difference whether you enter
the password first and the username second.

© 2021 Copado | #1 Native DevOps Solution for Salesforce

“Tay was an AI chatterbot that was
originally released by Microsoft via
Twitter on March 23, 2016. It caused
subsequent controversy when the
bot began to post inflammatory
and offensive tweets through its
Twitter account, causing Microsoft
to shut down the service only 16
hours after its launch. According
to Microsoft, this was caused by
trolls who “attacked” the service as
the bot made replies based on its
interactions with people on Twitter.

Figure out how to interact with the
software.1

2 Determine what data you need to
successfully interact.

3 Plan a flow of user actions and related
input data.

If you don’t decide the expected result in
advance, you risk accepting erroneous behavior
as “expected.” If you click OK without entering a
username at all, the expected result is an error
message and an opportunity to try again.

An error or defect is found if the expected and
actual outcomes are different.

How Do You Determine Correct
Behavior?
Number 4 is often the trickiest step. How does the tester
know what should happen?

A software specification may describe the correct behavior
— or the tester might refer back to a previous version of
the software that behaves correctly. While most testers
understand how a login screen is supposed to behave,
things could get dicey if you’re testing a more complex
flow.

Sometimes, the tester makes a guess about the correct
behavior and assumes most users would follow the same
line of thinking. This principle is known as exploratory
testing.

Any source that defines the correct behavior of the system
being tested is known as a “test oracle.” When testing
AI applications, a test oracle may be hard to track down.
For instance, it is both tedious and difficult to construct
credit card transactions and label them as fraudulent or
non-fraudulent.

Designing Test Cases
Selecting, designing and maintaining test cases is a tester’s
most important task. The test case design is always based
on the existence of a test oracle that knows the expected
outcome of the test case.

In our example of credit card fraud detection, there is no
explicit definition of a fraudulent (or possibly fraudulent)
transaction. Finding the right outcome is like investigating
a crime scene: you must collect information, use small
clues to build the big picture, make a verdict and estimate
probability.

In most ML applications, the functional logic of a test case
is simple. You feed it data and it spits out an answer: “The
probability that this is an image of a cat is 94.2%.” The hard
part is finding, creating and labeling an input data set that is
representative enough: especially when the subject matter
is more complex than cat identification.

The Pitfalls of Limited Testing
Testing ML software requires a large number of diverse,
high-quality test cases. It is usually possible to have a
limited set of cases (10 credit card transactions) that are
known to be fraudulent and 10 that are known to be proper.
Testing these 20 cases can give you confidence in the
correct behavior of the software and helps detect whether
a new version of the software is still working as expected.

Unfortunately, these limited tests tell you nothing about how
the software has improved or if any new problems have
reared their heads. Without a proper test oracle, crafting new
tests can be tedious — if not impossible.

© 2021 Copado | #1 Native DevOps Solution for Salesforce

4 Learn what is supposed to happen when
you execute the flow.

5 Execute the flow and record what
happened.

6 Compare what happened to what should
have happened.

7 Need to test again? Go back to step 3.

4 Ways to Construct Test Data
for an ML System
There are at least four different approaches to assemble
test data for a learning system: manually crafted test data,
testing with real production data, combinatorial test data
and AI-assisted test data design.

Manually Crafted Test Data
Let’s examine these approaches in the context of our credit
card fraud detection example. In all likelihood, the test
input data arrives in the form of transaction records and
structured files (XML or JSON format). It may even contain
natural language. A human can certainly construct such
data and label it as proper or suspicious — but the effort
may be extremely demanding and technical skills may be
required.

Testing with Real Production
Data
If real production data is available, testing with it can be
a great choice. In our fraud detection example, this would
mean taking real data from old transactions that have either
been proven legitimate or fraudulent. However, this approach
is illegal in many countries with laws and regulations that
protect the privacy of personal and financial data.

 Combinatorial Test Data
For this approach, you divide the needed test data into
separate parts (transactions, card info, purchase locations,
purchase history, etc.) and combine individual parts to
generate large data sets. In addition, you could have a
software generator add random data or randomly mutated
data.

There’s just one problem with this approach: these ”data
atoms” are rarely independent. Building test data by
combining one person’s card transaction with someone
else’s purchase history and a third individual’s card data
might not result in a viable test case.

AI-assisted Test Data Design
Finally, with AI-assisted test data design, you use the beast
to tame itself.

© 2021 Copado | #1 Native DevOps Solution for Salesforce

For this approach, you leverage an intelligent algorithm to
process test data and results and generate new test data
based on the old one. This is essentially the combinatorial
approach on steroids. However, the more machine
intelligence in the test data generation, the harder it is for a
human to follow the applied logic.

This mimics the concept of Generative Adversarial Networks
where one algorithm tries to fake real data and the other tries
to detect which data is genuine and which is false.

No matter which approach you choose, the basic challenges
remain the same: how do you create enough diverse test
data and label it reliably?

Dealing with Regression: Does
My Software Still Work?
A software tester seeks answers to two big questions:

When testing new versions of the same software, a tester
looks at what has changed. There might be new functionality
that has never been tested before or old functionality that
used to be defective but has been fixed. The older software
gets, the more important it is to make sure what worked
yesterday still works the same way today.

If the software has a large number of users, it may even be
practical to leave old defects as-is and verify they’re still
there. For example, you could have an environment-sensing
device that reports certain temperatures as Fahrenheit
due to a design error but uses Centigrade across all other
functions. This error might be a nuisance, but if numerous
people and applications already know about it and have
worked around it, correcting it could break the behavioral
assumptions and cause many applications to fail.

Regression testing ensures that the behavior of the software
hasn’t changed unintentionally between subsequent
versions. But with ML applications, regression testing
features a new twist: how do you know if a change was
intentional?

1 Does the software do what is expected?

2 Does the software do something
unexpected?

© 2021 Copado | #1 Native DevOps Solution for Salesforce

It’s common practice to use an older version of the software
as a test oracle and compare how the behavior of a newer
version differs. This is an effective strategy when the new
software behaves the same way as the old — but it can’t help
you out if the new version includes different functionality.

Let’s boomerang back to our credit card example one last
time.

Imagine that a new version of the software classifies a
transaction as valid while the previous version classified
it as possibly fraudulent. How do you know if this is an
improvement or an error? You’ll most likely need to go deep
into the test data and decision-making rules to make a
judgement call.

To make matters worse, the fact that the software made
a false conclusion could mean that the algorithm is
less accurate than before. You’ll have to consider how
many transactions the new algorithm classified correctly
compared to the old one — and how the cost of erroneously
classified transactions changed.

Searching for a Recipe
There is no one-size-fits-all solution to a challenge as broad
as testing AI software. However, all viable solutions have a
few things in common.

Always test with your initial data set
If your application uses any kind of ML, it has been trained
with an initial data set. This is your first test asset and in

some cases may be the only reliable test data you have.
Keep in mind — testing with the initial data set can only
tell if your software can still do the things it was able to do
when it was created.

Accumulate test data continuously
At this point, you need more test data. For most AI
applications, collecting enough data is a bigger challenge
than figuring out the test case logic. Sometimes you can
pick real data from production, in other cases it has to be
engineered by the testing team. Sometimes your software
may malfunction in production.

Any data the software can’t process correctly is potential
input for future tests. If possible, use combinatorial
techniques to generate more test data from existing sets.
And take good care of the quality of your data! Accumulating
any old data may make your test set large — but it isn’t likely
to result in precise outcomes.

Use many test oracles
Depending on what your software does, it may be very easy
or very difficult to determine the expected outcome of each
test. Can you manually label your test data? You’ll be fine. If
that’s not possible, you’ll need to come up with a different
plan. You may also have an opportunity to use several ML
algorithms for the same data and compare their outputs.
Sometimes, the best you can do is to rely on the earlier
versions of the same software as the “source of truth.”

Compare subsequent test runs
Any change in test results between runs tells that your
software has evolved. You may not be able to tell if the
change was for better or worse — but you’ll notice that
something has changed. Explainability is the Achilles’ heel
of most AI applications, so be prepared for tedious digging.
An application with built-in explainability will help to test
and accelerate time-to-value.

Leverage AI and automation in testing
The world is full of marvelous testing tools that can
automate many mundane software testing tasks. However,
none of them are particularly well equipped for testing AI
applications. You may need to complement commercial
products with custom-built tools and scripts that generate
suitable test data or automate the analysis of test results.
Perhaps you can find a way to leverage AI to test AI.

© 2021 Copado | #1 Native DevOps Solution for Salesforce

Artificial Intelligence Is Just
Algorithms and Data
In many ways, AI is no different than any other software. It
consists of programmatic algorithms and data that were
applied to train those algorithms.

The key differences are in learning, randomness and
explainability. Unlike traditional computing algorithms, AI’s
behavior may change when it learns from new data. There
is a random element in many AI algorithms — making them
only partially deterministic. And finally, because of learning
and randomness, their logic may be hard for a human being
to reconstruct or explain.

These characteristics can make AI a challenge to test.
While the traditional methods of software testing still apply
for AI, the amount and quality of test data are much more
important.

Automating testing tasks can drive speed and efficiency
since many aspects of AI testing are too tedious or
overwhelming for the human mind. As the practice of using
AI to test AI evolves, this discipline could open completely
new avenues in software testing and will also likely be
leveraged to test traditional software systems.

G E T A D E M O

https://www.copado.com/demo/

