¢l SPEARBIT

Aera Security Review

Auditors
Gerard Persoon, Lead Security Researcher
D-Nice, Lead Security Researcher
Matt Solomon, Security Researcher
Pashov Krum, Associate Security Researcher

Report prepared by: Pablo Misirov

September 22, 2023

Contents

1 About Spearbit

2
3

Introduction

Risk classification

3.1
3.2
3.3

Impact
Likelihood e
Action required for severity levels

Executive Summary

Findings

5.1

5.2

5.3

High Risk
5.1.1 Funds of negligent owner can be accessed by guardian
Medium Risk e e
5.2.1 The guardian can use his own MEV opportunities
5.2.2 Multiple-token-addresses can circumventchecks
5.2.3 Beware of CREATE2 dangers with replaceable contracts possible via arbitrary factory
5.2.4 Guardian can rapidly drain 2 * maxDailyExecutionLoss (%) * vaultValue
5.2.5 Numeraire tokens with low decimals can cause inaccurate pricing of other tokens
5.2.6 Guardians can artificially increase accrued feesforfree
5.2.7 try/catch statement may be manipulated to force usage of stale prices
5.2.8 Using Chainlink price feeds on some L2s requires a sequencercheck
5.2.9 Chainlink price feed oracle stalenessisnotchecked
5.2.10 Removal of assets in the registry canbe DOSed L.
5.2.11 Fees may never acCcrue in SOMe SCEeNArIOS« v v v v v v v i e e e e e e e
5.2.12 finalize may revertin SOMe SCeNArios« o v v v i it e
5.2.13 Malicious Tokens, Oracles and erc4626 could undo ExecutionLoss checks
5.2.14 Owner can circumvent _checkReservedFees() inexecute()
5.2.15 Last resort function execute() couldfail oo
5.2.16 Life cycleof hooks contracts
5.2.17 Lack of assetRegistry.custody check upon being set can lead to invalid vault values and
permanentlossoffunds e
5.2.18 Lack of custody address check in setHooks function can lead to most functions reverting
while unpaused, until properly resethook o
5.2.19 Ordering of _reserveFees() L o i i it i e e
5.2.20 Disable renounceOwnership() o ittt e e
Low Risk
5.3.1 Precision loss when computing custody.value()
5.3.2 execute function should have nonReentrantguard
5.3.3 Disallow execute and submit operations targeting vaultitself
5.3.4 Loop removeAsset() compares asset toitself
5.3.5 Use msg.sender as opposed to owner () in methods that have an onlyOwner modifier
5.3.6 _getSpotPricesAndUnits() can be simplifiedand made safer
5.3.7 holdings() and value() can be called while calls are being executed
5.3.8 Precision loss when computing newMultiplier o o 0t
5.3.9 _value may revert for non-conforming ERC-4626tokens
5.3.10 Add stronger validation on oracle addresses
5.3.11 Native tokens could be temporarily inaccessible L.
5.3.12 Contracts can't rescue mistakenly sent ERC20 tokensorETH
5.3.13 Add a stronger than just a zero address check forweth
5.3.14 Function submit () doesn't have whenHooksSet
5.3.15 In edge case resume () might be inaccessible L.
5.3.16 Access to inactive hooks contracts
5.3.17 Owner can manipulate hooks

5.4

5.5

5.3.18 The constructor of AeraVaultV2 usesoldvalueof owner 31

Gas Optimization L e 32
5.4.1 Redundant unavailableFee variable within claimscope 32
5.4.2 Compiler settings may be changed to reduce bytecode size andgasusage 33
5.4.3 Possibility for unchecked block optimizations L. 33
5.4.4 Redundant Pausable modifiers 34
5.4.5 Redundant check that WETH isnotthezeroaddress 35
5.4.6 Move check after for looptosavegas 35
5.4.7 Function afterSubmit () does storage writes that are not always necessary 36
5.4.8 Expensive functions _reserveFees() and value() called both but are very similar 36
5.4.9 Storing _beforeValue and _beforeBalance is relative expensive 37
5.4.10 maxDailyExecutionLoss_ can be immutable 38
5.4.11 Changing user-defined type TargetSighash to be based off bytes32 is more suited and
SAVES JASt e e e e e e e e e e e e 39
5.4.12 Saving a vault's description to storage canbe expensive 40
5.4.13 Cache variables in immutable storage whenever possible 40
5414 SkipOtransfers L e 41
5.4.15 Use uncheckedinforloop e 41
5.4.16 More efficient duplicate check in deposit() and withdraw() 42
5.4.17 Use EnumerableSet and EnumerableMap for _assets. 43
Informational L e 45
5.5.1 Atomic deployments can simplify instance setup and reducerisk 45
5.5.2 The numberof daysisn'talways 365 46
5.5.3 Explicitly include inherited constructors for improved readability 46
5.5.4 Comments for _checkUnderlyingAsset () could be more detailed 47
5.5.5 AeraVaultAssetRegistry use different ways to track similartokens 47
5.5.6 Detectfailingoracles 48
5.5.7 Avoid name collision by renaming alocalvariable 49
5.5.8 Vault should revert when there is 0 availableFeetoclaim. 49
5.5.9 Customerrornameismisguiding 49
5.5.10 Set index local variable to 0 for explicitness and readability 50
5.5.11 If statement in _getHoldings () can be made morereadable. 50
5.5.12 Prefer ranged bound checks over exactforsafety, 51
5.5.13 Consider safer declarations of variables withinloop 51
5.5.14 Typosincode comments e e e e 52
5.5.15 Unnecessary initialization of lastFeeCheckpoint 52
5.5.16 Missing validation in addTargetSighash and removeTargetSighash 52
5.5.17 Inconsistent interfaces for specifying target addresses and selectors 53
5.5.18 Local variable names shadow state variablenames, 53
5.5.19 Beware of ERC4626 inflation attack 54
5.5.20 Result of function value () not 100% accurate 54
5.5.21 Emit events in all state-changingmethods L. 54
5.5.22 Emit all sensible state-changing datainevents 55
5.5.23 Inherent limits of submit () L e 56
5.5.24 Index event parameters to simplify off-chain logqueries 57
5.5.25 On different chains weth is not the wrapped native tokenname 57
5.5.26 Unused code can be removed and interfaces can be simplified 57
5.5.27 Comment in finalize() could be more detailed, 58
5.5.28 Ordering of _checkReservedFees() o i i i i ittt et e e 58
5.5.29 Comments for _transferOwnershipnotaccurate. 59
5.5.30 Separationofroles 60
55.31 UseonetermforVault e 62

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction
Aera is a treasury management protocol that attempts to address existing shortcomings with controlling treasury
funds. Aera supports:

» Robust Asset Selection No need to plan strategies. Just pick assets.

« Efficient Purchasing Remove bureaucracy from DAOs.

» Decentralized Active Management Market aware & tailored to your protocol.

Disclaimer: This security review does not guarantee against a hack. It is a snapshot in time of aera-contracts-v2
according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

» High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

* Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

» Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood
 High - almost certain to happen, easy to perform, or not easy but highly incentivized
» Medium - only conditionally possible or incentivized, but still relatively likely

* Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels
+ Critical - Must fix as soon as possible (if already deployed)
* High - Must fix (before deployment if not already deployed)
* Medium - Should fix

* Low - Could fix

https://spearbit.com
https://github.com/GauntletNetworks/aera-contracts-v2/tree/2adbc057107333239d5cfa05a39006fe2703e02c

4 Executive Summary

Over the course of 10 days in total, Aera engaged with Spearbit to review the aera-contracts-v2 protocol. In this
period of time a total of 87 issues were found.

Summary
Project Name Aera
Repository aera-contracts-v2
Commit 2adbc0...e02¢c
Type of Project Financial Modeling, DeFi
Audit Timeline Aug 14 - Aug 25
Two week fix period Aug 25 - September 8

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 0 0 0

High Risk 1 1 0

Medium Risk 20 14 6

Low Risk 18 15 3

Gas Optimizations 17 14 3

Informational 31 26 5

Total 87 70 17

https://www.aera.finance
https://spearbit.com
https://github.com/GauntletNetworks/aera-contracts-v2
https://github.com/GauntletNetworks/aera-contracts-v2
https://github.com/GauntletNetworks/aera-contracts-v2/tree/2adbc057107333239d5cfa05a39006fe2703e02c

5 Findings
5.1 High Risk

5.1.1 Funds of negligent owner can be accessed by guardian
Severity: High Risk
Context: AeraVaultV2.sol#L169-L224

Description: Funds get added to the vault via deposit (). The owner has to set an allowance to be able to use
deposit (). Assume the owner () has accidentally set an allowance that is larger than is used for deposit (), for
example an unlimited allowance, for example for USDC. Assume there is also an allowlist entry so the guardian
can use safeTransferFrom for USDC. Note: with ERC4626 there are two additional functions that can use the
allowance: withdraw() and redeem().

In that situation the guardian can use a submit () call to transfer additional USDC from the owner, either to the
vault or to another address, for example his own address. So he can effectively steal from the owner. A variation
on this is that the guardian could frontrun the deposit () by the owner, transfering the USDC out and causing
deposit () to fail. This will likely be detected and contracts with the guardian will probably be used to resolve this.
But still its probably better to prevent this.

function deposit(AssetValue[] calldata amounts) ... {

// Interactions: transfer asset from owner to wvault.
assetValue.asset.safeTransferFrom(owner (), address(this), assetValue.value);

}

Recommendation: Consider disallowing the underlying selector of safeTransferFrom, which is transferFrom().
This could be done generally or more specific from the owner. Because the owner can change hooks, this check
needs to live in the vault, not in a hook, to ensure it's permanent. The last check requires checking a third parameter
from the call data. Similarly disallow withdraw() and redeem(). Note: that parameters of these functions are
ordered differently.

Another approach would be that the owner uses safeTransfer () to send assets to the vault. However then there
is no check that the tokens are on the allowed list, there is no event and there is no verification by hooks.

Aera: Fixed in PR 184.

Spearbit: Verified. If an owner change happens, the previous owner would be still vulnerable to this, so it'd be a
good idea to require them to reset any allowances prior to owner changes.

Aera: We will include this caveat in our documentation.

Spearbit: Acknowledged.

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L169-L224
https://github.com/GauntletNetworks/aera-contracts-v2/pull/184

5.2 Medium Risk
5.2.1 The guardian can use his own MEV opportunities

Severity: Medium Risk
Context: AeraVaultV2.sol#L411-L464

Description: When a guardian calls submit () he can create MEV opportunities. As the guardian knows about
this, he can make use of this by frontrunning / backrunning / sandwiching the trades, for example by doing the
opposite trade. If he use a smart contract to call submit (), it is straightforward to add transactions. He can also
do this by bundling transactions and sending them to flashbots, which is far more difficult to detect. The slippage
is limited by the DailyExecutionLoss checks in the hooks contract.

Recommendation: Monitor occurances of large slippage.
Aera: Aware, doesn't violate our current trust model and guardian/slippage will be monitored.

Spearbit: Acknowledged.

5.2.2 Multiple-token-addresses can circumvent checks

Severity: Medium Risk
Context: AeraVaultV2.sol#L169-L224, AeraVaultAssetRegistry.sol#L186-L226

Description: There are special tokens that can be address via separate addresses, see weird-erc20 multiple-
token-addresses. If both these addresses are added via addAsset (), they would both be accepted. Their balance
would be counted twice in value () and would thus artificially inflate the value () and would allow circumventing
DailyExecutionLoss checks from the hooks contract.

function addAsset(AssetInformation calldata asset) ... {

// Requirements: check that asset is mot already present.
if (asset.asset == _assets[i].asset) {
revert Aera__AssetIsAlreadyRegistered(i);

}

}

These special tokens will also circumvent the checks in deposit (), but because safeTransferFrom() will be done
twice, there is no additional risk.

function deposit(AssetValue[] calldata amounts)

for (uint256 i = 0; i < numAmounts;) {
assetValue = amounts[i];

for (uint256 j = 0; j < numAmounts;) {
// Requirements: check that no duplicate assets are provided.
if (i !'= j && assetValue.asset == amounts[j].asset) {
revert Aera__AssetIsDuplicated(assetValue.asset);

}

assetValue.asset.safeTransferFrom(owner(), address(this), assetValue.value);

}

Recommendation: Carefully select the tokens that are registered.

Aera: We have a diligent whitelisting process for assets.

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L411-L464
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L169-L224
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L186-L226
https://github.com/d-xo/weird-erc20#multiple-token-addresses
https://github.com/d-xo/weird-erc20#multiple-token-addresses

Spearbit: Acknowledged.

5.2.3 Beware of CREATE2 dangers with replaceable contracts possible via arbitrary factory

Severity: Medium Risk
Context: AeraVaultV2Factory.sol#L63-L71, AeraVaultV2Factory.sol#L118

Description: The AeraVaultV2 contract is designed to be deployed via AeraVaultV2Factory using CREATE2 for
purposes of deterministic deployment. This is a valid use case, however, there are additional risks potentially
exposed by CREATE2 such as the possibility of replaceable or metamorphic contracts by those able to deploy with
the factory, specifically when arbitrary code deployment is allowed. This condition is currently met.

Additionally, the deployed contract requires a SELFDESTRUCT, which may be obfuscated via DELEGATECALL or CALL-
CODE. This latter condition is not met in the current codebase. However, with the arbitrary code deployment, it may
be trivial for the owner to deploy transient contracts that contain the necessary SELFDESTRUCT, as the underlying
contents would be hidden within the creation code that most users may not be tracking. Most users would likely
consider deployments from the factory to be their litmus test for safety.

When all conditions are met, transient vault contracts could be deployed and replaced, even with completely
different bytecode while retaining their address. This could open up novel attacks, where vaults are deployed by
the factory, and users load those vaults up with assets, which contain all the expected security guarantees. Then,
if via some mechanic a SELFDESTRUCT occurs, the factory owner or anyone that can deploy via it could replace that
bytecode with any they wish, and simply claim any assets that were in the vault.

Recommendation: It would be ideal to eliminate the possibility of this completely, by separating out the arbi-
trary deployment logic from the AeravaultV2Factory. There should be a factory that only deploys AeraVaultVv2,
AeraVaultAssetRegistry and AeraVaultHooks contract, with the necessary creationCode derived there.

If the arbitrary deployer is required, it should be its own separate deployed contract, albeit anything from that
arbitrary factory could be transient without thorough on-chain analysis, which would be necessary for any contracts
deployed via it.

Aera: We are removing arbitrary deployment logic from the contracts. "Atomic deployments can simplify instance
setup and reduce risk".

Spearbit: Fixed.

5.2.4 Guardian can rapidly drain 2 * maxDailyExecutionLoss (%) * vaultValue

Severity: Medium Risk
Context: AeraVaultHooks.sol#L215-1.243

Description: Days are discrete intervals computed by floor(block.timestamp / 86400). This means a
guardian can quickly drain 2 * maxDailyExecutionLoss () * currentVaultValue by waiting until a block
where block.timestamp J 86400 >= (86400 - x), where x seconds is the chain's block time. This lets them
drain maxDailyExecutionLoss at that block, and drain it again at the next block when the new day starts.

The ability to do this in consecutive blocks gives the owner very little time to react and determine if this was
malicious, particularly on L2s and other chains where block times can be2 seconds or less. This is exacerbated by
multi-block MEV, if the guardian can propose consecutive blocks to guarantee the owner cannot react in time.

Assuming the guardian either directly or indirectly earns accrued fees, then at any given day transition a guardian
is economically incentivized to carry out this attack if 2 * maxDailyExecutionLoss (%) * currentVaultValue is
greater than the lifetime amount the guardian can expect to earn by being honest. Similarly, intra-day, a guardian
is incentivized to directly transfer out funds to themself if maxDailyExecutionLoss (%) * currentVaultValue is
greater than the expected amount of lifetime fees.

Recommendation: One mitigation is to accept this risk and set the maxDailyExecutionLoss and fee values such
that the guardian is not incentivized to carry out the attack. The lifetime amount of accrued fees can be estimated
by vaultLifespan * averageVaultValue * fee (%), where vaultLifespan is the average amount of time in
seconds the guardian will manage the vault, averagevVaultValue is an estimation of the average value during that

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L63-L71
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L118
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L215-L243

time, and fee is the fee in vault storage. Therefore, a guardian is not economically incentivized to steal funds
in this way when: 2 * maxDailyExecutionLoss (%) * maxExpectedValue < vaultLifespan * averageVault-
Value * fee (%), where maxExpectedValue is the estimated maximum vault value that may occur at any point
the vault's lifespan.

A related approach is to accept the risk and set maxDailyExecutionLoss to half of the true desired value. Both
this and the prior mitigation should include monitoring and documentation to make this attack easier to detect.

Another mitigation is to change how the maxDailyExecutionLoss threshold is tracked to something more robust.
One approach is to track the max value seen in the last 24 hours (maxValue), the timestamp at which the value
was seen (maxValueTimestamp), and comparing against that as follows:

* In the beforeSubmit hook, if block.timestamp - 24 hours > maxValueTimestamp, then the 24 hours win-
dow elapsed so we save maxValue = custody.value().

» Otherwise, if (custody.value() > maxValue), then save maxValue = custody.value().

» Then the afterSubmit hook compares the current custody.value () to maxValue without having to consider
days anymore.

» This approach also removes the need for the cumulativeDailyMultiplier and the if (currentDay ==
day) branch.

This maxValue approach helps because there's now no longer a well-defined point at which this attack can be
executed in consecutive blocks. A downside is that it's sensitive to intra-day price swings: If the guardian performs
an action when prices are high, a large maxValue is saved off. If prices crash, actions can no longer be taken
during that day since they all will result in the maxDailyExecutionLoss threshold being exceeded, simply due to
price changes.

An alternative approach is to use rolling windows based off a number of observations or a given duration, but this
may add a lot of complexity.

Lastly, instead of requiring 24 hours as the duration, it can be a constructor parameter in the hook contract. The
longer the duration used to compute losses, the less likely it is that a transition between them will satisfy 2 *
maxDailyExecutionLoss () * currentVaultValue < vaultLifespan * averageVaultValue * fee (%). As
durations increase, the 2 constant factor can effectively be dropped.

Aera: Given our trust model, the resolution we will take is to set a value that is appropriately small.

Spearbit: Acknowledged.

5.2.5 Numeraire tokens with low decimals can cause inaccurate pricing of other tokens

Severity: Medium Risk
Context: AeraVaultAssetRegistry.sol#L366-L370, AeraVaultAssetRegistry.sol#L382-L.386

Description: All prices are scaled to have the same number of decimals as the numeraire on L382-386. When
the numeraire has less decimals, prices are scaled down with price = price / (10 ** (oracleDecimals -
numeraireDecimals)). This causes precision loss in pricing tokens, which can result in accurate vault values.

The precision lost is most severe when dealing with low-decimal tokens. Below are two examples quantifying this
precision loss for a vault with GUSD (2 decimals) and WETH (18 decimals) and another vault with GUSD and
USDC (6 decimals), where GUSD is the numeraire in each case. The below data returned from Chainlink oracles
on 21-Aug-2023 is used for these examples.

oracle decimals price address

GUSD/ETH 18 599219798568989 0x96d15851CBac05aEe4EFD9eA3a3DDIBDEeC9fC28
GUSD/USD 8 100095281 0xa89f5d2365ce98B3cD68012b6f503ab1416245F¢
USDC/USD 8 99999700 0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818f6

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L366-L370
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L382-L386

With GUSD and WETH:
+ Take the inverse of the GUSD/ETH price to get the WETH price denominated in GUSD.

» The WETH/GUSD price therefore is 1e18 *x 2 / 599219798568989 = 1668836714654828989087. We can
verify this by dividing the result by 1e18 since it's an 18 decimal oracle, returning the expected USD price of
$1,668.8367146548.

+ Since numeraireDecimals < oracleDecimals is true (2 < 18), the price is scaled down by 10 ** (18-2).
This gives 1668836714654828989087 / 10*x16 = 166883, which is a price of $1,668.83

« Therefore the current WETH price is off from the "true" WETH price by $0.0067146548 (0.0004023554%),
which is likely negligible in most scenarios.

With GUSD and USDC:

» Chainlink does not have a direct GUSD/USDC oracle so computing that price must pass through USD,
meaning there would be a chainlink oracle wrapper that computes the USDC/GUSD price as:

— (UsSDC / USD) * (USD / GUSD)
— (USDC / USD) * (1e8 *x 2 / (GUSD / USD))
— 99999700 * 99904809

— 9990450928557300 which has 16 decimals. Sanity check: 9990450928557300 / 1el16 =
$0.9990450929 which checks out since both are stable coins pegged to $1.

+ This price is then scaled down to 2 decimals, giving 9990450928557300 / 10 *x (16-2) = 99, which is
$0.99.

« This is an error of $0.0090450929, or 0.905%, which is much more significant than the prior case.

This GUSD + USDC vault may be the worst realistic case, as they are two mainstream tokens with low decimals,
and that introduces ~1% error into the pricing. Because the error comes from truncating digits, the result is an
underestimation of value by 1%. In the worst case, where a vault with GUSD numeraire is primarily composed of
USDC, the vault value, and consequently accrued fees, can be 1% less than expected.

Recommendation: Instead of scaling all prices to the same number of decimals as the numeraire, scale all prices,
including the numeraire's, up to 18 decimals.

Aera: Fixed in PR 160 and PR 181.
Spearbit: Verified.

5.2.6 Guardians can artificially increase accrued fees for free
Severity: Medium Risk
Context: AeraVaultV2.sol#L411-L464

Description: All accounting in the submit () method is done using token.balance0f () calls, which allows the
guardian can artificially increase total accrued fees for free as follows:

1. Guardian transfers some token (such as USDC) directly to vault. This token must be in the asset registry and
the guardian must have the ability to transfer the token out of the vault.

2. Guardian calls submit with a single operation that transfers out the USDC sent in the previous step.

3. Within submit, fees are accrued in _reserveFees(). This uses the inflated USDC balance from step 1 to
compute the now-inflated vault value. This increases the values of fees[feeRecipient] and feesTotal
accordingly.

4. Next hooks.beforeSubmit () saves off this inflated value.

5. The operation to transfer out USDC is executed.

https://github.com/GauntletNetworks/aera-contracts-v2/pull/160
https://github.com/GauntletNetworks/aera-contracts-v2/pull/181
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L411-L464

6. As long as the amount of USDC sent in (and consequently removed) does not increase the vault value by
more than maxDailyExecutionLoss, the vault balance decrease is allowed. This allows the guardian to
increase accrued fees by maxDailyExecutionLoss per day.

Below is a test which demonstrates this that can be added to Submit.t.sol. Run forge test --match-test
test_submit_success_ -vvv to run both, which contains console.log statements showing that the fees accrued
are 10% higher in the attack test—maxDailyExecutionLoss is 10% in the test—for the above reason. This can be
repeated every day by modifying the number0fDays variable to increase fees.

pragma solidity 0.8.21;

import "../TestBaseAeraVaultV2.sol";
import {IERC20Metadata} from "Qopenzeppelin/IERC20Metadata.sol";
import {console2} from "forge-std/Test.sol";

contract SubmitTest is TestBaseAeraVaultV2 {
Operation[] public operations;

function setUp() public override {
super.setUp();

// Zero out all token balances for simplicity.
for (uint256 i = 0; i < assets.length; i++) {

deal (address(assets[i]), address(vault), 0);
}

// Give wvault 1000 USDC, where USDC is erc20Adssets[1].

uint8 decimals = IERC20Metadata(address(erc20Assets[1])).decimals();
uint256 vaultBalance = 1000 * 10 ** decimals;

deal (address(erc20Assets[1]), address(vault), vaultBalance);

function logState(string memory name) internal view {
console2.log("\n", name);
console2.log("fees accrued ", vault.fees(vault.feeRecipient()));
console2.log("Vault USDC balance ", erc20Assets[1] .balanceOf (address(vault)));
console2.log("Guardian USDC balance", erc20Assets[1].balance0f (_GUARDIAN));

function logProperties() internal view {
uint256 numERC20Assets = erc20Assets.length;
console2.log("PROPERTIES") ;
console2.log("numERC20Assets", numERC20Assets);
console2.log("maxDailyExecutionLoss", hooks.maxDailyExecutionLoss());
console2.log("fee", vault.fee());

function submitOperations() internal {
// Add target/selector for all operations.
for (uint256 i = 0; i < operatiomns.length; i++) {
hooks.addTargetSighash (
operations[i] .target, IERC20.transfer.selector
)3
}

// Ezecute the operation.
vm.expectEmit (true, true, true, true, address(vault));
emit Submitted(vault.owner(), operations);

vm. prank (_GUARDIAN) ;
vault.submit (operations);

10

function test_submit_success_baseline() public {
// --- Baseline ---
// Log properties of the test
logProperties();

// Submit the operations and log state before and after. Operation ts a no-op.
logState ("INITIAL CONDITIONS");
operations.push(
Operation({
target: address(erc20Assets[1]),
value: O,
data: abi.encodeWithSignature (
"transfer(address,uint256)", makeAddr("dummyRecipient"), O
)
b
)3

vm.warp(block.timestamp + 1 days); // Warp so fees accrue.

submitOperations();
logState ("FINAL CONDITIONS");

function test_submit_success_attack() public {
// --- Attack ---
// Log properties of the test
logProperties();

// Compute an amount we can send to the vault and then withdraw

// without triggering the “mazDailyEzecutionloss’ revert.

uint256 vaultBalance = erc20Assets[1].balanceO0f (address(vault));
uint256 amount = vaultBalance * hooks.maxDailyExecutionLoss() / 1el8;

// Give that amount to the guardian
deal (address(erc20Assets[1]), _GUARDIAN, amount);

// Send that amount out as the only operation
operations.push(
Operation({
target: address(erc20Assets[1]),
value: O,
data: abi.encodeWithSignature (
"transfer (address,uint256)", _GUARDIAN, amount
)
1))
)3

// Submit the operations. Immediately before submitting, simulate a transfer

// of “amount’ USDC directly to the wvault.

logState ("INITIAL CONDITIONS");

uint256 numberOfDays = 1;

for (uint256 i = 0; i < numberOfDays; i++) {
vm.warp(block.timestamp + 1 days); // Warp so fees accrue.
vm. prank (_GUARDIAN) ;
erc20Assets[1] .transfer(address(vault), amount);
submitOperations();

}

logState ("FINAL CONDITIONS");

11

Note that this is similar in nature to the guardian stealing maxDailyExecutionLoss of tokens directly from the
vault. However, this should be harder to detect as it's less direct and the total assets held by the vault remains
unchanged.

Recommendation: There are a few approaches to consider:

1. Use internal accounting instead of balance0f () calls. This means tokens transferred directly to the vault
are not counted towards the vault value immediately. The difference between the internal balance and true
balance can be used to determine the appropriate course of action. It may be desirable to only allow the
owner to sync mismatched balances.

2. The check can done off-chain by setting up monitoring to look for unexpected fee increases.

3. Prevent the guardian from directly transferring out tokens with a hook that verifies the destination addresses
for transfers and only allows some addresses. In practice this may be difficult to enforce as there are many
ways to transfer value out.

Aera: We will take approach 2. We will be monitoring fees in the front-end and there's less chance of human error
here.

Spearbit: Acknowledged.

5.2.7 try/catch statement may be manipulated to force usage of stale prices

Severity: Medium Risk
Context: AeraVaultV2.sol#L.562-1L.567

Description: By default, calls forward 63/64ths of remaining gas. A try/catch call will fail and end up in the catch
block if the call runs out of gas, which leaves the 1/64th of gas for the caller (AeraVaultV2) to finish execution.

If stale prices are more favorable than current prices to a user, they may be able to choose a gas limit to force
the spotPrices call to revert—and therefore a stale price gets used—even if the oracle is behaving normally. The
remaining 1/64th of gas needs to be sufficiently high for the rest of the execution to succeed.

The spotPrices method loops over up to 50 assets, so there may be a crossover point at which this becomes
possible for each method that calls this internal _reserveFees method, based on how much gas it needs to finish
after the spotPrices () call. Examples of how this may be leveraged:

« If asset prices crash, a guardian may want to use stale price so they can accrue more fees, since values and
prices would be higher than they should be.

« If asset prices spike, the owner may want to use stale prices so they can reduce the fees that accrue.
Currently, this manipulation is difficult to detect due to the silent catch block.
Recommendation: There are a few mitigations to consider:

1. Ensure that when an oracle call reverts for legitimate reasons, it returns data with a length greater than zero.
Chainlink oracles are view methods that should never revert, but this behavior may change. Additionally, if
custom "pass through" oracles are used to derive a price for a missing oracle, those may revert due to e.g.
overflow. An example of proper handling that is present is the existing revert with an Aera__0OraclePricels-
Invalid error when price <= 0. If valid oracle failure methods revert with data and bubble it up properly,
spotPrices() can similarly bubble up any errors. Now the try/catch can discern the failure method: An out
of gas revert has no revert data, so if the revert data is empty the call likely ran out of gas, and the vault can
revert in that case. If the revert data is non-empty, it was likely a legitimate revert (e.g. overflow, etc.) so the
vault can continue with the stale prices.

2. Emit an event in the catch block so there's a log of the failure. This allows users to more easily detect when
the catch block executes, and they can check if the oracle was down at that time, or inspect the transaction
trace to see if the spotPrices call ran out of gas. This allows users to determine if the failure was likely
intentional, so they can decide whether any relationships need to be terminated. Additionally, document this
attack vector so owners, guardians, and fee recipients know to lookout for it to ensure all parties are acting
honestly.

12

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L562-L567

3. Disallow the use of stale prices altogether. This may not be ideal, as there are legitimate use cases where
the guardian may need to adjust the vault holdings even when oracles are down.

Aera: We will implement recommendations 1 & 2. Fixed in PR 193.

Spearbit: Fixed.

5.2.8 Using Chainlink price feeds on some L2s requires a sequencer check

Severity: Medium Risk
Context: AeraVaultAssetRegistry.sol#L372

Description: The spotPrices method in AeraVaultAssetRegistry makes use of Chainlink's latestRoundData
API, which returns the latest price data from a price feed. The problem is that Aera's team has stated that the
protocol will possibly be deployed to multiple EVM-compatible chains, one of which is Arbitrum for example. As
you can see in the Chainlink docs this requires a check if the sequencer is currently up, and if it isn't the price
shouldn't be used.

Recommendation: Follow the Chainlink docs here to add a sequencer check, but only in the cases where the
protocol is deployed on an L2 - you can add a flag to indicate this.

Aera: Recommendation accepted. Fixed in PR 199.

Spearbit: Fixed. It is also worth noting that if the sequencer is down, then all code that calls spotPrices would
revert, which can block important admin actions (maintenance of the vault for example). Still, | think there is no
easy solution to this, as the sequencer won't be working and you can't use another fallback oracle on your chain.

5.2.9 Chainlink price feed oracle staleness is not checked

Severity: Medium Risk
Context: AeraVaultAssetRegistry.sol#L372

Description: The spotPrices method in AeraVaultAssetRegistry makes use of Chainlink's latestRoundData
API, which returns the latest price data from a price feed. There is some input validation (checking if answer is <=
0) but it is insufficient, as there is no price staleness check. This can result in the application using an incorrect
price when valuing the assets in a vault.

Recommendation: For each price feed oracle read the Chainlink documentation to understand the heartbeat
(max update time), and configure the AeravaultAssetRegistry to check that the answer received for a price feed
was more recent than PRICE_FEED_HEARTBEAT + 1 hour, otherwise revert as the price is possibly stale.

Aera: Recommendation accepted. Fixed in PR 227.

Spearbit: Fixed.

5.2.10 Removal of assets in the registry can be DOSed
Severity: Medium Risk
Context: AeraVaultAssetRegistry.sol#L241

Description: The code in AeraVaultAssetRegistry: :removeAsset has the following check:

if (IERC20(asset).balance0f (custody) > 0) {
revert Aera__AssetBalanceIlsNotZero(asset);

}

Anyone can front-run calls to removeAsset by transferring 1 wei of asset to the custody address, making the check
above revert every time. This is a common DoS attack vector (SCSVS::G4.5).

Removing this check would allow the accidental removal of a token and then leave the token balance outside of
the protection of the hooks and the DailyExecutionLoss protection, as it is no longer a registered token.

13

https://github.com/GauntletNetworks/aera-contracts-v2/pull/193
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L372
https://docs.chain.link/data-feeds/l2-sequencer-feeds
https://docs.chain.link/data-feeds/l2-sequencer-feeds
https://github.com/GauntletNetworks/aera-contracts-v2/pull/199
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L372
https://github.com/GauntletNetworks/aera-contracts-v2/pull/227
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L241
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md?plain=1#L23

Recommendation: Here are some possible solutions:

» Cache the transferred balances in the vault's storage, instead of using balance0f (adds registration com-
plexity).
+ Swap any remaining token to a registered token (introduces other external dependencies).

+ Allow removal if there is a value less than some threshold, for example 100 usd (requires calling the oracle
for the token).

Aera: We will separately consider whether to make this deployment atomic as per the other issue. Fixed in PR
158.

Spearbit: Fixed.

5.2.11 Fees may never accrue in some scenarios

Severity: Medium Risk
Context: AeraVaultV2.sol#L575-1L.578

Description: This equation performs divisions before multiplications, resulting in precision loss. Additionally, since
the divisions both round down, it's possible to have a scenario where fees never accrue because they round down
to zero. After we rearrange this equation so all division occurs last (which minimizes the chance of fees rounding
down to zero), we can demonstrate situations in which fees round down to zero as follows:

The condition for no fees to accrue is when: 10 ** feeTokenDecimals * lastValue * feeIndex * fee < ONE
* lastFeeTokenPrice. The main variable an attacker has control over is feeIndex, which is the time between fee
accruals. If called frequently enough, fees will round down to zero and never occur.

The first way this can happen is due to the public claim() method. This method reverts when fees [msg.sender]
== 0 s0 it cannot be continuously called by an arbitrary attacker. However, there are still two scenarios where prior
fee recipients can continually call this to prevent fee accrual.

1. If there are many past fee recipients with nonzero accrued fees, they can coordinate their calls to claim() to
prevent more fees from accruing. They can only do that until they each claim, so it this attack would not last
very long, and is unlikely.

2. If there are insufficient feeTokens to fully pay the claim, a single feeRecipient can call claim() each block.
They have a nonzero balance to claim so fees will continue to accrue, and their available balance to claim will
not be deducted. To stop this, more feeToken would need to be transferred to the vault so their next claim()
fully pays out, preventing them from calling it again in the future. Alternatively, the guardian can submit a
transaction that swaps some of a vault's token with the required amount of fee token.

Another way this can occur is if the owner continuously calls a method such as execute as a no-op just to accrue
fees. However, the trust model of Aera is such that if the owner is acting in any way to interfere with fees received by
guardian, the service relationship is effectively terminated and the guardian will stop submissions. Consequently,
this is not a concern as the relationship will be terminated in that scenario.

The last scenario is the guardian inadvertently driving fees to zero through their active management, meaning we
want to solve the above equation for feeIndex. Rearranging gives: feeIndex < 1e18 * lastFeeTokenPrice /
(10 ** feeTokenDecimals * lastValue * fee). When that is true, no fees will accrue.

Now we choose worst-case but realistic values for each variable to find bounds on feeIndex. We'll use GUSD (2
decimals) here.

 lastValue = 5e6 gives $50,000 in GUSD which is a reasonably sized small vault.
+ fee = 1le7, which is ~0.0315% (100x lower than the max fee).
+ With GUSD as the numeraire and fee token, lastFeeTokenPrice = 100

Solving gives feeIndex < 20,000, meaning if the guardian executes actions more frequently than every 20,000
seconds (~5.55 hours) they will not accrue fees. This management frequency is plausible for an actively managed

14

https://github.com/GauntletNetworks/aera-contracts-v2/pull/158
https://github.com/GauntletNetworks/aera-contracts-v2/pull/158
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L575-L578

vault. Increasing the fee by 10x to 0.315%, this becomes 2000 seconds (~33 minutes), and with the max fee it's
200 seconds (~3.3 minutes).

Re-solving with USDC (6 decimals, 50,000e6 value, 1e6 fee token price) for a 1e7 fee, we get a value of 2 seconds.
In practice a guardian will not need to submit a transaction every 2 seconds, so it's not an issue in this case.

Scaling the numeraire up to 18 decimals would not mitigate this, because doing so scales both 1astFeeTokenPrice
(numerator) and 10 ** feeTokenDecimals (denominator) proportionally, so they cancel out. Shrinking lastValue
and fee values are the drivers that allow a larger feeIndex to cause no fee accrual.

Overall, this issue is not likely to occur for reasonably sized vaults for tokens that have 6+ decimals. The "insufficient
fee token" scenario can be recovered from in a straightforward manner without too many fees lost. The "active
guardian” scenario can only be recovered from by adding more assets (which may not be feasible if the owner
has no other assets), or by starting a new vault with a larger fee (which may not be desirable for the owner), and
therefore this may result in the guardian and owner unable to agree upon terms that work for certain combinations
of tokens, fee, and vault size.

Recommendation: First, rearrange the equation so all divisions are performed last. This maximizes the result of
the numerator, making this less likely to occur.

Then, there are a few additional mitigations to consider. Mitigations 2 or 3 both fully resolve the issue, obviating
the need for mitigations 1 and 4:

1. Document this limitation:

1. Ensure users are aware of how fees can be stolen in this manner, particularly for the "insufficient fee
token" and "active guardian" scenarios.

2. For the "insufficient fee token" scenario, document the solution of transferring more feeToken SO an
attacker's next claim() pays out.

3. For the "active guardian” scenario, before deploying a vault, plug in expected values to ensure fees will
accrue for those values even with an active guardian.

2. Change the division to round up instead of down, either by manually rounding up or by using a library like
solmate.

3. Have _reserveFees be a no-op if accrued fees are zero, where the key part here is to not write an updated
lastFeeCheckpoint to storage.

4. Ensure a minimum amount of time or blocks have elapsed before doing the next fee calculation. The longer
time that must elapsed between fee accruals, the less likely this is to occur. This is an alternative to (3).

Aera: We will rearrange the equation so all divisions are performed last. We will also implement 3. Fixed in PR
160 and PR 156.

Spearbit: Fixed.

5.2.12 finalize may revert in some scenarios

Severity: Medium Risk
Context: #L.341-L377
Description: There three ways in which the finalize method may revert:

1. It may exceed the block gas limit. This function does a lot, but the main source of risk comes from having
tokens (such as Aave's aTokens) where the transfer cost is not static—it is dependent on user state in the
protocol—and can cost upwards of 300k gas to deploy. You would need about all 50 tokens (where 50 is the
maximum allowed number of assets) to have similarly expensive transfer costs to have a chance of this
occurring.

2. If any single transfer fails, which can occur if:

1. The vault holds receipt tokens that are collateral for a borrow position. The tokens would not be trans-
ferrable if transferring them would make the vault insolvent on that position.

15

https://github.com/GauntletNetworks/aera-contracts-v2/pull/160
https://github.com/GauntletNetworks/aera-contracts-v2/pull/160
https://github.com/GauntletNetworks/aera-contracts-v2/pull/156
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L341-L377

2. The vault is deny-listed, such as on USDC, USDT, or other tokens that support this feature.

Recommendation: The finalize method may be needed in emergency situations to recover all assets, so
minimizing the chance of it reverting is ideal.

(1) Can be mitigated by being careful about which tokens are added to a vault. Before adding a new token to the
registry and having the vault hold it, consider simulating a finalize call using a forge script to make sure the vault
can still finalize. Additionally, the owner can instead call withdraw first to get out the majority of tokens, though
an attacker can still grief the finalize call by sending small amounts of token before the call. This griefing can
potentially be mitigated by setting a dust threshold and only transferring amounts above that threshold.

(2.1) Can be mitigated similarly, by calling withdraw to retrieve the majority of tokens. Alternatively, the owner can
exit any positions first, then call finalize.

(2.2) In this situation the denylisted tokens cannot be withdrawn, so calling withdraw is the only option.

Document these limitations and workarounds so vault owners are prepared to call finalize and deal with any
unexpected reverts.

Aera: Recommendation accepted. We will document these guidelines.

Spearbit: Acknowledged.

5.2.13 Malicious Tokens, Oracles and erc4626 could undo ExecutionLoss checks

Severity: Medium Risk
Context: AeraVaultHooks.sol
Description: Malicious Tokens, Oracles and erc4626 could undo ExecutionLoss checks.

All these malicious contracts could artificially inflate the token value or token balances. In cooperation with the
guardian they could figure out the exact amount of required manipulation in for the following way:

» The gardian, as the first action of a submit, triggers an action at the malicious contract which retrieves the
value();

» The gardian, as the first action of a submit, triggers an action at the malicious contract again, which inflates
the result, just enough to pass the ExecutionLoss checks.

This way the guardian could compensate for losses or stolen funds. Also the fees could be inflated.

There will be a problem though when the owner tries to withdraw() or finalize() and exchange the tokens.
Then it turns out the funds are not real.

Recommendation: The tokens, oracles and erc4626 contracts have to be selected carefully. This might not be
trivial because the owner might not have the right knowledge to do that.

Possible solution: Have a function that withdraw () s the funds and verifies the received funds are real, for example
by exchanging them for well known tokens. After this check the function could revert so the vault remains intact.
The check function could be called periodically.

Aera: We agree. Our current policy is that the Aera protocol team maintains a global internal whitelist of ERC20,
oracle and ERC4626 addresses that are carefully vetted. The owner will only select addresses from those. If they
choose an address that is outside this list, the guardian will not be under any obligation to make submissions. We
will implement whitelist compliance checks in our offchain monitoring.

Spearbit: Acknowledged.

16

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol

5.2.14 Owner can circumvent _checkReservedFees() in execute()

Severity: Medium Risk
Context: AeraVaultV2.sol#L.309-L339

Description: The function _checkReservedFees() in execute() makes sure the owner doesn't retrieve the last
feeTokens, that are meant for the feeRecipient. However the owner can circumvent this check by setting an
allowance for the feeTokens. The reduces the use of this check. Note: this could also grief the guardian if he isn't
aware of this and sets allowances on the same token. In that situation afterSubmit () might revert.

function execute(Operation calldata operation) external override onlyOwner {

_checkReservedFees (prevFeeTokenBalance) ;

Recommendation: Consider to disallow the owner to set an allowance for the feeTokens. Alternatively consider
removing the _checkReservedFees () check, because it also has other downsides, see issue "Last resort function
execute () could fail".

Aera: We will remove _checkReservedFees altogether and instead will expect that guardians will be claiming fees
regularly. Fixed in PR 1821.

Spearbit: Fixed.

5.2.15 Last resort function execute () could fail

Severity: Medium Risk
Context: AeraVaultV2.sol

Description: The function execute () is a last resort function that can be used when other methods fail. However,
the logic around fees can still revert, even though there is a try/catch in _reserveFees(). If these revert then the
last resort doesn't work, which might lock funds in the vault. The main reasons for reverts could be:

+ Buggy or malicious tokens.
» Deny list of a token, where balanceOf or decimals reverts (not likely).
+ Interaction with ERC4626 contracts.

Note: _reserveFees() returns directly if finalized is set, but it might never reach this state due to issues with
tokens, ERC4626 contracts or oracles.

function execute(Operation calldata operation) external override onlyOwner {

_reserveFees(); // could revert

uint256 prevFeeTokenBalance = assetRegistry.feeToken() .balanceOf (address(this)); // could revert
// actions

_checkReservedFees(prevFeeTokenBalance); // could revert

}
function _reserveFees() internal {
if (fee == 0 || paused() || finalized) {
return;

}

try assetRegistry.spotPrices() returns (

IAssetRegistry.AssetPriceReading[] memory erc20SpotPrices
) o

(lastValue, lastFeeTokenPrice) = _value(erc20SpotPrices, feeToken); // could revert
} catch {}

17

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L309-L339
https://github.com/spearbit-audits/review-gauntlet/issues/22
https://github.com/spearbit-audits/review-gauntlet/issues/22
https://github.com/GauntletNetworks/aera-contracts-v2/pull/182
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol

uint256 newFee = (((lastValue * feelndex * fee) / ONE)
* 10 ** IERC20Metadata(address(feeToken)).decimals() // could revert
) / lastFeeTokenPrice;
}
function _checkReservedFees(uint256 prevFeeTokenBalance) internal view {
uint256 feeTokenBalance = assetRegistry.feeToken().balanceOf (address(this)); // could revert

}

function _value(...) ... {
AssetValue[] memory assetAmounts = _getHoldings(assets); // could revert
(...) = _getSpotPricesAndUnits(assets, erc20SpotPrices); // could revert
balance = IERC4626(address(assets[i] .asset)).convertToAssets(assetAmounts([i].value); // could
— revert

}

function _getHoldings(IAssetRegistry.AssetInformation[] memory assets) ... {

value: asset.asset.balanceOf (address(this)) // could revert
}
function _getSpotPricesAndUnits(...) ... {

underlyingAsset = IERC4626 (address(asset.asset)).asset(); // could revert

assetUnits[i] = 10 ** IERC20Metadata(underlyingAsset).decimals(); // could revert

Recommendation: Carefully select the tokens and ERC4626 contracts, also see issue "Malicious Tokens, Oracles
and erc4626 could undo ExecutionLoss checks".

Consider wrapping the fee logic in try/catch. Note this is more difficult to do if modifiers are used, see issues:
* "Ordering of _reserveFees()"
* "Ordering of _checkReservedFees()"

Consider removing the fee logic from execute (). The _reserveFees() will likely only add a small number of fees
and is the main responsibility for the guardian to do. The _checkReservedFees () is easy to circumvent, also see
issue "Owner can circumvent _checkReservedFees () in execute()".

Aera: Removed fee logic from execute in PR 173.

Spearbit: Verified. In theory feeToken() .balanceOf (address(this)) could also fail (which is also called in _-
checkReservedFees()). But this is very unlikely.

5.2.16 Life cycle of hooks contracts

Severity: Medium Risk
Context: AeraVaultHooks.sol#L.33-L36

Description: A hooks contract can be switched to another hooks contract via setHooks (). The new hooks contract
could also be a hooks contract that has been used previously. When switching to a new version, the variables from
the old contract are no longer relevant. That includes:

* currentDay
* cumulativeDailyMultiplier
* _pendingOwner

This could allow exceeding the 'real' max daily loss, via reset of the cumulativeDailyMultiplier.

18

https://github.com/spearbit-audits/review-gauntlet/issues/27
https://github.com/spearbit-audits/review-gauntlet/issues/27
https://github.com/spearbit-audits/review-gauntlet/issues/14
https://github.com/spearbit-audits/review-gauntlet/issues/16
https://github.com/spearbit-audits/review-gauntlet/issues/23
https://github.com/GauntletNetworks/aera-contracts-v2/pull/173
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L33-L36

However, when switching to a previously used hooks contract, the old values of these variables are relevant again.
The influence of currentDay and cumulativeDailyMultiplier is limited. However, an old _pendingOwner might
be unexpected. Additionally, future versions of hooks might have other relevant variables.

contract AeraVaultHooks is IHooks, ERC165, Ownable2Step {

uint256 public currentDay;
uint256 public cumulativeDailyMultiplier;

}

Recommendation: Consider having a hook before deinstallation and right after installation. This can be used to
clear and/or set variables.

Owners could pause their vaults during the update process until the cumulativeDailyMultiplier would effectively
reset on the new hook as on the old, making for a smoother and safer transition.

Also see issues:

+ "Owner can manipulate hooks"

» "Access to inactive hooks contracts"
Aera: Fixed in PR 161. Hooks now have a decomission() function.
Spearbit: Verified.

5.2.17 Lack of assetRegistry.custody check upon being set can lead to invalid vault values and perma-
nent loss of funds

Severity: Medium Risk
Context: AeraVaultV2.sol#L127, AeraVaultV2.sol#L150, AeraVaultV2.sol#L800-L816

Description: When an AeravaultV2 is deployed, its constructor expects an AeraVaultAssetRegistry contract to
be set, which tracks a list of registered ERC20 and ERC4626 assets that can be used within the vault, containing
necessary data to complete operations with them. The vault currently only has some basic sanity checks when
setting this registry, such as it being non-zero address and signalling implementation for the expected IAssetReg-
istry interface. This means, an AeraVaultAssetRegistry contract could be currently connected to the vault,
where the asset registry was intended for a whole different vault altogether.

This is a one-shot operation and irreversible. General functionality is not affected until certain conditions are met,
so vaults could mistakenly or unknowingly have this occur to them, and begin operating on vaults as normal by
depositing funds into it. This could also be purposefully encouraged by a malicious vault guardian or even other
third-party wishing to blackmail vault users.

The main danger condition possible by this is that a vault owner may deposit tokens initially registered in the
registry. Since the registry points to a different vault though, those tokens can be unregistered, even though they
are still in our vault. This would effectively blackhole their value from the vault (referred hereinafter as 'stealthed'
tokens). This opens a number of possible attack scenarios depending on the controlling party of the registry
(although ownership isn't a requirement to execute these scenarios aside from the blackmail one).

+ Avoidance of fees by vault owners by 'stealthing' value.
» Exceeding max daily real execution loss by vault guardian, or even complete extraction of 'stealthed' tokens.

+ Blackmail by a third party, as the simple withdraw function would be rendered inoperable on 'stealthed'
tokens.

« Stuck funds pertaining to the unregistered tokens, if finalize is called, only reversible by an execute recov-
ery, could occur under any ownership scenario.

These are some of the possible attacks by various actors upon one scenario of an invalid custody being in the
registry contract. The attack surface is quite wide with the following functions being impacted which could lead to
additional unaccounted attack scenarios:

19

https://github.com/spearbit-audits/review-gauntlet/issues/15
https://github.com/spearbit-audits/review-gauntlet/issues/21
https://github.com/GauntletNetworks/aera-contracts-v2/pull/161
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L127
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L150
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L800-L816

* finalize

* withdraw

* deposit

* submit

* execute

* claim

* setHooks

* pause

* setGuardianAndFeeRecipient

A power user or recovery setup by authors provided to owners should be possible using execute, except in the
case of a guardian using such a scenario to steal the 'stealthed' tokens.

Recommendation: Consider an atomic deployment mechanism for these contracts as specified in "Atomic de-
ployments can simplify instance setup and reduce risk". A proper implementation would fix this, however it could
entalil a significant overhaul to the contracts.

For the current contracts and deployment design, add a requirement within _checkAssetRegistryAddress that
the asset registry candidate has this vault set as its custody variable, following confirmation of the appropriate
IAssetRegistry interface being supported.

function _checkAssetRegistryAddress(address newAssetRegistry) internal view {

// confirmed registry interface, let's check we are the intended vault
address registryCustody = address((newAssetRegistry).custody())
if (registryCustody != address(this))
revert Aera__AssetRegistryHasInvalidCustody(newAssetRegistry, registryCustody);

+ o+ o+ o+

A custom error should be added to signify failure on this check and the custody variable exposed in the IAsse-
tRegistry interface. The team could also consider creating an external getter of the custody variable that simply
returns its corresponding address.

This may seem problematic at first glance, since we expect the custody variable to be set to that of a newly
deployed contract via its constructor, however, this can be accomplished due to it being deployed via CREATE2, and
the address can be precomputed and set in the registry prior to its deployment. This will require the vault interface
(currently ICustody) check to be skipped by the registry, as the vault would not be deployed yet.

function setCustody(address newCustody) external onlyOwner {

// Requirements: check that there is an ICustody contract at the new address.
if (newCustody == address(0)) {
revert Aera__CustodyIsZeroAddress();

}
- if (
- 'ERC165Checker. supportsInterface(
- newCustody, type(ICustody).interfaceld
-)
-) o
- revert Aera__CustodyIsNotValid(newCustody) ;
- }

// Effects: set custody address.
custody = newCustody;

20

Aera: Recommendation accepted. Fixed in PR 151.

Spearbit: Verified.

5.2.18 Lack of custody address check in setHooks function can lead to most functions reverting while
unpaused, until properly reset hook

Severity: Medium Risk
Context: AeraVaultV2.sol#L.288-1L.306, AeraVaultV2.sol#L818-L829

Description: AeraVaultV2 depends on a AeraVaultHooks contract as an upgradeable protection layer for vault
owners. When a new hook is set, the current checks include ensuring that it's a non-zero address and that it
supports the IHooks interface. This in turn, could allow an invalid AeraVaultHooks contract to be set for the vault,
where the custody variable within the hook contract is not actually set, to the setting vault contract.

This would render any hook dependent functions to revert and not work even in an unpaused state, as the vault
would lack the access control necessary to actually use those hooks.

These functions include
* deposit
+ withdraw
* execute
« finalize
* submit

Fees could keep accruing during this time if unpaused, so the vault could be being charged fees, even though it's
in an invalid state where most of its core functionality doesn't work.

This is reversible and fixable even with a deployed vault, by resetting to a proper hook that has the appropriate
custody address set, with the setHook call.

Recommendation: To avoid the possibility of such a scenario and even entering into this invalid state, mistakenly
or purposefully, the requirements section within setHooks via the internal _checkHooksAddress call should also
include a check of the custody variable being equal to the vault's address within the hook contract about to be set,
following ERC165 detection of the expected IHooks interface on the given newHooks address.

Consider the following as a candidate for the code revision

function _checkHooksAddress(address newHooks) internal view {

// confirmed hooks interface, let's check we are the intended vault
address hooksCustody = address(IHooks(newHooks) .custody())
if (hooksCustody != address(this))

revert Aera__HookHasInvalidCustody(newHooks, hooksCustody);

+ o+ o+ o+

}

Note: getter for custody will need to be exposed in IHooks, where it should be available as it's a public variable.
Also likely a new custom error code introduced Aera__HookHasInvalidCustody(address, address)

Aera: Fixed in PR 155.
Spearbit: Verified.

21

https://github.com/GauntletNetworks/aera-contracts-v2/pull/151
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L288-L306
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L818-L829
https://github.com/GauntletNetworks/aera-contracts-v2/pull/155

5.2.19 Ordering of _reserveFees()
Severity: Medium Risk
Context: AeraVaultV2.sol#L.227-1.266, AeraVaultV2.sol#L627-L668, AeraVaultV2.sol#L731-L760

Description: Assume _reserveFees() hasn't been called for a relatively long period. Then when withdraw()
is called, it calls _checkWithdrawRequest (). Function _checkWithdrawRequest() calls _getHoldings (), which
returns the available value for feeToken, excluding the reserved fees (feeTotal). As feeTotal hasn't been updated
yet, this allows for possibly withdrawing too much feeToken, leaving the vault insolvent.

The update of the feeTotal via _reserveFees () only happens after _checkWithdrawRequest (). Note: the amount
of insolvency depends on how long ago the previous call to _reserveFees () was and only occurs if the bulk of the
feeToken is withdrawn, so in practice this would be a small amount. Note: set to medium risk as this doesn't fit the
invariants of Aera

function withdraw(AssetValue[] calldata amounts) ... {

// Requirements: check the withdraw request.
_checkWithdrawRequest (assets, amounts);

// Effects: reserve fees for fee recipient.
_reserveFees();

}
function _checkWithdrawRequest(...) ... {

AssetValue[] memory assetAmounts = _getHoldings(assets);
for (uint256 i = 0; i < numAmounts;) {

if (assetAmounts[assetIndex].value < assetValue.value) {
revert Aera__AmountExceedsAvailable(...);

}

}

function _getHoldings(IAssetRegistry.AssetInformation[] memory assets) ... {
for (uint256 i = 0; i < numAssets;) {

if (asset.asset == feeToken) {
if (assetAmounts[i].value > feeTotal) {
assetAmounts[i] .value -= feeTotal;
} else {
assetAmounts[i] .value = 0;

}

Recommendation: Consider making a modifier that calls _reserveFees(), which reduces ordering mistakes.
Note consider combining this with the recommendations from issue: "Ordering of _checkReservedFees()".

Alternatively, in function withdraw() call _reserveFees() as the first thing, as shown below:

22

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L227-L266
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L627-L668
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L731-L760
https://github.com/spearbit-audits/review-gauntlet/issues/16

function withdraw(AssetValue[] calldata amounts) ... {

+ _reserveFees();
_checkWithdrawRequest (assets, amounts);
- _reserveFees();

Aera: Fixed in PR 143.
Spearbit: Verified.

5.2.20 Disable renounceOwnership()
Severity: Medium Risk

Context: Ownable.sol#L61-L63, Ownable2Step.sol#L44-L47, AeraVaultV2Factory.sol#L11, AeraVaultV2.sol#L18-
L23, AeraVaultHooks.sol#L18, AeraVaultAssetRegistry.sol#L15

Description: The contracts AeraVaultV2Factory, AeraVaultV2, AeraVaultHooks and AeraVaultAssetRegistry
inherit from Ownable2Step, which inherits from Ownable.

This means the function renounceOwnership() is present in all four contracts. If the function renounceQOwner-
ship() of AeravaultV2 would be accidentally called, then withdraw(), finalize() and execute() would no
longer be possible and the funds would be locked in the vault. Removing the owner in AeraVaultV2Factory,
AeraVaultHooks and AeraVaultAssetRegistry also reduces the functionality.

abstract contract Ownable is Context {
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
}
abstract contract Ownable2Step is Ownable {
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner) ;

Recommendation: Disable renounceOwnership(), for example by overriding it, in AeravaultV2Factory, Aer-
aVaultV2, AeraVaultHooks and AeraVaultAssetRegistry.

Aera: It has no significant consequence in hooks (hooks can be reset), asset registry (funds can still be withdrawn
with execute) or factory (a new factory can be deployed). We will override renounceOwnership in the Aera vault
with a revert. Fixed in PR 142.

Spearbit: Fixed.

23

https://github.com/GauntletNetworks/aera-contracts-v2/pull/143
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/dependencies/openzeppelin/Ownable.sol#L61-L63
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/dependencies/openzeppelin/Ownable2Step.sol#L44-L47
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L11
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L18-L23
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L18-L23
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L18
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L15
https://github.com/GauntletNetworks/aera-contracts-v2/pull/142

5.3 Low Risk
5.3.1 Precision loss when computing custody.value()

Severity: Low Risk
Context: AeraVaultV2.sol#L590-L622

Description: The custody.value() calculation, used when computing newMultiplier, has divisions occurring
before the final value is computed, resulting in precision error.

Recommendation: The custody.value() precision loss requires a larger refactor to fully mitigate because it
would require a different way of handling prices, such as returning non-normalized prices and lazily normalizing in
the afterSubmit hook. Because the precision error in this instance results in a more conservative computation,
consider whether the added complexity is worth the precision.

Aera: Acknowledged. We are happy to accept this small precision loss as it is conservative for the vault value.

Spearbit: Acknowledged.

5.3.2 execute function should have nonReentrant guard

Severity: Low Risk
Context: AeraVaultV2.sol#L.309-L313

Description: execute is a privileged function allowing owners to execute just about any call originating from
the vault, aside from the hooks address being a target for reasons of security. Currently, it is trivial to perform
reentrancy into it due to this flexibility and it has no reentrancy guards, even though other functions are protected
by nonReentrant.

Recommendation: Add the nonReentrant modifier to execute to mitigate reentrancy into this function, and keep
it a more predictable single operation function.

Aera: Recommendation accepted. Fixed in PR 200.

Spearbit: Fixed.

5.3.3 Disallow execute and submit operations targeting vault itself

Severity: Low Risk
Context: AeraVaultV2.sol#L.309-L318

Description: The vault could execute or submit operations targeting itself. One of the possibilities this allows is
to transfer the ownership of the vault to itself and accept it via execute. This would effectively brick the contract
and any associated value still within. This would require 2 transactions to be done by an owner, but since all
the operations would be essentially trusted targets (e.g. the vault itself), it may happen under social engineering
scenarios. Note: for submit to work, the transaction should also be allowlisted.

Recommendation: Check to make sure that the vault itself is not a target of an execute or submit operation , and
revert if it is. Update submit in a similar way.

function execute(Operation calldata operation)

if (operation.target == address(hooks)) {
revert Aera__ExecuteTargetIsHooksAddress();

}

// Requirements: check that the target contract is not vault itself.
if (operation.target == address(this)) {
revert Aera__ExecuteTargetIsVaultAddress();

+ o+ o+ +

}

24

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L590-L622
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L309-L313
https://github.com/GauntletNetworks/aera-contracts-v2/pull/200
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L309-L318

Aera: Recommendation accepted. Fixed in PR 201.

Spearbit: Fixed.

5.3.4 Loop removeAsset() compares asset to itself
Severity: Low Risk
Context: AeraVaultAssetRegistry.sol#L229-1.298

Description: Function removeAsset () does a loop over all assets to doublecheck if the asset, located at o1dAs-
setIndex, can be deleted. Logically it should skip comparing to itself.

Luckily the present conditions prevent any harm, but future changes in the code might introduce issues.

function removeAsset(address asset) external override onlyOwner {

if (_assets[oldAssetIndex].isERC4626) {
numYieldAssets--;

} else { // now we know olddssetIndex isn't ERC4L626
for (uint256 i = 0; i < numAssets; i++) {

if (
_assets[i] .isERC4626 // so this will be false for olddssetIndex
&& IERC4626 (address(_assets[i] .asset)).asset() == asset // the underlying asset
— of olddssetIndex shouldn't be asset either
) {

revert Aera__AssetIsUnderlyingAssetOfERC4626(address(_assets[i].asset));
}

}

Recommendation: Consider changing the code to:

if (
+ i !'= oldAssetIndex &&
_assets[i] . isERC4626
&& IERC4626(address(_assets[i] .asset)).asset() == asset

Aera: Recommendation accepted. Fixed in PR 202.
Spearbit: Fixed.

5.3.5 Use msg.sender as opposed to owner () in methods that have an onlyOwner modifier
Severity: Low Risk
Context: AeraVaultV2.sol#L169, AeraVaultV2.sol#L227, AeraVaultV2.sol#L309, AeraVaultV2.sol#L342

Description: Retrieving the owner is relatively expensive as it requires an SLOAD. In functions that are protected
by an onlyOwner modifier, it is verified that msg . sender is the owner. Using msg. sender is a lot cheaper than using
owner

Recommendation: Consider changing owner () to msg.sender in the referenced methods that use onlyQOwner.
This additionally resolves an edge case, where execute() could potentially call acceptOwnership(), and the
Executed event would emit the new owner, instead of the correct original executing owner, which we get via
msg.sender.

Aera: Recommendation accepted. Fixed in PR 208.

Spearbit: Fixed.

25

https://github.com/GauntletNetworks/aera-contracts-v2/pull/201
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L229-L298
https://github.com/GauntletNetworks/aera-contracts-v2/pull/202
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L169
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L227
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L309
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L342
https://github.com/GauntletNetworks/aera-contracts-v2/pull/208

5.3.6 _getSpotPricesAndUnits() can be simplified and made safer
Severity: Low Risk
Context: AeraVaultV2.sol#L675-L726

Description: The function _getSpotPricesAndUnits() contains code duplication that can be reduced. This
makes the code easier to understand and maintain. Also it doesn't explicitly check the asset has been found.

Recommendation: Consider changing the code as shown below. For safety an extra check could be added to
make sure the asset is found.

function _getSpotPricesAndUnits(...) ... {

for (uint256 i = 0; i < numAssets;) {
asset = assets[i];
address tofind = (asset.isERC4626 7 IERC4626(address(asset.asset)).asset() : tofind =
— asset.asset) ;
for (uint256 j; j < numERC20SpotPrices;) {
if (tofind == address(erc20SpotPrices[j].asset))
break;
unchecked { j++; } // gas savings
}
if (j >= numERC20SpotPrices) // possibly eztra check not found
revert ...;
spotPrices[i] = erc20SpotPrices[j].spotPrice;
assetUnits[i] = 10 #** IERC20Metadata(tofind).decimals();

unchecked {
i++; // gas savings

}

}

Aera: Fixed in PR 210. Check not implemented because it's won't happen in practice.

Spearbit: Verified. If the asset isn't found it will revert anyway so no risk.

5.3.7 holdings() and value () can be called while calls are being executed
Severity: Low Risk
Context: AeraVaultV2.sol#L497-L511

Description: The function holdings () and value () could be (indirectly) called while calls are being executed via
execute () or submit (). At that moment the tokens are in flux so its important not to have anything that relies on
the values. Otherwise, there could be an issue like a read-only reentrancy.

Potential situation: the vault is used as collateral for something and could be liquidated under certain situations
(perhaps a bit far fetched).

function holdings() public view override returns (AssetValue[] memory) {

}

function value() external view override returns (uint256 vaultValue) {

}

Recommendation: If it is anticipated that something could rely on the value of the vault consider doing the
following:

» check the value of the nonReentrant modifier in holdings () and value(), possibly allow reentracy from the
hooks contract.

26

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L675-L726
https://github.com/GauntletNetworks/aera-contracts-v2/pull/210
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L497-L511

Note: it is still possible to retrieve the underlying values like token holdings, but that is unlikely to be used.

Depending on the reentrancy check, value() and holdings() may not be accessible from the hooks contract.
value() is currently used and holdings() might be relevant for future versions of hooks. This could also be
solved by passing the information from value () and possibly holdings () to the before and after hooks.

Also see issues:
+ "Storing _beforeValue and _beforeBalance is relative expensive"
» "Expensive functions _reserveFees() and value() called both but are very similar"

Aera: We are far from these types of external integrations for Aera so will wait until we see how hooks develop in
practice to take further action.

Spearbit: Acknowledged.

5.3.8 Precision loss when computing newMultiplier

Severity: Low Risk
Context: AeraVaultHooks.sol#L227-L.234

Description: When computing newMultiplier, divisions occur before multiplications in the if (currentDay ==
day) block of afterSubmit.

The precision loss is not a big issue here because the precision loss results in a smaller value of newMultiplier.
A smaller value is more conservative as it's more likely to revert from the newMultiplier < ONE - maxDailyExe-
cutionLoss check.

Recommendation: Move all multiplications last with:

uint256 newMultiplier;
if (currentDay != day) {
newMultiplier = custody.value() * ONE / _beforeValue;
} else {
newMultiplier = cumulativeDailyMultiplier * custody.value() / _beforeValue;

}

Aera: Recommendation accepted. Fixed in PR 209.

Spearbit: Since there were previously two recommendations here (remove precision loss from newMultiplier
computation itself, and remove precision loss from custody.value()), I've split this into two issues. This issue will
be labeled Fixed, and "Precision loss when computing custody.value()"is the new issue which I've labeled as
Acknowledged.

5.3.9 _value may revert for non-conforming ERC-4626 tokens

Severity: Low Risk
Context: AeraVaultV2.sol#L606-L608

Description: Per ERC-4626, convertToAssets must never revert. However, tokens don't always follow spec—if it
does revert, _reserveFees () also reverts, and the vault will be stuck until the offending token is removed from the
asset registry.

Recommendation: Only add ERC-4626 assets that have been verified to accurately conform to the ERC-4626
specification.

Aera: We will have strict asset whitelisting criteria for all whitelisted assets.

Spearbit: Acknowledged.

27

https://github.com/spearbit-audits/review-gauntlet/issues/60
https://github.com/spearbit-audits/review-gauntlet/issues/61
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L227-L234
https://github.com/GauntletNetworks/aera-contracts-v2/pull/209
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L606-L608
https://eips.ethereum.org/EIPS/eip-4626

5.3.10 Add stronger validation on oracle addresses

Severity: Low Risk
Context: AeraVaultAssetRegistry.sol#L429-1432

Description: The oracle for an ERC20 token is validated by comparing the oracle address against the zero ad-
dress. Consequently, invalid addresses—such as EOAs or contracts that don't conform to the expected interface—
can be added as oracles, which will result in reverting transactions. In this case, the asset needs to be removed
then re-added, as there is no way to directly update an oracle address.

Recommendation: A stronger oracle validation would be to call 1atestRoundData and verify that a valid and up
to date value is returned, which would reduce the likelihood of adding an invalid oracle.

Aera: Recommendation accepted. Fixed in PR 215.

Spearbit: Fixed.

5.3.11 Native tokens could be temporarily inaccessible

Severity: Low Risk
Context: AeraVaultV2.sol#L.590-L622, AeraVaultHooks.sol#L.183-.243

Description: Via submit () any native tokens (ETH) that is left in the Vault can no longer be used due to the checks
in afterSubmit (). Also submit() cannot easily know how much native tokens (ETH) are present after external
calls, see issue "Inherent limits of submit ()", so there are bound to be some native tokens (ETH) left in the vault
(assuming native tokens (ETH) are being used at all). Furthermore, the native tokens (ETH) are not counted in
the value () calculation so they add to the DailyExecutionLoss. The function _reserveFees() also doesn't take
native tokens (ETH) into account.

The native tokens (ETH) can be rescued though by the owner via execute().

function _value(...) ... {

for (uint256 i = 0; i < numAssets;) {
if (assets[i].isERC4626) {
balance = IERC4626(address(assets[i].asset)).convertToAssets(
assetAmounts[i] .value

)

} else {
balance = assetAmounts[i].value;
}
vaultValue += (balance * spotPrices[i]) / assetUnits[i]l; // native tokens are not counted
}
}
function beforeSubmit(Operation[] calldata operatiomns) ... {
_beforeBalance = address(custody) .balance;
}
function afterSubmit(Operation[] calldata operations) ... {
if (address(custody).balance < _beforeBalance) { // cannot use any ETH that is left in the wvault
— from previous submit
revert Aera__ETHBalanceIsDecreased();
}
}

Recommendation: In function submit(): swap any left over native tokens (ETH) back to its wrapped
version (WETH). This should be done right after all operations and before the calls to _checkReserved-

28

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L429-L432
https://github.com/GauntletNetworks/aera-contracts-v2/pull/215
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L590-L622
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L183-L243
https://github.com/spearbit-audits/review-gauntlet/issues/35

Fees(prevFeeTokenBalance) ; and hooks.afterSubmit (operations). The WETH address is already known in
‘AeraVaultV2. WETH should be added as an asset in the registry and shouldn't be allowed to be removed.

Aera: Fixed in PR 238 , with the following changes: In vault:

» check that WETH is part of the asset registry in the vault constructor

+ perform the conversion to WETH at the end of submit
In asset registry:

» provide WETH as an asset to asset registry constructor

» add it as an asset

* prevent its removal in removeAsset

» we will confirm that it is added as an ERC20 asset

» NOTE: It could or couldn't have an oracle depending on if it's used as the numeraire
Spearbit: Verified.

5.3.12 Contracts can't rescue mistakenly sent ERC20 tokens or ETH

Severity: Low Risk
Context: AeraVaultAssetRegistry.sol,AeraVaultHooks.sol

Description: The AeraVaultAssetRegistry and AeraVaultHooks contracts currently have no way to rescue mis-
takenly sent ERC20 tokens to them, as well as ETH that is received through the following ways:

1. A contract selfdestructs and sends ETH to an aera contract.

2. An aera contract is set as the block's fee recipient.

3. An aera contract is set as the recipient for a staked ETH withdrawal.

4. Address of an aera contract is precomputed and ETH is sent before it's deployed.

Recommendation: Add a way to rescue ERC20 tokens and ETH that has been mistakenly sent to either the
AeraVaultAssetRegistry or AeraVaultHooks contracts.

Aera: We will add a sweep function to both contracts that can be called by the owner. Fixed in PR 218.
Spearbit: Fixed.

5.3.13 Add a stronger than just a zero address check for weth
Severity: Low Risk
Context: AeraVaultV2Factory.sol#L44-L46

Description: The constructor of AeraVaultV2Factory checks if the weth_ argument is the zero address to do
input validation, but a stronger check would be to verify if the weth_ address has code, or even if it returns a value
when calling balance0f. While more expensive, this is protecting you from deploying the contract with an EOA
address for example.

Recommendation: In the constructor of AeraVaultV2Factory add a check if calling balance0f of the weth_-
argument returns a value or just check if the account in the given address has code.

Aera: We will perform the balanceOf check. Fixed in PR 213.
Spearbit: Fixed.

29

https://github.com/GauntletNetworks/aera-contracts-v2/pull/238
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol
https://github.com/GauntletNetworks/aera-contracts-v2/pull/218
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L44-L46
https://github.com/GauntletNetworks/aera-contracts-v2/pull/213

5.3.14 Function submit () doesn't have whenHooksSet
Severity: Low Risk
Context: AeraVaultV2.sol

Description: The function submit() doesn't have the modifier whenHooksSet, while other functions like
deposit (), withdraw(), and finalize()do have this. It isn't absolutely necessary because initially
the contract is paused andresume()can only be called when the hooks are set. In turnsubmit()’
can't be run in the paused state.

However, for consistency and to prevent future mistakes with the pause logic, it would be good to also have the
whenHooksSet in function submit ().

function deposit(...) ... whenHooksSet ... {

}

function withdraw(...) ... whenHooksSet ... {

}

function finalize() ... whenHooksSet ... {

}

function submit(...) ... whenNotPaused ... {

}

function resume() ... whenHooksSet ... {
_unpause() ;

}

Recommendation: Consider adding the whenHooksSet modifier to function submit ().
Aera: Recommendation accepted. Fixed in PR 212.

Spearbit: Fixed.

5.3.15 In edge case resume () might be inaccessible
Severity: Low Risk
Context: AeraVaultV2.sol#L.342-L408

Description: The function finalize calls hooks.beforeFinalize (). Depending on the code of the hooks con-
tract, and non trivial code at the guardian, this could potentially do a reentrant call to pause(). Note: finalized
isn't set yet. After function finalize, finalized will be set and resume () can no longer be called because it has
the modifier whenNotFinalized.

However this doesn't have consequences as the only useful function that relies on whenNotPaused is submit ()
and that can't run either due to whenNotFinalized and isn't relevant anymore after finalize.

function finalize() nonReentrant ... whenNotFinalized {

hooks.beforeFinalize(); // ezternal call, could do reentrant call to pause()
// Effects: mark the wault as finalized.
finalized = true;

}

function pause() ... whenNotFinalized { // no nonReentrant modifier
}

function resume() ... whenNotFinalized {

}

Recommendation: Determine if it is useful to be able to call pause () from the hooks contract. There might be
cases if an inconsistency is detected, although a revert might be more appropriate then. Otherwise consider adding

30

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol
https://github.com/GauntletNetworks/aera-contracts-v2/pull/212
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L342-L408

the nonReentrant to pause (). Doublecheck the usefulness of whenNotFinalized at resume (). This function can
only be used after pause () has been called.

Aera: We will mark pause as nonReentrant as for now pausing from a hook is very unlikely as it would require the
guardian to be controlled by the hook which we do not envision.

We will keep the whenNotFinalized check on resume as it prevents the lastFeeCheckpoint to be modified which
could affect accounting in the Ul for us. Fixed in PR 219.

Spearbit: Fixed.

5.3.16 Access to inactive hooks contracts

Severity: Low Risk
Context: AeraVaultV2.sol#L.309-L339, AeraVaultV2.sol#L411-L464

Description: The functions execute () and submit () prevent calling into the current hooks contract. However if a
hooks contract is changed, then the protection doesn't work for the old version of the hooks contract. As that old
version of the hooks contract could potentially be used again, this might give too much access.

The calls from submit () are also protected by an allow list, so that would also require manipulating the allow list.
Also the potential functions that can called, are only the before and after hooks, which is harmless in the current
hooks contract when the hooks contract is not in use.

The calls from execute () can only be done by the owner which already has rights on the hooks contract so doesn't
introduce additional risks (unless the owner role is further separated.)

function execute(Operation calldata operation) external override onlyOwner {
if (operation.target == address(hooks)) { // only works for current version of hooks
revert Aera__ExecuteTargetIsHooksAddress();
}
}
function submit(Operation[] calldata operations) ... {
for (uint256 i = 0; i < numOperations;) {
if (operation.target == hooksAddress) { // only works for current version of hooks
revert Aera__SubmitTargetIsHooksAddress();
}
}
}

Recommendation: Consider deleting the custody variable of the hooks contract in a deinstallation hook and
perhaps setting it again in an installation hook. See issue "Life cycle of hooks contracts".

Alternatively keep a mapping of all (previous) hook contracts in the vault contract.

Aera: Recommendation of deleting the custody variable is accepted. This will be covered and tracked in our
solution to "Life cycle of hooks contracts”. Fixed in PR 161.

Spearbit: Verified.

31

https://github.com/GauntletNetworks/aera-contracts-v2/pull/219
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L309-L339
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L411-L464
https://github.com/spearbit-audits/review-gauntlet/issues/20
https://github.com/GauntletNetworks/aera-contracts-v2/pull/161

5.3.17 Owner can manipulate hooks

Severity: Low Risk
Context: AeraVaultV2.sol#L.289-1L.306

Description: Hooks protect the effect of the following owner functions: deposit (), withdraw() and finalize().
The owner can manipulate hooks in the following ways, which circumvents the use of the hooks:

« call setHooks() with a less restrictive hook, call one of the protected functions and restore the hook via
setHooks ();

+ call setHooks () reentrant from a hooks contract to an owner contract to change the after hook.

As the owner has a lot possibilities anyway, in practice the hooks will be used to protect him against mistakes, so he
normally wouldn't change the hooks. But an owner might be tricked into signing/executing unwanted transactions.

function setHooks(address newHooks) external override onlyOwner whenNotFinalized {

hooks = IHooks(newHooks);

}

Recommendation: If you want to further improve the use of hooks, consider adding a nonReentrant modifier to
setHooks (). Also consider having a hook before deinstallation and right after installation. This could perhaps be
used to install a time lock.

Aera: Added decomission hook in PR 161. Added a nonReentrant modifier to setHooks in PR 220.

Spearbit: Verified as the suggestion have largely been implemented, however the primairy risk is still present as
the owner has all the rights.

5.3.18 The constructor of AeraVaultV2 uses old value of owner
Severity: Low Risk
Context: AeraVaultV2.sol#L117-L166, AeraVaultV2.sol#L777-L798

Description: The constructor of AeraVaultV2 use the old value of owner to compare to guardian_ and feeRe-
cipient_. After these checks the owner is changed via _transferOwnership(owner_). This make these checks
not effective.

Also see issues:
 "Separation of roles".

» "Comments for _transferOwnership not accurate”

32

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L289-L306
https://github.com/GauntletNetworks/aera-contracts-v2/pull/161
https://github.com/GauntletNetworks/aera-contracts-v2/pull/220
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L117-L166
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L777-L798
https://github.com/spearbit-audits/review-gauntlet/issues/9
https://github.com/spearbit-audits/review-gauntlet/issues/11

contract AeraVaultV2 is
constructor(...) ... {

checkGuardianAddress(guardian); // uses old owner
checkFeeRecipientAddress(feeRecipient); // uses old owner

transferOwnership(owner); // installs new owner

}

function _checkGuardianAddress(address newGuardian) internal view {

if (newGuardian == owner()) {
revert Aera__GuardianIsOwner();

}
function _checkFeeRecipientAddress(address newFeeRecipient) internal view {
if (newFeeRecipient == owner()) {
revert Aera__FeeRecipientIsOwner();

}

Recommendation: Add a parameter to _checkGuardianAddress() and _checkFeeRecipientAddress() to sup-
ply the owner to be used in the comparison.

Aera: Fixed in PR 222.
Spearbit: Verified.

5.4 Gas Optimization

5.4.1 Redundant unavailableFee variable within claim scope
Severity: Gas Optimization

Context: AeraVaultV2.sol#L482-L493

Description: On L482 a unavailableFee variable is introduced. It is used only at the end of the scope, for an
event emission. L484 is equivalent to L482 and the reservedFee variable following it will always share the same
value.

uint256 unavailableFee = reservedFee - availableFee; // L/82

reservedFee -= availableFee; // L/8/ reservedFee now has the same value as unavatilableFee

emit Claimed(msg.sender, availableFee, unavailableFee);

Recommendation: Drop the redundant unavailableFee declaration, and simply use reservedFeealso for the
event emission in its place, which will save some gas and avoid confusion for the need of the same value being
stored in 2 different variables.

- uint256 unavailableFee = reservedFee - availableFee;
feeTotal -= availableFee;
reservedFee -= availableFee;

// Log the claim.
- emit Claimed(msg.sender, availableFee, unavailableFee);
+ emit Claimed(msg.sender, availableFee, reservedFee);

Aera: Recommendation accepted. Fixed in PR 203.

33

https://github.com/GauntletNetworks/aera-contracts-v2/pull/222
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L482-L493
https://github.com/GauntletNetworks/aera-contracts-v2/pull/203

Spearbit: Fixed.

5.4.2 Compiler settings may be changed to reduce bytecode size and gas usage
Severity: Gas Optimization

Context: foundry.toml#L1-L11

Description: Both existing foundry profiles do not use the solidity optimizer or the via-ir pipeline.

Using the standard optimizer can result in significant reductions to both bytecode size and gas usage. The op-
timizer's behavior can be configured by adjusting the number of runs which "specifies roughly how often each
opcode of the deployed code will be executed across the life-time of the contract”. A value of 1 produces less
bytecode but more expensive code, but typically still cheaper than without the optimizer. A larger values increases
bytecode size to produce more gas efficient code.

The standard optimization pipeline is complex, and may be a source of bugs. Using the via-ir pipeline provides
similar benefits, but with less risk. Note that via-ir also introduces a few semantic changes.

Recommendation: Consider using the via-ir pipeline with the optimizer enabled to reduce bytecode size (which
reduces deployment costs) and runtime gas usage. Be sure to run the test suite against contracts compiled with
via-ir to ensure expected contract behavior is not impacted by the semantic changes.

Aera: Recommendation accepted. Fixed in PR 232.

Spearbit: Fixed.

5.4.3 Possibility for unchecked block optimizations
Severity: Gas Optimization

Context: AeraVaultV2.sol#L537-L538, AeraVaultAssetRegistry.sol#L114, AeraVaultAssetRegistry.sol#L252, Aer-
aVaultAssetRegistry.sol#L264

Description: There are cases where arithmetic occurs whose underflow protection is already checked by a pre-
ceding logical precondition or overflow which is covered similarly and simply by being unattainable due to gas
limits, such as the case of single increments in loops.

Recommendation: Rewrite these operations in unchecked blocks which will provide gas savings by removing
these redundant or unreachable checks.

For AeraVaultV2.sol#L537-L538 we already have a precondition that makes sure we don't underflow

function _getFeeIndex() internal view returns (uint256 feeIndex) {
if (block.timestamp > lastFeeCheckpoint) {
+ unchecked {
feeIndex = block.timestamp - lastFeeCheckpoint;
+ }

For AeraVaultAssetRegistry.sol#L264

34

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/foundry.toml#L1-L11
https://docs.soliditylang.org/en/v0.8.21/internals/optimizer.html#optimizer-parameter-runs
https://docs.soliditylang.org/en/v0.8.21/ir-breaking-changes.html
https://docs.soliditylang.org/en/v0.8.21/ir-breaking-changes.html#semantic-only-changes
https://github.com/GauntletNetworks/aera-contracts-v2/pull/232
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L537-L538
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L114
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L252
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L264
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L264
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L537-L538
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L264

- for (uint256 i
+ for (uint256 i
if (
_assets[i] .isERC4626
&% IERC4626 (address(_assets[i].asset)) .asset() == asset
) {
revert Aera__AssetIsUnderlyingAssetOfERC4626(
address(_assets[i] .asset)

0; i < numAssets; i++) {
0; i < numAssets;) {

)
}
+ unchecked {
i++; // gas savings

+)

AeraVaultAssetRegistry.sol#L114 and AeraVaultAssetRegistry.sol#L.252 will follow a similar pattern as the last
example, and the Aera team already uses a number of these unchecked increments where appropriate within
loops so are familiarized with them.

Aera: Recommendation accepted. Fixed in PR 204.
Spearbit: Fixed.

5.4.4 Redundant Pausable modifiers
Severity: Gas Optimization
Context: AeraVaultV2.sol#L.384, AeraVaultV2.sol#L.391, AeraVaultV2.sol#L399, AeraVaultV2.sol#L407

Description: The pause and resume functions are guarded by the modifiers whenNotPaused and whenPaused,
respectively, inherited from Pausable. They also internally call to _pause and _unpause which are guarded by
these same modifiers. Hence, a redundant check occurs wasting gas.

Recommendation: Remove the Pausable modifiers guarding the external pause and resume variants, and instead
just depend on the check done from the internal calls for their appropriate states. This can save about 200 gas
on a successful call, it will however expend more gas on failed calls, which ideally shouldn't be submitted to the
network anyways. Consider amending the interface with commentary on this behavior, that the functions expect
to be in an appropriate paused/unpaused state and will revert otherwise and that these checks are handled by the
internal OZ Pausable calls.

Example suggestions for AeraVaultV2.sol#L384, AeraVaultV2.sol#L391

+ /// @dev MUST be in paused state.
/// @inheritdoc ICustody
function resume()

external
override
onlyOwner

- whenPaused

+ // checks that contract is paused first
_unpause () ;

}

Aera: Recommendation accepted. Fixed in PR 205.

Spearbit: Fixed.

35

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L114
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L252
https://github.com/GauntletNetworks/aera-contracts-v2/pull/204
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L384%5D
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L391%5D
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L399%5D
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L407%5D
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L384%5D
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L391%5D
https://github.com/GauntletNetworks/aera-contracts-v2/pull/205

5.4.5 Redundant check that WETH is not the zero address
Severity: Gas Optimization
Context: AeraVaultV2.sol#L144-L146, AeraVaultV2Factory.sol#L44-L46

Description: The vault constructor verifies that the WETH address is not the zero address. The WETH address
passed to the vault constructor comes from the factory, which stores the address as an immutable and verifies it at
construction. Therefore, since vaults will only be deployed from the factory, the check within the vault is redundant.

Recommendation: If there is confidence that vaults will only be deployed from the factory, this check can be
removed to save gas. However, the check may be kept if deployment approaches might change, or if there is a
chance Aera may be forked by another team and used in unknown ways.

Aera: Recommendation accepted. (We will indeed continue deploying through the factory.) Fixed in PR 206.

Spearbit: Fixed.

5.4.6 Move check after for loop to save gas
Severity: Gas Optimization
Context: AeraVaultAssetRegistry.sol#L450

Description: The !assetsToCheck[underlyingIndex] .isERC4626 check in the for loop of _checkUnderlyin-
gAsset in AeraVaultAssetRegistry can be moved to be after the loop to save some gas - by doing this you can
also revert with a more appropriate custom error based.

for (; underlyingIndex < numAssets; underlyingIndex++) {
if (
lassetsToCheck[underlyingIndex] .isERC4626
&& underlyingAsset
== address(assetsToCheck[underlyingIndex] .asset)

) o
break;
}
}
if (underlyingIndex == numAssets) {
revert Aera__UnderlyingAssetIsNotRegistered(address(asset.asset), underlyingAsset);
}

Recommendation: Move the check after the for loop and use a concrete custom error for i, like the following
code:

for (; underlyingIndex < numAssets; underlyingIndex++) {

if (
- lassetsToCheck[underlyingIndex] . iSERC4626 &&
underlyingAsset == address(assetsToCheck[underlyingIndex].asset)
) {
break;
}

revert Aera__UnderlyingAssetIsNotRegistered(address(asset.asset), underlyingAsset);

+if (assetsToCheck[underlyingIndex].isERC4626)
+ revert Aera_UnderlyingAssetIsItselfERC4626() ;

Aera: Recommendation accepted. Fixed in PR 207.

Spearbit: Fixed.

36

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L144-L146
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L44-L46
https://github.com/GauntletNetworks/aera-contracts-v2/pull/206
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L450
https://github.com/GauntletNetworks/aera-contracts-v2/pull/207

5.4.7 Function afterSubmit () does storage writes that are not always necessary

Severity: Gas Optimization

Context: AeraVaultHooks.sol#L215-L283

Description: The function afterSubmit () does some storage writes that are not always necessary.

function afterSubmit(Operation[] calldata operations) ... {
if (_beforeValue > 0) {
cumulativeDailyMultiplier = newMultiplier; // update might not be necessary

}

currentDay = day; // update might not be necessary

Recommendation: Consider changing the code so something like this:

uint256 newMultiplier;
uint256 currentMultiplier = cumulativeDailyMultiplier;

if (_beforeValue > 0) {
// Initialize new cumulative multiplier with the current submit multiplier.
newMultiplier = (custody.value() * ONE) / _beforeValue;

} else
newMultiplier = ONE;

if (currentDay == day) {
// Calculate total multiplier for today.
newMultiplier = (currentMultiplier * newMultiplier) / ONE;
} else // Effects: reset day and prior vault value for the next submission.
currentDay = day; // only update day when necessary

// Requirements: check that daily ezecution loss is within bounds.
if (newMultiplier < ONE - maxDailyExecutionLoss) {
revert Aera__ExceedsMaxDailyExecutionLoss();

}
// Effects: update the daily multiplier.
if (currentMultiplier != newMultiplier)

cumulativeDailyMultiplier = newMultiplier; // only update cumulativeDailyMultiplier when necessary

Aera: Fixed in PR 216.
Spearbit: Verified

5.4.8 Expensive functions _reserveFees() and value() called both but are very similar
Severity: Gas Optimization
Context: AeraVaultV2.sol#L.505-L511, AeraVaultV2.sol#L.545-1.583, AeraVaultV2.sol#L.590-L622

Description: The functions value() and _reserveFees() are very similar, they both call spotPrices() and _-
value (), which costs a lot of gas. In the case of submit (), function _reserveFees() is called once and value ()
is called twice.

37

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L215-L283
https://github.com/GauntletNetworks/aera-contracts-v2/pull/216
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L505-L511
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L545-L583
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L590-L622

function value() external view override returns (uint256 vaultValue) {
. erc20SpotPrices =assetRegistry.spotPrices();
IERC20 feeToken = assetRegistry.feeToken();
(vaultValue,) = _value(erc20SpotPrices, feeToken);
}

function _reserveFees() internal {

IERC20 feeToken = assetRegistry.feeToken();

try assetRegistry.spotPrices() returns (... erc20SpotPrices) {
(lastValue, lastFeeTokenPrice) = _value(erc20SpotPrices, feeToken);
} catch {}

Recommendation: Consider optimizing submit () by combining the _reserveFees() and the first call to value),
which is in the beforeSubmit () hook.

Also see issues:
* "holdings() and value() can be called while calls are being executed"
+ "Storing _beforeValue and _beforeBalance is relative expensive"

Aera: We don't see an elegant way of doing this without changing the interface of the beforeSubmit hook. We
acknowledge that there is duplication and wait until the transient TSTORE opcode is introduced and we can
implement a caching based solution.

Spearbit: Acknowledged.

5.4.9 Storing _beforeValue and _beforeBalance is relative expensive
Severity: Gas Optimization
Context: AeraVaultHooks.sol#L43-L46, AeraVaultHooks.sol#L183-L243

Description: The hooks contracts stores values in _beforeValue and _beforeBalance in between the befor-
eSubmit () and afterSubmit (), which is relatively expensive. Although the idea is to use TSTORE/TLOAD in the
future, these opcodes will not be available soon on all chains.

uint256 internal _beforeValue;
uint256 internal ;

function beforeSubmit(Operation[] calldata operations) ... {
// Effects: remember current vault value and ETH balance for use in afterSubmit.

_beforeValue = custody.value();
_beforeBalance = address(custody) .balance;

}

function afterSubmit(Operation[] calldata operations) ... {
. // user _beforeValue and _beforeBalance

}

Recommendation: Consider passing the values for value (), the native tokens balance and possibly holdings ()
to the before and after hooks. The deposit, withdraw and finalize hooks will have some extra overhead, but they
are not called frequently. The submit () hooks could be optimized by combining value() and _reserveFees().

Alternatively return the temporary values from the before hook and supply them in the calling function. This
however leaks information about the hooks implementation, which is undesirable according to the project team.

Also see issues:

* "holdings () and value () can be called while calls are being executed"

38

https://github.com/spearbit-audits/review-gauntlet/issues/59
https://github.com/spearbit-audits/review-gauntlet/issues/60
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L43-L46
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L183-L243
https://github.com/spearbit-audits/review-gauntlet/issues/59

+ "Expensive functions _reserveFees() and value() called both but are very similar"

Aera: We do not want to leak implementation details from hooks at this time and the gas cost is acceptable with
the current submit call frequency.

Spearbit: Acknowledged.

5.4.10 maxDailyExecutionLoss_ can be immutable
Severity: Gas Optimization
Context: AeraVaultHooks.sol#1L.215-.243, AeraVaultHooks.sol#L.289-L.294, AeraVaultHooks.sol#L77-L121

Description: The variable maxDailyExecutionLoss iS hever updated (except in afterFinalize()), so it can be
immutable. AlSO an immutable variable can be made for ONE - maxDailyExecutionLoss, Which makes after-
Submit () somewhat cheaper to execute. In that case maxDailyExecutionLoss isn't even necessary anymore.

uint256 public maxDailyExecutionLloss;
constructor(...) {

// Requirements: check if maz daily execution loss is bounded.
if (maxDailyExecutionLoss_ > ONE) {
revert Aera__MaxDailyExecutionLossIsGreaterThanOne();

}

maxDailyExecutionLoss = maxDailyExecutionLoss_;

}
function afterSubmit(Operation[] calldata operations) ... {
// Requirements: check that daily ezecution loss is within bounds.
if (newMultiplier < ONE - maxDailyExecutionLoss) {
revert Aera__ExceedsMaxDailyExecutionLoss();
}
}

function afterFinalize() external override onlyCustody {

maxDailyExecutionLoss = 0;

Recommendation: Consider changing the code to:

39

https://github.com/spearbit-audits/review-gauntlet/issues/61
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L215-L243
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L289-L294
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L77-L121

- uint256 public maxDailyExecutionLoss;
+ uint256 public immutable minDailyValue;

// Requirements: check if max daily execution loss is bounded.
if (maxDailyExecutionLoss_ > ONE) {
revert Aera__MaxDailyExecutionLossIsGreaterThanOne();

}

- maxDailyExecutionLoss = maxDailyExecutionloss_;
+ minDailyValue = ONE - maxDailyExecutionLoss_;

// Requirements: check that daily execution loss is within bounds.
- if (newMultiplier < ONE - maxDailyExecutionLoss) {
+ if (newMultiplier < minDailyValue) {
revert Aera__ExceedsMaXDailyExecutionLoss();

}

- maxDailyExecutionLoss = 0;

Aera: Fixed in PR 217.
Spearbit: Verified.

5.4.11 Changing user-defined type TargetSighash to be based off bytes32 is more suited and saves gas
Severity: Gas Optimization
Context: Types.sol#L10-L13, TargetSighashLib.sol#L4-L22

Description: The TargetSighash user-defined type is currently based off uint256, which is more appropriate for
numerical values that may expect some accompanying arithmetic operations to be performed upon them. The
intended purpose of TargetSighash is to store a fixed structure of 3 bytes sequences, which can be validated and
converted from its unstructured components easily.

Recommendation: A fixed bytes32 as the base type would seem more canon as it is sequences of bytes being
dealt with, which provides a better native representation. In addition to this, some overhead pertained to working
with uint types can be saved, and thereby gas savings achieved, with initial profiling indicating up to 40 gas saved
per call with the following code candidate:

function toTargetSighash(
address target,
bytes4 selector
) internal pure returns (TargetSighash targetSighash) {
- // Upcast to uint256 is required to prevent truncation during left shift.
targetSighash = TargetSighash.wrap(
- (uint256 (uint160(target)) << 32) | uint32(selector)
+ bytes20(target) | (bytes32(selector) >> (20 * 8))

Since fixed-size byte types are left aligned instead of right aligned like uint, an additional code and comment
revision will be required under the Types.sol file to reflect this

40

https://github.com/GauntletNetworks/aera-contracts-v2/pull/217
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/Types.sol#L10-L13
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/TargetSighashLib.sol#L4-L22

/// @notice Combination of contract address and sighash to be used in allowlist.
/// @dev It's packed as follows:

-/// [<empty> 64 bits] [target 160 bits] [selector 32 bits]
- type TargetSighash is uint256;
+ /// [target 160 bits] [selector 32 bits] [<empty> 64 bits]

+ type TargetSighash is bytes32;

Aera: Fixed in PR 168.
Spearbit: Verified.

5.4.12 Saving a vault's description to storage can be expensive
Severity: Gas Optimization
Context: AeraVaultV2.sol#L43-L46

Description: It can be expensive writing the description to storage depending on the description length. It costs
20,000 gas per 32 bytes of description text, plus another 20,000 gas to store string length if more than 1 slot is
needed. The description is not needed on-chain, so this storage write can be avoided.

Recommendation: Only emit the description in an event within the constructor of AeraVaultV2 instead of saving
it to storage. Alternatively, if vaults will only ever be deployed from the factory contract, consider just leveraging the
event already emitted by the factory, and never passing the description to the vault constructor.

Aera: We will only emit the description event in the factory contract (since all vaults are only deployed by the
factory). Fixed in PR 175.

Spearbit: Fixed.

5.4.13 Cache variables in immutable storage whenever possible
Severity: Gas Optimization

Context: AeraVaultAssetRegistry.sol#L350, AeraVaultV2.sol#L322-.323, AeraVaultV2.sol#L425-
L426, AeraVaultV2.sol#L478, AeraVaultV2.sol#1.508, AeraVaultV2.sol#L560, AeraVaultV2.sol#L.738,
AeraVaultV2.sol#L766

Description: The numeraireDecimals local variable in AeraVaultAssetRegistry::spotPrices can be just
cached as an immutable value in the constructor since the numeraire asset can't change. Doing this will save gas
for the callers of spotPrices.

Additionally, the feeToken is immutable. If all asset registries will have an immutable fee token, that can also be
saved as an immutable in the AeraVaultV2 constructor to remove all assetRegistry.feeToken() calls.

Recommendation: Cache the numeraireDecimals value in the constructor of AeraVaultAssetRegistry, and
cache the feeToken value in the constructor of AeravaultV2 if all asset registries will have an immutable fee token.

Aera: Recommendation accepted. Fixed in PR 230.

Spearbit: Fixed.

41

https://github.com/GauntletNetworks/aera-contracts-v2/pull/168
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L43-L46
https://github.com/GauntletNetworks/aera-contracts-v2/pull/175
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L350
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L322-L323
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L425-L426
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L425-L426
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L478
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L508
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L560
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L738
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L766
https://github.com/GauntletNetworks/aera-contracts-v2/pull/230

5.4.14 Skip 0 transfers
Severity: Gas Optimization
Context: AeraVaultV2.sol#L342-L.377

Description: The function finalize () might transfer 0 tokens if there are no tokens left for a specific asset. This
costs gas and leaves an event on chain.

function finalize() ... {

// Effects: transfer assets to owner.
assetAmounts[i] .asset.safeTransfer (owner(), assetAmounts[i].value); // value could be 0

}

Recommendation: Consider only transferring if value > 0.

function finalize() ... {

// Effects: transfer assets to owner.
+ if (assetAmounts[i].value > 0)
assetAmounts[i] .asset.safeTransfer(owner(), assetAmounts[i].value);

Aera: Recommendation accepted. Fixed in PR 221.

Spearbit: Fixed.

5.4.15 Use unchecked in for loop
Severity: Gas Optimization
Context: AeraVaultV2.sol#L227-L266

Description: On several locations in the code, the i++ of a for loop is optimized by placing it inside the loop
with an unchecked block. There are several other locations where this could be done. Additionally for unoptimized
builds ++i is slightly cheaper than i++.

function withdraw(AssetValue[] calldata amounts) ... {

for (uint256 i = 0; i < numAmounts; i++) {
assetValue = amounts[i];
if (assetValue.value == 0) {
continue;

}

}

Recommendation: Consider changing all i++ statements in a for loop to an unchecked block. Be careful with
continue statements because without the i++ in the loop they might lead to an endless loop. Here is an example.

42

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L342-L377
https://github.com/GauntletNetworks/aera-contracts-v2/pull/221
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L227-L266

function withdraw(AssetValue[] calldata amounts) ... {

for (uint256 i = 0; i < numAmounts; i++) {
for (uint256 i = 0; i < numAmounts;) {
assetValue = amounts[i];

+

- if (assetValue.value == 0) {
- continue;
}
+ if (assetValue.value > 0)
assetValue.asset.safeTransfer (owner(), assetValue.value);
+ unchecked {
++i; // gas savings
+ }
}

Changing i++ to ++i shouldn't be necessary for optimized builds.
Aera: Recommendation accepted. Fixed in PR 223.

Spearbit: Fixed.

5.4.16 More efficient duplicate check in deposit () and withdraw()

Severity: Gas Optimization

Context: AeraVaultV2.sol#L.169-1.224, AeraVaultV2.sol#L227-1.266, AeraVaultV2.sol#L.627-1668,
AeraVaultAssetRegistry.sol#L145-1.153

Description: The functions deposit () and withdraw() (via _checkWithdrawRequest ()) check that the input array
amounts doesn't contain duplicates via a nested for loop. If the input array is sorted, then this can be checked with a
single for loop, which is more effecient. This pattern is also used in the constructor of AeraVaultAssetRegistry.

43

https://github.com/GauntletNetworks/aera-contracts-v2/pull/223
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L169-L224
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L227-L266
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L627-L668
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L145-L153
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L145-L153

function deposit(AssetValue[] calldata amounts) ... {
for (uint256 i = 0; i < numAmounts;) {
for (uint256 j = 0; j < numAmounts;) {
// Requirements: check that no duplicate assets are provided.
if (i !'= j &% assetValue.asset == amounts[j].asset) {
revert Aera__AssetIsDuplicated(assetValue.asset);
}
}
}
}
function withdraw(AssetValue[] calldata amounts) ... {
// Requirements: check the withdraw request.
_checkWithdrawRequest (assets, amounts);
}
function _checkWithdrawRequest(IAssetRegistry.AssetInformation[] memory assets, ...) ... {
for (uint256 i = 0; i < numAmounts;) {
for (uint256 j = 0; j < numAmounts;) {
if (i !'= j && assetValue.asset == amounts[j].asset) {
revert Aera__AssetIsDuplicated(assetValue.asset);
}
}
}
}

Recommendation: let the functions deposit() and withdraw() have sorted input parameters and update the
check for duplicates logic.

Aera: Fixed in PR224 .
Spearbit: Verified.

5.4.17 Use EnumerableSet and EnumerableMap for _assets
Severity: Gas Optimization
Context: AeraVaultAssetRegistry.sol#L25, IAssetRegistry.sol#L14-L18

Description: The _assets registry requires a relative large amount of code to keep the array up to date. It is also
possible to use standard libraries to do this, which is less errorprone and easier to maintain.

44

https://github.com/GauntletNetworks/aera-contracts-v2/pull/224
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L25
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/IAssetRegistry.sol#L14-L18

contract AeraVaultAssetRegistry is IAssetRegistry, ERC165, Ownable2Step {
AssetInformation[] internal _assets;
}
interface IAssetRegistry {
struct AssetInformation {
IERC20 asset;
bool isERC4626;
AggregatorV2V3Interface oracle;

}

Additionally, assets() and decimals() are called frequently, while they normally won't change. Retrieving these
values once and storing them would save gas.

Sometimes it is relevant to determine if an ERC20 is used as an underlying asset for an ERC4626. That can also
be stored in the data structures. See for example issue "Spot prices does not need to compute prices for assets
that have 0 amounts”.

Recommendation: Consider using the Openzeppelin EnumerableSet and Openzeppelin EnumerableMap.

As these libraries work with mappings to a maximum of bytes32, the entire struct for AssetInformation won't
directly fit. However, the content could be split in information about ERC20 and ER4626 tokens, because they are
often handled separately:

» For ERC20: Use an AddressToUintMap where the ERC20 maps to oracle, stored in an uint256.

» For ERC4626: Use an EnumerableSet. The bool iSERC4626 isn't necessary anymore then because there
are two different datastructures.

To save gas this can be combined with storing assets () and decimals() in the following way:

* For ERC20: Use an AddressToUintMap Where the ERC20 maps to (oracle, decimals) , packed in an
uint256.

» For ERC4626: Use an AddressToUintMap where the ERC4626 maps to underlyingAsset, stored in an
uint256.

To combine this with an indication if an ERC20 is used as an underlying asset for an ERC4626 a counter can be
maintained, which indicated for how many ERC4626s the ERC20 is the underlying asset. This should be updated
when adding or removing tokens. Note: this also makes some checks in removeAsset easier.

» For ERC20: Use an AddressToUintMap where the ERC20 maps to (address oracle, uint 8 decimals,
uint8 counter) , packed in an uint256.

Aera: We will keep the current structure due to the additional complexity of packing. There is a better solution for
handling assets that uses caching of oracle values so we will have to rewrite this part in the future anyways.

Spearbit: Acknowledged.

45

https://github.com/spearbit-audits/review-gauntlet/issues/92
https://github.com/spearbit-audits/review-gauntlet/issues/92
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableMap.sol
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L264-L273

5.5 Informational
5.5.1 Atomic deployments can simplify instance setup and reduce risk

Severity: Informational
Context: AeraVaultV2Factory.sol#L52-L84

Description: The process for creating new Aera instances is a multi-step process: The vault is deployed from
the factory, the hooks and registry contracts are separately deployed, then setter methods are required to initialize
the contracts so they are aware of each other's addresses. This process results in added complexity and issues
such as "Beware of CREATEZ2 dangers with replaceable contracts possible via arbitrary factory” and "Lack of
assetRegistry.custody check upon being set can lead to invalid vault values and permanent loss of funds”. It also
means scripts that create instances must be capable of recovering from any transaction in the flow reverting.

Recommendation: Update the factory so it can support atomic deployment and initialization of all three contracts
(the vault, the initial hooks contract, and the registry) required for an Aera instance. There are a few ways this can
be done, and some of them share aspects.

First, consider removing the arbitrary deploy function from the factory and leveraging a deterministic deployer such
as deterministic-deployment-proxy:

» This deployer is on main chains, and for chains it's not yet on, it can be deployed by anyone as long as
that chain (1) does not require EIP-155 transactions, and (2) has the same gas metering as the EVM. Celo
and Arbitrum are notable chains that each violate one of requirements, but the deployer was administratively
placed on both of those chains.

+ This deployer is automatically used in forge scripts when deploying a salt via e.g. new MyContract{salt:
mySalt}(args).

* Leveraging this in deploy scripts instead of relying on the the AeraVaultV2Factory factory achieves the same
goals, but mitigates the risk of the owner deploying malicious vaults through the vault factory. The owner can
still deploy malicious vaults through this deployer instead, but that makes it easier to discover nonstandard
vaults since they did not use the expected factory.

The vaults can deploy the hook and registry contracts during construction, this way an instance's deploy and setup
is fully atomic and there's no risk of a step failing. Given that the hook and registry contracts may change, there
are two main ways to do this:

1. Pass in bytes memory hookCreationCode and bytes memory registryCreationCode as vault construc-
tor arguments, and deploy them in the vault constructor with CREATE. The constructor would also execute
any required setup calls such as calling setCustody. However, since the hook and registry both know the
vault address is msg. sender, the separate setter transaction is unnecessary (and consequently the setCus-
tody method can be removed). Additionally, all addresses can be set (as immutables where necessary)
in constructors without requiring precomputation of addresses. The usage of CREATE instead of CREATE2 is
important for this, as it removes the the creation code from address calculation.

2. For a given hook or registry contract, also have a corresponding factory contract that deploys that contract.
The vault now takes each factory address and two encoded constructor arguments (e.g. bytes memory
encodedHookConstructorArgs) as inputs. The vault constructor calls the factory and passes along the con-
structor arguments. The constructor arguments are encoded as bytes to support differing constructor argu-
ment formats in a single vault (in case future hook or registry contracts need different parameters) so the
hook/registry would be responsible for decoding these in their constructor. This has the same address-setting
benefits as the prior option.

With either of these approaches the ERC165Checker . supportsInterface() could potentially be skipped, how-
ever they may be worth keeping to verify the correct contracts are used. If going with the hooks/registry factory
approach, the AeravaultV2Factory owner can maintain an allowlist of factories that are known to be safe and
conform to the required interfaces.

Aera: Fixed by PR 178, PR 233, PR 246, PR 255.
Spearbit: Verified

46

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L52-L84
https://github.com/Arachnid/deterministic-deployment-proxy
https://github.com/GauntletNetworks/aera-contracts-v2/pull/178
https://github.com/GauntletNetworks/aera-contracts-v2/pull/233
https://github.com/GauntletNetworks/aera-contracts-v2/pull/246
https://github.com/GauntletNetworks/aera-contracts-v2/pull/255

5.5.2 The number of days isn't always 365
Severity: Informational
Context: File.sol#L123, AeraVaultV2.sol#L27-L30.

Description: The number of days isn't always 365 as shown in the comments, but slightly more as is shown by
leap years. For details see wiki Year. The difference is very minor though.

/// @notice Largest possible fee earned proportion per one second.
/// @dev 0.0000001) per second, t.e. 3.1536/ per year.

/// 0.0000001) * (365 * 24 * 60 * 60) = 3.1536)

uint256 private constant _MAX_FEE = 10 ** 9;

Recommendation: Consider updating the comment.
Aera: Recommendation accepted. Fixed in PR 197.

Spearbit: Fixed.

5.5.3 Explicitly include inherited constructors for improved readability

Severity: Informational

Context: AeraVaultV2Factory.sol#L43, AeraVaultV2.sol#L117-L125, AeraVaultHooks.sol#L77-L82,
AeraVaultAssetRegistry.sol#L95-L100

Description: The contracts intended for deployment utilize multi-level inheritance and among these is a depen-
dency that has its own constructor. Namely, they tend to inherit Ownable2Step which in turn inherits Ownable and
contains its own constructor that is fired off before that of the derived contracts. It initially sets the Context._ms-
gSender () to owner until the derived contract's constructor overrides it with a _transferOwnership (owner_) call,
in the current design.

Recommendation: Consider making the constructor effects of inherited contracts more obvious by explicitly in-
cluding their invocation in the derived contract's constructor.

In the case of AeraVaultAssetRegistry

constructor(
address owner_,
AssetInformation[] memory assets_,
uint256 numeraireld_,
IERC20 feeToken_
-) {
+) Ownable() {

which can similarly be applied to the other derived contracts noted under context. Note that the order here does
not affect the invocation order of the constructors, the inheritance graph decides that.

Aera: Recommendation accepted. Fixed in PR 196.

Spearbit: Fixed.

47

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/...
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L27-L30
https://en.wikipedia.org/wiki/Year
https://github.com/GauntletNetworks/aera-contracts-v2/pull/197
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L43
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L117-L125
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L77-L82
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L95-L100
https://github.com/GauntletNetworks/aera-contracts-v2/pull/196

5.5.4 Comments for _checkUnderlyingAsset() could be more detailed
Severity: Informational
Context: AeraVaultAssetRegistry.sol#L95-L.226, AeraVaultAssetRegistry.sol#L439-L463

Description: The function _checkUnderlyingAsset () correctly doesn't show a match if the underlying asset is an
ERC4626. This isn't expressed in the comments.

constructor(...) ... {

if (assets_[i].isERC4626) {
// Requirements: check that underlying asset ezists.
checkUnderlyingAsset (assets[i], assets_);

}
}
function addAsset(AssetInformation calldata asset) ... {
// Requirements: check that underlying asset is registered.
if (asset.isERC4626) {
_checkUnderlyingAsset (asset, _assets);
}
}
/// @notice Check whether the underlying asset is listed or mot.
function _checkUnderlyingAsset(...) ... {
if (
!assetsToCheck [underlyingIndex] .isERC4626 // so if Underlyingdsset is an ERC/626 it won't
— match
&% underlyingAsset == address(assetsToCheck[underlyingIndex].asset)
) {
break;
}

Recommendation: Expand the comments to indicate that underlying assets may not be an ERC4626.
Aera: Recommendation accepted. Fixed in PR 195.
Spearbit: Fixed.

5.5.5 AeraVaultAssetRegistry use different ways to track similar tokens
Severity: Informational
Context: AeraVaultAssetRegistry.sol#L95-L99

Description: The contract AeraVaultAssetRegistry uses two different ways to track the similar tokens feeToken
and numeraire. feeToken is tracked by address and numeraire is tracked as an index of the assets array.

Using two different methods is more difficult to understand and maintain as well as more prone to errors.

48

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L95-L226
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L439-L463
https://github.com/GauntletNetworks/aera-contracts-v2/pull/195
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L95-L99

contract AeraVaultAssetRegistry is IAssetRegistry, ERC165, Ownable2Step {
IERC20 public immutable feeToken;
uint256 public numeraireld;

constructor(... , AssetInformation[] memory assets_, uint256 numeraireId_, IERC20 feeToken_) {

numeraireld = numeraireld_;
feeToken = feeToken_;

Recommendation: Consider using the same approach for both tokens, preferably by tracking via the address
because that is less error prone. Also see issues:

* "Use EnumerableSet and EnumerableMap for _assets"

+ "Cache variables in immutable storage whenever possible”
Aera: Numeraire is tracked by address. Fixed in PR 226 and PR 231.
Spearbit: Verified.

5.5.6 Detect failing oracles

Severity: Informational
Context: AeraVaultV2.sol#.545-L.583, AeraVaultV2.sol#L505-.511

Description: If one of the oracles always reverts than spotPrices() always fails and then lastFeeTokenPrice
will always stay 0 and no fees will acccrue. In that situation value () will also revert, which means submit () will
also revert.

uint256 public lastFeeTokenPrice;
function _reserveFees() internal {

try assetRegistry.spotPrices() returns (
IAssetRegistry.AssetPriceReading[] memory erc20SpotPrices

) A
// assume it never arrives here because spotPrices always fails

} catch {}

if (lastFeeTokenPrice == 0) { // then lastFeeTokenPrice always stays 0
return;

}

}
function value() external view override returns (uint256 vaultValue) {
IAssetRegistry.AssetPriceReading[] memory erc20SpotPrices = assetRegistry.spotPrices();

Recommendation: Add offline monitoring to detect the sitation where oracles fails, by checking failed submit ()
transactions. The guardian will also complain soon if its not detected.

Aera: We will incorporate this in our monitoring.

Spearbit: Acknowledged.

49

https://github.com/spearbit-audits/review-gauntlet/issues/12
https://github.com/spearbit-audits/review-gauntlet/issues/41
https://github.com/GauntletNetworks/aera-contracts-v2/pull/226
https://github.com/GauntletNetworks/aera-contracts-v2/pull/231
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L545-L583
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L505-L511

5.5.7 Avoid name collision by renaming a local variable
Severity: Informational
Context: AeraVaultV2.sol#L740

Description: In AeravaultV2::_getHoldings you have the asset local variable, but it is of type IAssetReg-
istry.AssetInformation Which is a struct that itself has an asset variable in it. Consider renaming the asset
local variable to assetInfo to avoid name collisions.

Recommendation: Change the code in AeraVaultV2::_getHoldings in the following way:

- IAssetRegistry.AssetInformation memory asset;
+ IAssetRegistry.AssetInformation memory assetInfo;

Aera: Recommendation accepted. Fixed in PR 192.

Spearbit: Fixed.

5.5.8 Vault should revert when there is 0 availableFee to claim

Severity: Informational
Context: AeraVaultV2.sol#L480-L490

Description: This code snippet is part of AeraVaultVv2: :claim:

uint256 availableFee =
Math.min(feeToken.balanceOf (address(this)), reservedFee);
uint256 unavailableFee = reservedFee - availableFee;
feeTotal -= availableFee;
reservedFee -= availableFee;

// Effects: update leftover fee.
fees[msg.sender] = reservedFee;

// Interactions: transfer fee to caller.
feeToken.safeTransfer (msg.sender, availableFee);

The problem with this is if availableFee == 0 then the code will still execute by doing a 0 value ERC20: :transfer
and also emitting a Claimed event. This shouldn't be the case, especially since you have a Aera__NoAvailable-
FeeForCaller custom error.

Recommendation: Check if availableFee == 0 and revert with Aera__NoAvailableFeeForCaller in
AeraVaultV2::claim.

Aera: Recommendation accepted. Fixed in PR 194.

Spearbit: Fixed.

5.5.9 Custom error name is misguiding
Severity: Informational
Context: AeraVaultV2.sol#L475

Description: This code snippet is from AeraVaultV2: :claim:

uint256 reservedFee = fees[msg.sender];

// Requirements: check that there are fees to claim.
if (reservedFee == 0) {
revert Aera__NoAvailableFeeForCaller(msg.sender);

}

50

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L740
https://github.com/GauntletNetworks/aera-contracts-v2/pull/192
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L480-L490
https://github.com/GauntletNetworks/aera-contracts-v2/pull/194
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L475

The issue is that the custom error name Aera__NoAvailableFeeForCaller is misguiding - it is actually thrown
when the caller has no fees to claim, not when there is no available fee balance (the intent of the error).

Recommendation: Use a new custom error for this check, for example Aera__NoClaimableFeesFor-
Caller (address caller).

Aera: Recommendation accepted. Fixed in PR 167.

Spearbit: Fixed.

5.5.10 Set index local variable to 0 for explicitness and readability

Severity: Informational
Context: AeraVaultAssetRegistry.sol#L446, AeraVaultAssetRegistry.sol#L.356

Description: The underlyingIndex local variable in AeraVaultAssetRegistry: : _checkUnderlyingAsset is used
as a for loop index variable in the method. Same is the case with the index local variable in AeraVaultAssetReg-
istry::spotPrices. As a best practice, set them to 0 for explicitness and readability.

Recommendation: Do the following changes:

- uint256 underlyingIndex;
+ uint256 underlyinglndex = O;

- uint256 index;
+ uint256 index = O;

Aera: Recommendation accepted. Fixed in PR 191.

Spearbit: Fixed.

5.5.11 If statement in _getHoldings() can be made more readable.

Severity: Informational
Context: AeraVaultV2.sol#L731-L760

Description: An if statement in _getHoldings () can be made more readable.

function _getHoldings(IAssetRegistry.AssetInformation[] memory assets) ... {

if (assetAmounts[i].value > feeTotal) {
assetAmounts[i] .value -= feeTotal;
} else {
assetAmounts[i] .value = 0;

}

Recommendation: Consider changing the code to:

function _getHoldings(IAssetRegistry.AssetInformation[] memory assets) ... {

- if (assetAmounts[i].value > feeTotal) {

- assetAmounts[i] .value -= feeTotal;

- } else {

- assetAmounts[i] .value = 0;

-}

+ assetAmounts[i] .value -= Math.min(feeTotal, assetAmounts[i].value);

51

https://github.com/GauntletNetworks/aera-contracts-v2/pull/167
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L446
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L356
https://github.com/GauntletNetworks/aera-contracts-v2/pull/191
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L731-L760

Aera: Recommendation accepted. Fixed in PR 190.

Spearbit: Fixed.

5.5.12 Prefer ranged bound checks over exact for safety

Severity: Informational
Context: AeraVaultAssetRegistry.sol#L121, AeraVaultAssetRegistry.sol#L194, AeraVaultAssetRegistry.sol#L458

Description: Throughout the codebase, logical preconditions exist that test for an exact value to indicate an invalid
state is reached, when the entire bound of values if ever reached would be invalid.

Recommendation: Even though these preconditions do seem logically sound in their current form, their current
correctness depends on a number of different moving parts working correctly in tandem. Therefore it would be
safer and more accurate to check the entire bound, and indeed consider those states explicitly invalid. It could
save the team and end-users in case of any unforeseen or introduced off-by-one errors or the like.

AeraVaultAssetRegistry.sol#L121

- if (feeTokenIndex == numAssets) ...
+ if (feeTokenInfex >= numAssets) ...

AeraVaultAssetRegistry.sol#L.194

- if (numAssets == MAX_ASSETS) ...
+ if (numAssets >= MAX_ASSETS) ...

AeraVaultAssetRegistry.sol#L458

- if (underlyingIndex == numAssets) ...
+ if (underlyingIndex >= numAssets) ...

Aera: Recommendation accepted. Fixed in PR 189.
Spearbit: Fixed.

5.5.13 Consider safer declarations of variables within loop

Severity: Informational
Context: AeraVaultAssetRegistry.sol#L353-L355
Description: 3 variables:

* oracleDecimals

* price

¢ answer

are used within a loop and declared above its scope. They are not intended to have any carry over between loop
runs or outside of it.

Recommendation: It may be safer to have them declared each time within the loop to ensure no unexpected
leaks between runs if the codebase is expected to see potential revisions in those portions of the code. This would
come at a greater gas cost with a ceiling of ~350 gas for one full run through spotPrices when compiled optimized
and assuming the worst case of 50 assets.

If the team is confident that this portion of the codebase is stable, they may choose to keep the code as is for
efficiency, but to inspect future revisions for possible leaks.

Aera: Acknowledged. We expect this code path to be relatively stable.
Spearbit: Acknowledged.

52

https://github.com/GauntletNetworks/aera-contracts-v2/pull/190
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L121
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L194
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L458
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L121
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L194
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L458
https://github.com/GauntletNetworks/aera-contracts-v2/pull/189
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L353-L355

5.5.14 Typos in code comments
Severity: Informational
Context: AeraVaultV2.sol#L35, AeraVaultV2.sol#L.244

Description: One comment says adress instead of address, and another says transfering instead of trans-
ferring.

Recommendation: Correct the typos.
Aera: Solved in PR 166.
Spearbit: Verified.

5.5.15 Unnecessary initialization of lastFeeCheckpoint
Severity: Informational
Context: AeraVaultV2.sol#L73

Description: The initialization of lastFeeCheckpoint = type(uint256) .max is unnecessary as lastFeeCheck-
point is set in the constructor with 1astFeeCheckpoint = block.timestamp;

contract AeraVaultV2 is .. {
uint256 public lastFeeCheckpoint = type(uint256) .max;
constructor(...) ... {

lastFeeCheckpoint = block.timestamp;

}

Recommendation: Remove the assignment at the variable declaration.

- uint256 public lastFeeCheckpoint = type(uint256) .max;
+ uint256 public lastFeeCheckpoint;

Aera: Recommendation accepted. Fixed in PR 188.

Spearbit: Fixed.

5.5.16 Missing validation in addTargetSighash and removeTargetSighash

Severity: Informational
Context: AeraVaultHooks.sol#L126-L136, AeraVaultHooks.sol#L141-L152

Description: The addTargetSighash does not check that the target is a contract, which means EOAs may be
added as targets. Additionally, the addTargetSighash method does not check that the given target/selector is
currently false, and the removeTargetSighash does not check that the given target/selector is not already set to
true.

Recommendation: If only contracts are intended to be added, add a check to addTargetSighash to verify the
target has code. If redundant event emissions are not desirable, add a check that the target/selector is in the
expected state before continuing with insertion or removal.

Aera: Recommendation accepted. Fixed in PR 236.

Spearbit: Fixed.

53

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L35
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L244
https://github.com/GauntletNetworks/aera-contracts-v2/pull/166
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L73
https://github.com/GauntletNetworks/aera-contracts-v2/pull/188
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L126-L136
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L141-L152
https://github.com/GauntletNetworks/aera-contracts-v2/pull/236

5.5.17 Inconsistent interfaces for specifying target addresses and selectors

Severity: Informational

Context: AeraVaultHooks.sol#L39, AeraVaultHooks.sol#L77-L82, AeraVaultHooks.sol#L126-L129,
AeraVaultHooks.sol#L141-L144

Description: The constructor requires target addresses and selectors to be pre-formatted into the TargetSighash
type, but addTargetSighash and removeTargetSighash take the target and selector as explicit arguments, leading
to inconsistent interfaces for callers.

This difference also shows up in the mapping(TargetSighash => bool) public targetSighashAllowed vari-
able, which matches the constructor's interface.

Recommendation: Use an array of structs in the constructor instead to match the interfaces of the addTarget-
Sighash and removeTargetSighash methods, such as:

struct TargetSighashData {
address target;
bytes4 selector;

}

constructor(
address owner_,
address custody_,
uint256 maxDailyExecutionLoss_,
TargetSighashData[] memory targetSighashAllowlist
) o

Similarly, make the targetSighashAllowed mapping internal and add a getter method that exposes its data by
taking explicit target and selector inputs.

This way the user that sets allowed targets and selectors never has to worry about the internal packed represen-
tation.

Aera: Fixed in PR 174.
Spearbit: Verified.

5.5.18 Local variable names shadow state variable names
Severity: Informational
Context: AeraVaultV2Factory.sol#L52-L72, AeraVaultV2Factory.sol#L87-L107

Description: In the create and computeVaultAddress methods of AeraVaultV2Factory, the local owner function
argument shadows the owner () method from the Ownable contract.

Recommendation: In each method, rename the function argument to vaultOwner to disambiguate from the
factory owner, or append an underscore such as owner_.

Aera: Fixed in PR 151 and PR 172.
Spearbit: Verified.

54

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L39
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L77-L82
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L126-L129
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L141-L144
https://github.com/GauntletNetworks/aera-contracts-v2/pull/174
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L52-L72
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L87-L107
https://github.com/GauntletNetworks/aera-contracts-v2/pull/151
https://github.com/GauntletNetworks/aera-contracts-v2/pull/172

5.5.19 Beware of ERC4626 inflation attack

Severity: Informational
Context: Aera

Description: ERC4626 contracts have a know issue with inflation attacks, which occurs when the contract is still
empty. For further information see:

+ a-novel-defense-against-erc4626-inflation-attacks
+ OpenZeppeling ERC4626.sol
Also see issue "Malicious Tokens, Oracles and erc4626 could undo ExecutionLoss checks".

Recommendation: When selecting ERC4626 contracts, be careful not to use empty ones because of risk of
inflation attack.

Aera: Will add empty contract check to our ERC4626 whitelist criteria.
Spearbit: Acknowledged.

5.5.20 Result of function value () not 100% accurate

Severity: Informational
Context: AeraVaultV2.sol#L590-L622

Description: The function value(), which uses _value() uses convertToAssets() to retrieve the amount of
underlying tokens in erc4626 contracts. According to the specification of eip-4626.

The methods totalAssets, convertToShares and convertToAssets are estimates useful for display
purposes, and do not have to confer the exact amount of underlying assets their context suggests.

Thus the result of function value() is not 100% accurate. The differences are probably neglectable, but it's good
to be aware of this.

function _value(...) ... {
balance = IERC4626(address(assets[i].asset)).convertToAssets(assetAmounts[i].value);

}

Recommendation: Be aware of the fact that the result of function value () is not 100% accurate.
Aera: Acknowledged.

Spearbit: Acknowledged.

5.5.21 Emit events in all state-changing methods

Severity: Informational
Context: AeraVaultV2Factory.sol#L113, AeraVaultHooks.sol#L106-L111

Description: The deploy method in AeraVaultV2Factory deploys a contract, but does not emit an event for this.
Consider emitting one so that off-chain monitoring can be done for the method. Another place where emitting an
event would be good is when adding target sighashes in the constructor of AeraVaultHooks.

Recommendation: Add a ContractDeployed event in the deploy method of AeraVaultV2Factory. Emit a Tar-
getSighashAdded event in the constructor of AeraVaultHooks when setting a target sighash as allowed.

Aera: Recommendation accepted. Fixed in PR 176.

Spearbit: Fixed.

55

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol#L22-L28
https://github.com/spearbit-audits/review-gauntlet/issues/27
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L590-L622
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4626.md?plain=1#L592-L593
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L113
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L106-L111
https://github.com/GauntletNetworks/aera-contracts-v2/pull/176

5.5.22 Emit all sensible state-changing data in events

Severity: Informational

Context: AeraVaultV2Factory.sol#L75-L83, AeraVaultV2.sol#L.545-L583, AeraVaultV2.sol#L440,
AeraVaultV2.s0l#L463, AeraVaultV2.sol#L223, AeraVaultV2.sol#L265

Description: The VaultCreated event in AeraVaultV2Factory::create emits all constructor arguments of
AreaVaultV2 apart from the owner value, which should also be emitted.

The _reserveFees method in AeraVaultV2 performs 5 storage writes which are not emitted in an event: feeTotal,
fees[feeRecipient], lastFeeCheckpoint, lastValue, lastFeeTokenPrice.

Unlike the Aera__SubmissionFailed error, the Aera__SubmitTargetIsHooksAddress error does not include the
operation's index. This makes it harder to identify the invalid operation when a submit call fails.

The Submitted event emits the owner address, but that method is called by the guardian. If guardian's change,
this can make it difficult to identify the guardian that submitted the transaction.

For the Deposit and Withdraw events, all amounts are batched into a single event emission, which makes it harder
to filter deposit and withdraw events for a given token.

Lastly, the Claimed event does not include the new feeTotal.
A best practice for event emissions is to ensure that current state can be reconstructed from all events.

Recommendation: Consider emitting the owner value as part of the VaultCreated event in
AeraVaultV2Factory: :create. Additionally, add a new event to log the storage changes from _reserveFees().

Include the operation's index in the Aera__SubmitTargetIsHooksAddress signature.

Additionally, replace the owner's address with the guardian's address when emitting the Submitted event. Alter-
natively, consider emitting both the guardian and owner address if relevant.

emit Submitted(guardian, operations);

Change the Deposit and Withdraw events to be emitted within each loop iteration, where each event contains data
for a single asset.

event Deposit(address indexed owner, IERC20 indexed asset, uint256 value);
event Withdraw(address indexed owner, IERC20 indexed asset, uint256 value);

Lastly, include the updated feeTotal in the Claimed event.

event Claimed(
address indexed feeRecipient, uint256 feeTotal, uint256 claimedFee, uint256 unclaimedFee

)

Aera: Recommendation accepted. We will emit it as an indexed value. Fixed in PR 179.

Spearbit: Fixed.

56

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L75-L83
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L545-L583
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L440
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L463
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L223
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L265
https://github.com/GauntletNetworks/aera-contracts-v2/pull/179

5.5.23 Inherent limits of submit ()

Severity: Informational
Context: AeraVaultV2.sol#L411-L454, AeraVaultHooks.sol#L215-L283, AeraVaultHooks.sol#L183-L212
Description: The expression space for submit () is limited:

« the result of one operation (e.g. amount of received tokens) can't be use for the next action;

» the number of received tokens can't be verified to limit slippage or to check the received erc4626 tokens
(unless this is built in the protocol that is called, or its implemented in a surrounding check in a guardian
contract). Also see eip-4626.md slippage limits.

Additionally some of the more advanced protocols can't be interacted with, due to checks on allowances in af-
terSubmit (). For example:

» Permit2
* UniswapX
» Cowswap TWAP
Also there is no support for eip-1271

» Cowswap

function submit(Operation[] calldata operations)
for (uint256 i = 0; i < numOperations;) {

(success, result) = operation.target.call{value: operation.value}(operation.data);

}

submit () also can't send native tokens (ETH) directly to the receive () function of a smart contract because the
allow list requires the calldata to be at least 4 bytes. Related to this is the additional limitation that there is no way
to call a fallback() function for the same reason. This could be relevant for other EVM programming languages
that don't use selectors. The owner would have to know the expected calldata and allow the first 4 bytes as a
selector.

function beforeSubmit(Operation[] calldata operations) ... {

for (uint256 i = 0; i < numOperations;) {
selector = bytes4(operations[i].datal[0:4]1); // requires data to be at least 4 bytes
}

Recommendation: Doublecheck the inherent limits of submit (). Several solutions might help to reduce MEV
extraction and frontruning. Perhaps its useful to be able to check the received tokens. Document the limitations of
submit () in the documenation for the guardian.

Aera: Yes, aware. Current protocol functionality is sufficient for guardians. We will likely expand it in the future.
Spearbit: Acknowledged.

57

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L411-L454
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L215-L283
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L183-L212
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4626.md?plain=1#L590
https://github.com/Uniswap/permit2
https://github.com/Uniswap/UniswapX
https://blog.cow.fi/cow-swap-launches-twap-orders-d5583135b472
https://eips.ethereum.org/EIPS/eip-1271
https://docs.cow.fi/smart-contracts/settlement-contract/signature-schemes

5.5.24 Index event parameters to simplify off-chain log queries

Severity: Informational
Context: AeraVaultV2Factory.sol#L25

Description: The VaultCreated event in AeraVaultV2Factory can index up to two more parameters, which might
be worth it for easier off-chain querying of state changes.

Recommendation: Index two more parameters of the VaultCreated event.
Aera: Fixed in PR 165.
Spearbit: Verified.

5.5.25 On different chains weth is not the wrapped native token name

Severity: Informational
Context: AeraVaultV2Factory.sol#L13, AeraVaultV2.sol#L38-L39

Description: The contract AeravaultV2Factory and AeraVaultV2 have the weth storage variable, which should
hold the address for the wrapped native token on the Ethereum blockchain. The issue is that the protocol will
be deployed on multiple chains, and in most of which the native asset is not ETH, which makes the name weth
incorrect.

contract AeraVaultV2Factory is IAeraVaultV2Factory, Ownable2Step {
/// @notice The address of WETH.
address public immutable weth;

}

contract AeraVaultV2 is
/// @notice The address of WETH.
address public immutable weth;

}

Recommendation: Consider renaming weth to wrappedNativeToken in AeraVaultV2Factory and AeraVaultV2.
Aera: Recommendation accepted. Fixed in PR 171.

Spearbit: Fixed.

5.5.26 Unused code can be removed and interfaces can be simplified

Severity: Informational

Context: |AeraVaultV2Factory.sol#L4-L6, |AssetRegistry.sol#L41-L56, IHooks.sol#L9, AeraVaultAssetReg-
istry.sol#L11, AeraVaultAssetRegistry.sol#L78

Description: Some smart contracts in the codebase contain imports of other contracts that are not used and can
be deleted. The full list is:

* import "../AeraVaultHooks.sol"; in IAeraVaultV2Factory.sol
» import {TargetSighash} from "../Types.sol"; in IAeraVaultV2Factory.sol
» import {ONE} from "./Constants.sol"; in AeraVaultAssetRegistry.sol

The import of AeraVaultV2 in IAeraVaultV2Factory is not needed in that interface, but is needed in
AeraVaultV2Factory.sol.

There is also an unused error: Aera__ValueLengthIsNotSame is defined in AeraVaultAssetRegistry but never
used.

58

https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L25
https://github.com/GauntletNetworks/aera-contracts-v2/pull/165
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2Factory.sol#L13
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L38-L39
https://github.com/GauntletNetworks/aera-contracts-v2/pull/171
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/IAeraVaultV2Factory.sol#L4-L6
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/IAssetRegistry.sol#L41-L56
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/IHooks.sol#L9
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L11
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L11
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L78

Additionally, interfaces for hook and registry contracts can simplified. Currently, the IHooks and IAssetRegistry
contain many methods and events that are required by the current implementors of those interfaces, but may not
be required for future hook or registry contracts. Specifically:

» THooks inherits from IHooksEvents, but future hook contracts may use different events, and these events are
not required to be part of the hook interface.

+ IAssetRegistry contains methods that are never used by the vault or hooks contracts, and therefore do not
need to part of the interface for future registry implementations. The full list of functions not required to be
part of the IAssetRegistry interface are: numeraireId(), addAsset (), and removeAsset ().

Recommendation: Remove the unused imports and errors, and move the AeraVaultV2 import from IAer-
aVaultV2Factory to AeraVaultV2Factory.

Additionally, the AeraVaultHooks contract can directly inherit IHooksEvents instead of IHooks inheriting from it.
Consider renaming IHooksEvents to make it clear that this interface is for a specific hook implementation, not all
hook implementations.

Remove the numeraireId(), addAsset (), and removeAsset () methods from the IAssetRegistry interface.
Aera: Recommendation accepted. Fixed in PR 214.
Spearbit: Fixed.

5.5.27 Comment in finalize() could be more detailed

Severity: Informational
Context: AeraVaultV2.sol#L365

Description: The comment in finalize () about "transfer assets to owner" could be more detailed.

function finalize() ... {

// Effects: transfer assets to owner.
assetAmounts[i] .asset.safeTransfer(owner(), assetAmounts[i].value);

}

Recommendation: Consider changing the comment to something like:

- // Effects: transfer assets to owner.
+ // Effects: transfer registered assets to owner. Excluding reserved feetokens and native token (ETH).

Aera: Fixed in PR 164.
Spearbit: Verified.

5.5.28 Ordering of _checkReservedFees ()
Severity: Informational
Context: AeraVaultV2.sol#L411-L464

Description: It seems slightly more logical to do the prevFeeTokenBalance / _checkReservedFees() in function
submit () around the hooks. This might be relevant if future versions of hooks could somehow influence fees (this
is not possible in the current code).

59

https://github.com/GauntletNetworks/aera-contracts-v2/pull/214
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L365
https://github.com/GauntletNetworks/aera-contracts-v2/pull/164
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L411-L464

function submit(Operation[] calldata operatiomns) ... {
_reserveFees();

// Hooks: before ezecuting operations.
hooks.beforeSubmit (operations) ;
uint256 prevFeeTokenBalance = assetRegistry.feeToken().balanceOf (address(this));

. // submit actions

// Invariants: check that insolvency of fee token was not introduced or increased.
_checkReservedFees (prevFeeTokenBalance) ;

// Hooks: after executing operations.

hooks.afterSubmit (operations) ;

Recommendation: Consider making a modifier for these checks. As _reserveFees() needs to be done be-
fore checking the current balance, this should be combined with making a modifier for _reserveFees(). See
issue: "Ordering of _reserveFees()". Such a modifier could also be used at other functions as an extra safety
precaution

Alternatively consider changing the code as shown below.

_reserveFees();

+ uint256 prevFeeTokenBalance = assetRegistry.feeToken().balanceOf (address(this));
hooks.beforeSubmit (operations) ;

- uint256 prevFeeTokenBalance = assetRegistry.feeToken() .balanceOf (address(this));

... // submit actions
- _checkReservedFees (prevFeeTokenBalance) ;

hooks.afterSubmit (operations) ;
+ _checkReservedFees (prevFeeTokenBalance) ;

Aera: We will add a checkReservedFees modifier. Fixed in PR 143.

Spearbit: Fixed. If going modifier route, ensure it's a post-run modifier, that runs following the body, just to be
clear.

5.5.29 Comments for _transferOwnership hot accurate

Severity: Informational

Context: AeraVaultV2.sol#L157-L158, AeraVaultAssetRegistry.sol#L178-L179, AeraVaultHooks.sol#L119-L120,
Ownable2Step.sol#L44-L47, Ownable.sol#L78-L82

Description: The comment at the contructors of AeraVaultV2, AeraVaultAssetRegistry and AeraVaultHooks
seem to suggest the _transferOwnership() results in a two step process. However _transferOwnership() is an
internal function that directly transfers the ownership.

60

https://github.com/spearbit-audits/review-gauntlet/issues/14
https://github.com/GauntletNetworks/aera-contracts-v2/pull/143
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L157-L158
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultAssetRegistry.sol#L178-L179
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultHooks.sol#L119-L120
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/dependencies/openzeppelin/Ownable2Step.sol#L44-L47
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/dependencies/openzeppelin/Ownable.sol#L78-L82

contract AeraVaultV2 is ... {
constructor(...) {
// Effects: initiate ownership transfer and pause vault.
transferOwnership (owner) ;

}
contract AeraVaultAssetRegistry is IAssetRegistry, ERC165, Ownable2Step {
constructor(...) {
// Effects: initiate ownership transfer to initial owner.
transferOwnership (owner) ;

}
contract AeraVaultHooks is IHooks, ERC165, Ownable2Step {
constructor(...) {
// Effects: create a pending ownership transfer.
transferOwnership (owner) ;

abstract contract Ownable2Step is Ownable {
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership (newOwner) ;

}
abstract contract Ownable is Context {
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);

Recommendation: Update the comments to show that the owner is changed immediately, for example in the
following way:

- // Effects: create a pending ownership transfer.
+ // Effects: set new owner

Aera: Fixed in PR 163.
Spearbit: Verfied.

5.5.30 Separation of roles
Severity: Informational
Context: AeraVaultV2.sol#L777-L798
Description: Within the Aera protocol there are several roles defined:
1) owners, for AeraVaultV2Factory, AeraVaultV2, AeraVaultHooks and AeraVaultAssetRegistry
2) guardian
3) feeRecipient (and previous feeRecipient)
4) custody for AeraVaultHooks and AeraVaultAssetRegistry, which is the AeraVaultV2 contract

Some checks are done to make sure these addresses are not the same:

61

https://github.com/GauntletNetworks/aera-contracts-v2/pull/163
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L777-L798

function _checkGuardianAddress(address newGuardian) internal view {

if (newGuardian == owner()) {
revert Aera__GuardianIsOwner();
}
}
function _checkFeeRecipientAddress(address newFeeRecipient) internal view {
if (newFeeRecipient == owner()) {
revert Aera__FeeRecipientIsOwner();

}

However there are lot of combinations that are not checked. Several of them are unwanted, for example:

» guardian != feeRecipient . According to How-AeraV2-Works.pdf: it's important that there is no
possible collusion with the guardian/fee recipient.

* owner of AeraVaultHooks != guardian. If they are equal, the guardian could do addTargetSighash()

* AeraVaultV2 != owner of any of the contracts. If that would be the case, the guardian could perhaps
use submit () to do owner actions, depending on the allow list configuration.

With transferOwnership() the different owners can be changed. There is currently no check to verify they are
separate from other addresses.

Recommendation: Consider the relevance of checking addresses because one entity could easily use two ad-
dresses. If you do want to enforce: Determine which combinations of addresses should have different addresses.
Implement checks to enforce this, also at locations where one of these addresses changes. This includes:

* transferOwnership()

* setHooks ()

* setGuardianAndFeeRecipient ()
Aera: The following checks will be enforced:

guardian != owner (vault) guardian != owner (hooks) guardian != owner (asset registry) feeRecipient !|= owner
(vault) vault != owner (hooks) vault != owner (asset registry)

In:
AeraVaultv2
* constructor check guardian |= owner (vault)
» constructor check guardian != owner (asset registry)
» constructor check feeRecipient |= owner (vault)
* constructor check vault != owner (asset registry)
* transferOwnership check guardian != owner (vault)
» transferOwnership check feeRecipient != owner (vault)
* setGuardianAndFeeRecipient check guardian != owner (hooks)
* setGuardianAndFeeRecipient check guardian |= owner (asset registry)
* setHooks check guardian != owner (hooks)
» setHooks check vault != owner (hooks)
AeraVaultHooks
* transferOwnership check guardian != owner (hooks)

AeraVaultAssetRegistry

62

* transferOwnership check guardian != owner (asset registry)

Fixed in PR 235. As many checks as possible are implemented, including in transferOwnership(). Excluding
situations where the vault would assume that hooks / asset registry are ownable.

Spearbit: Verified.

5.5.31 Use one term for Vault
Severity: Informational
Context: ICustody.sol#L12, ICustodyEvents.sol#L7, AeraVaultV2.sol#L18-L24

Description: The contract AeraVaultV2 inherits from ICustody. Vault and Custody are used to refer to the same
object, which not is intuitive. This makes the code more difficult to read.

contract AeraVaultV2 is ICustody, ... {

}
interface ICustody is ICustodyEvents {

}

Recommendation: Consider renaming all uses of Custody to Vault (or the other way around).
Aera: Fixed in PR 170 and PR 177.
Spearbit: Verified.

63

https://github.com/GauntletNetworks/aera-contracts-v2/pull/235
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/ICustody.sol#L12
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/interfaces/ICustodyEvents.sol#L7
https://github.com/GauntletNetworks/aera-contracts-v2/blob/2adbc057107333239d5cfa05a39006fe2703e02c/src/v2/AeraVaultV2.sol#L18-L24
https://github.com/GauntletNetworks/aera-contracts-v2/pull/170
https://github.com/GauntletNetworks/aera-contracts-v2/pull/177

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	High Risk
	Funds of negligent owner can be accessed by guardian

	Medium Risk
	The guardian can use his own MEV opportunities
	Multiple-token-addresses can circumvent checks
	Beware of CREATE2 dangers with replaceable contracts possible via arbitrary factory
	Guardian can rapidly drain 2 * maxDailyExecutionLoss (%) * vaultValue
	Numeraire tokens with low decimals can cause inaccurate pricing of other tokens
	Guardians can artificially increase accrued fees for free
	try/catch statement may be manipulated to force usage of stale prices
	Using Chainlink price feeds on some L2s requires a sequencer check
	Chainlink price feed oracle staleness is not checked
	Removal of assets in the registry can be DOSed
	Fees may never accrue in some scenarios
	finalize may revert in some scenarios
	Malicious Tokens, Oracles and erc4626 could undo ExecutionLoss checks
	Owner can circumvent _checkReservedFees() in execute()
	Last resort function execute() could fail
	Life cycle of hooks contracts
	Lack of assetRegistry.custody check upon being set can lead to invalid vault values and permanent loss of funds
	Lack of custody address check in setHooks function can lead to most functions reverting while unpaused, until properly reset hook
	Ordering of _reserveFees()
	Disable renounceOwnership()

	Low Risk
	Precision loss when computing custody.value()
	execute function should have nonReentrant guard
	Disallow execute and submit operations targeting vault itself
	Loop removeAsset() compares asset to itself
	Use msg.sender as opposed to owner() in methods that have an onlyOwner modifier
	_getSpotPricesAndUnits() can be simplified and made safer
	holdings() and value() can be called while calls are being executed
	Precision loss when computing newMultiplier
	_value may revert for non-conforming ERC-4626 tokens
	Add stronger validation on oracle addresses
	Native tokens could be temporarily inaccessible
	Contracts can't rescue mistakenly sent ERC20 tokens or ETH
	Add a stronger than just a zero address check for weth
	Function submit() doesn't have whenHooksSet
	In edge case resume() might be inaccessible
	Access to inactive hooks contracts
	Owner can manipulate hooks
	The constructor of AeraVaultV2 uses old value of owner

	Gas Optimization
	Redundant unavailableFee variable within claim scope
	Compiler settings may be changed to reduce bytecode size and gas usage
	Possibility for unchecked block optimizations
	Redundant Pausable modifiers
	Redundant check that WETH is not the zero address
	Move check after for loop to save gas
	Function afterSubmit() does storage writes that are not always necessary
	Expensive functions _reserveFees() and value() called both but are very similar
	Storing _beforeValue and _beforeBalance is relative expensive
	maxDailyExecutionLoss_ can be immutable
	Changing user-defined type TargetSighash to be based off bytes32 is more suited and saves gas
	Saving a vault's description to storage can be expensive
	Cache variables in immutable storage whenever possible
	Skip 0 transfers
	Use unchecked in for loop
	More efficient duplicate check in deposit() and withdraw()
	Use EnumerableSet and EnumerableMap for _assets

	Informational
	Atomic deployments can simplify instance setup and reduce risk
	The number of days isn't always 365
	Explicitly include inherited constructors for improved readability
	Comments for _checkUnderlyingAsset() could be more detailed
	AeraVaultAssetRegistry use different ways to track similar tokens
	Detect failing oracles
	Avoid name collision by renaming a local variable
	Vault should revert when there is 0 availableFee to claim
	Custom error name is misguiding
	Set index local variable to 0 for explicitness and readability
	If statement in _getHoldings() can be made more readable.
	Prefer ranged bound checks over exact for safety
	Consider safer declarations of variables within loop
	Typos in code comments
	Unnecessary initialization of lastFeeCheckpoint
	Missing validation in addTargetSighash and removeTargetSighash
	Inconsistent interfaces for specifying target addresses and selectors
	Local variable names shadow state variable names
	Beware of ERC4626 inflation attack
	Result of function value() not 100% accurate
	Emit events in all state-changing methods
	Emit all sensible state-changing data in events
	Inherent limits of submit()
	Index event parameters to simplify off-chain log queries
	On different chains weth is not the wrapped native token name
	Unused code can be removed and interfaces can be simplified
	Comment in finalize() could be more detailed
	Ordering of _checkReservedFees()
	Comments for _transferOwnership not accurate
	Separation of roles
	Use one term for Vault

