SPEARBIT

Gauntlet Security Review

Auditors
Gerard Persoon, Lead Security Researcher
Eric Wang, Lead Security Researcher
Emanuele Ricci, Security Researcher
Devansh Batham, Apprentice

Report prepared by: Pablo Misirov & Devansh Batham

October 16, 2022

Contents

1 About Spearbit

2
3

Introduction

Risk classification

3.1 Impact e
3.2 Likelihood e e
3.3 Actionrequired for severity levels
Executive Summary
Findings
5.1 Critical Risk e
5.1.1 Important Balancer fields can be overwritten by EndTime
5.1.2 sweep function should prevent Treasury from withdrawing pools BPTs
5.2 High Risk e
5.2.1 Manager can cause an immediate weightchange
5.2.2 deposit and withdraw functions are susceptible to sandwich attacks
5.2.3 allowance() doesn’tlimit withdraw()s i
5.2.4 Managed Pools are still undergoing development and may contain bugs and/or significant
Changes e
5.2.5 Malicious manager could cause Vault funds to be inaccessible
5.2.6 updateWeightsGradually allows change rates to start in the past with a very high maximum-
Ratio e e e e e e e e e
5.2.7 The vault manager has unchecked power to create arbitrage using setSwapFees
5.2.8 Implement a function to claim liquidity miningrewards
5.3 MediumRisk
5.3.1 Owner can circumvent allowance() via enableTradingWithWeights()
5.3.2 Front-running attacks on finalize could affect received tokenamounts
5.3.3 safelApprove in depositToken could revert for non-standard token like USDT
5.3.4 Consult with Balancer team about best approach to add and remove funds
5.3.5 Fee on transfer can block several functions,
5.3.6 enableTradingWithWeights allow the Treasury to change the pool’s weights even if the swap
isnotdisabled e
5.3.7 AeraVault constructor is not checking all the input parameters
5.3.8 Possible mismatch between Validator.count and AeraVault assetscount
5.4 Low Risk
5.4.1 Ensure vault’s deploymentintegrity
5.4.2 Frequent calling of calculateAndDistributeManagerFees() lowersfees
5.4.3 OpenZeppelinbestpractices
5.4.4 Possible roundingdownoffees
5.4.5 Missing nonReentrant modifier on initiateFinalization(), setManager () and claimMan-
agerFees() functions
5.4.6 Potential divisionby 0 L
5.4.7 Use ManagedPoolFactory instead of BaseManagedPoolFactory to deploy the Balancer pool .
5.4.8 Adopt the two-step ownership transfer pattern. o o oo
5.4.9 Implement zero-address check formanager_
5.5 GasOptimization e e
5.5.1 Simplify tracking of managerFeelndex L
5.5.2 Directly call getTokensData() from returnFunds()
5.5.3 Change uint32 and uint64 t0 uint256 o o e e
5.5.4 Use block.timestamp directly instead of assigning it to a temporary variable.
5.5.5 Consider replacing pool.getPoolId() with bytes32 public immutable poolld to save
gasandexternalcalls
5.5.6 Savevaluesintemporaryvariables

5.6

Informational e 28
5.6.1 Aera could be prone to out-of-gas transaction revert when managing a high number of tokens 28

5.6.2 Use a consistent way to call getNormalizedWeights() 28
5.6.3 Add function disableTrading() t0 IManagerAPI.sol 29
5.6.4 Doublecheck layout functions L 30
5.6.5 Use Math library functionsinaconsistentway 31
5.6.6 Separation of concerns Owner and Manager 31
5.6.7 Add modifier whenInitialized to function finalize() 32
5.6.8 Document the use of mustA1lowlistLPs v v vttt i e e 32
5.6.9 finalize canbe called multipletimes 33
5.6.10 Consider updating finalize to have a more "clean" final state for the Aeravault/Balancer

POOl . . e 34
5.6.11 enableTradingWithWeights is not emitting an event for pool's weightchange 34
5.6.12 Document Balancerchecks 35
5.6.13 Rename FinalizationInitialized to FinalizationInitiated for code consistency 35
5.6.14 Consider enforcing an explicit check on token order to avoid humanerror 36
5.6.15 Swap is not enabled after initialDeposit execution 38
5.6.16 Remove commented code and replace input values with Balancerenum 38
5.6.17 The Created event is not including all the information used to deploy the Balancer pool and

are missing indexed properties L 38
5.6.18 Rename temp variable managers 10 assetManagers to avoid confusions and any potential

future mistakes L 40
5.6.19 Move description declaration inside the storage slotcode block 41
5.6.20 Remove unused imports fromcode 41
5.6.21 shortfall is repeated twice in IWithdrawalValidator natspec comments 41
5.6.22 Provide definition of weights & managementFee_ in the NatSpec comment 42

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Gauntlet is the financial modeling and simulation platform for blockchains. Decentralized systems create new
challenges for protocol developers, smart contract developers, and asset holders that you don’t see in traditional
development and asset management. Gauntlet uses tried and tested techniques from algorithmic trading to simu-
late crypto networks, inform design decisions, and drive successful design and participation.

Disclaimer: This security review does not guarantee against a hack. It is a snapshot in time of Gauntlet’s contract
codebase according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

 High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

* Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

» Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood
 High - almost certain to happen, easy to perform, or not easy but highly incentivized
» Medium - only conditionally possible or incentivized, but still relatively likely

» Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels
+ Critical - Must fix as soon as possible (if already deployed)
* High - Must fix (before deployment if not already deployed)
* Medium - Should fix

* Low - Could fix

https://spearbit.com

4 Executive Summary
Over the course of 14 days in total, Gauntlet engaged with Spearbit to review Aera Contracts. In this period of time
a total of 55 issues were found.

Note that per client’s request, all instances containing the word "MAMMON" have been replaced with "AERA" to
prevent future misunderstandings when reading this report. Changes do not affect contract behavior.

Summary
Project Name Gauntlet
Repository Aera Contracts
Commit d48ddedf1dc70b9...
Type of Project Treasury re-insurance, DeFi
Audit Timeline May 2 - May 16, 2022
Methods Manual Review

Issues Found

Critical Risk

High Risk

Medium Risk

Low Risk

Gas Optimizations
Informational
Total Issues

a1l N| O ©O| 0o 0Of N

a1l N

https://gauntlet.network/
https://spearbit.com
https://github.com/GauntletNetworks
https://github.com/GauntletNetworks/aera-contracts
https://github.com/GauntletNetworks/aera-contracts/tree/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2

5 Findings
5.1 Critical Risk

5.1.1 Important Balancer fields can be overwritten by EndTime

Severity: Critical Risk
Context: ManagedPool.sol#L75-L77, ManagedPool.sol#L84-L86, LegacyBasePool.sol, WordCodec.sol

Description: Balancer’s ManagedPool uses 32 bit values for startTime and endTime but it does not verify if those
values exist within that range. Values are stored in a 32-byte _miscData slot in BasePool via the insertUint32()
function. Nevertheless, this function does not strip any excess bits, resulting in other fields stored in _miscData to
be overwritten.

In the version that Aera Vault uses only the "restrict LP" field can be overwritten and by carefully crafting the value
of endTime, the "restrict LP" boolean can be switched off, allowing anyone to use joinPool.

The Manager could cause this behavior via the updateWeightsGradually () function while the Owner could do it
via enableTradingWithWeights ().

Note: This issue has been reported to Balancer by the Spearbit team.

contract is BaseWeightedPool, ReentrancyGuard { // f1/de92ac4/3d6dafif3a/2025blecdb8918f22e
// [64 bits | 119 bits | 1 bat | 32 bits | 32 bits | 7 bits / 1 bat]
// [reserved | wunused | restrict LP | end time | start time | total tokens | swap flag]
// |MSB

function _startGradualWeightChange(uint256 startTime, uint256 endTime, ...) ... {

_setMiscData(
_getMiscData() .insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime,
< _END_TIME_OFFSET)
); // this convert the walues to 32 bits

In the latest version of ManagedPool many more fields can be overwritten, including:
» LP flag
+ Fee end/Fee start

» Swap flag

contract is BaseWeightedPool, AumProtocolFeeCache, ReentrancyGuard { // current wersion
// [64 bits | 1 bit [31 bits | 1 bit | 31 bits | 64 bits | 32 bits | 32 bits]
// [swap fee | LP flag | fee end | swap flag | fee start | end swap | end wgt [start wgt]
// |MSB LSB|

The following POC shows how fields can be manipulated.

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.13;
import "hardhat/console.sol";

contract {
uint256 private constant _MASK_1 = 2*x(1) - 1;
uint256 private constant _MASK_31 2%%(31) - 1;
uint256 private constant _MASK_32 2%%(32) - 1;
uint256 private constant _MASK_64 = 2x*(64) - 1;
uint256 private constant _MASK_192 = 2*%(192) - 1;

https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L75-L77
https://github.com/balancer-labs/balancer-v2-monorepo/blob/master/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L84-L86
https://github.com/balancer-labs/balancer-v2-monorepo/blob/80b0e1b129d575c313f59800ec7e19237a43c087/pkg/pool-utils/contracts/LegacyBasePool.sol
https://github.com/balancer-labs/balancer-v2-monorepo/blob/c3ffdd81ec4320786f25b4869107ff6a4f8c0494/pkg/solidity-utils/contracts/helpers/WordCodec.sol

// [64 bits [1 bit [31 bits / 1 bet | 31 bits | 64 bits | 32 bits | 32 bits]
// [swap fee | LP flag | fee end | swap flag | fee start | end swap | end wgt [start wgt]
// |MSB LSB|
uint256 private constant _WEIGHT_START_TIME_OFFSET = O;

uint256 private constant _WEIGHT_END_TIME_OFFSET = 32;

uint256 private constant _END_SWAP_FEE_PERCENTAGE_OFFSET = 64;

uint256 private constant _FEE_START_TIME_OFFSET = 128;

uint256 private constant _SWAP_ENABLED_OFFSET = 159;

uint256 private constant _FEE_END_TIME_OFFSET = 160;

uint256 private constant _MUST_ALLOWLIST_LPS_OFFSET = 191;

uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;

function insertUint32(bytes32 word,uint256 value,uint256 offset) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256 (word) & ~(_MASK_32 << offset));
return clearedWord | bytes32(value << offset);

}

function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_31;

}

function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_32;

}

function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_64;

}

function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
return (uint256(word >> offset) & _MASK_1) == 1;

}

function insertBits192(bytes32 word,bytes32 value,uint256 offset) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);

constructor() {

bytes32 poolState;

bytes32 miscData;

uint startTime = 1 + 2%2%%32;

uint endTime = 3 + 4*2%%32 + 5*2%x(32+64) + 2%*(32+64+31) + 6*2%*(32+64+31+1) +
2%% (32+64+31+1+31) + T*2%%(32+64+31+1+31+1);

poolState = insertUint32(poolState,startTime, _WEIGHT_START_TIME_OFFSET);
poolState = insertUint32(poolState,endTime, _WEIGHT_END_TIME_OFFSET) ;
miscData = insertBits192(miscData,poolState,0);

console.log("startTime", decodeUint32(miscData, _WEIGHT_START_TIME_OFFSET)); // 1

console.log("endTime", decodeUint32(miscData, _WEIGHT_END_TIME_OFFSET)); // 3

console.log("endSwapFeePercentage", decodeUint64(miscData, _END_SWAP_FEE_PERCENTAGE_OFFSET)) ;
// 4

console.log("Fee startTime", decodeUint31(miscData, _FEE_START_TIME_OFFSET)); // 5

console.log("Swap enabled", decodeBool (miscData, _SWAP_ENABLED_OFFSET)); // true

console.log("Fee endTime", decodeUint31(miscData, _FEE_END_TIME_OFFSET)); // 6

console.log("AllowlistLP", decodeBool (miscData, _MUST_ALLOWLIST_LPS_OFFSET)); //
true

console.log("Swap fee percentage", decodeUint64(poolState, _SWAP_FEE_PERCENTAGE_OFFSET)); // 7
console.log("Swap fee percentage", decodeUint64(miscData, _SWAP_FEE_PERCENTAGE_OFFSET)); // 0
due to miscData conversion

}

Recommendation: Make use of a ManagedPool. sol version which solves this issue.

In the meantime, before any call is made to pool.updateWeightsGradually() verify that :

* startTime<= type(uint32) .max
* endTime <= type(uint32) .max
Gauntlet: Recommendation implemented in PR #145

Spearbit: Acknowledged. Recommendation has been implemented.

5.1.2 sweep function should prevent Treasury from withdrawing pool’s BPTs
Severity: Critical Risk
Context: AeraVaultV1.sol#L559-L561

Description: The current sweep() implementation allows the vault owner (the Treasury) to sweep any token
owned by the vault including BPTs (Balancer Pool Tokens) that have been minted by the Vault during the pool’s
initialDeposit () function call.

The current vault implementation does not need those BPTs to withdraw funds because they are passed directly
through the AssetManager flow via withdraw()/finalize().

Being able to withdraw BPTs would allow the Treasury to:
+ Withdraw funds without respecting the time period between initiateFinalization() and finalize() calls.
+ Withdraw funds without respecting Validator allowance () limits.
» Withdraw funds without paying the manager’s fee for the last withdraw().
» finalize the pool, withdrawing all funds and selling valueless BPTs on the market.
* Sell or rent out BPTs and withdraw() funds afterwards, thus doubling the funds.

Swap fees would not be paid because Treasury could call setManager (newManager), where the new manager is
someone controlled by the Treasury, subsequently calling setSwapFee (0) to remove the swap fee, which would be
applied during an exitPool() event.

Note: Once the BPT is retrieved it can also be used to call exitPool(), as the mustAllowlistLPs check is ignored
in exitPool().

Recommendation: Add a check on the token input parameter to prevent Treasury from withdrawing the Pool’s
BTP tokens.

Gauntlet: Fixed in PR #132
Spearbit: Acknowledged.

5.2 High Risk

5.2.1 Manager can cause an immediate weight change

Severity: High Risk

Context: ManagedPool.sol#L254-L.272, ManagedPool.sol#L620-L654, ManagedPool.sol#L680-L698

Description: Balancer’s ManagedPool uses 32 bit values for startTime and endTime but it does not verify if those
values exist within that range.

When endTime is set to 2#*32 it becomes larger than startTime S0 the _require(startTime <= endTime,
...) statement will not revert. When endTime is converted to 32 bits it will get a value of 0, so in _calcu-
lateWeightChangeProgress() the test if (currentTime >= endTime) ... will be true, causing the weight to
immediately reach the end value.

This way the Manager can cause an immediate weight change via the updateWeightsGradually () function and
open arbitrage opportunities.

Note: startTime is also subject to this overflow problem. Note: the same issues occur in the latest version of
ManagedPool. Note: This issue has been reported to Balancer by the Spearbit team.

https://github.com/GauntletNetworks/aera-contracts/pull/145
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L559-L561
https://github.com/GauntletNetworks/aera-contracts/pull/132
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L254-L272
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L620-L654
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L680-L698

Also see the following issues:
* Managed Pools are still undergoing development and may contain bugs and/or change significantly

» Important fields of Balancer can be overwritten by EndTime

contract is BaseWeightedPool, ReentrancyGuard {
function updateWeightsGradually(uint256 startTime, uint256 endTime, ...) {

uint256 currentTime = block.timestamp;

startTime = Math.max(currentTime, startTime);

_require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL); // will not revert if
— endTime == 2%*32

_startGradualWeightChange (startTime, endTime, _getNormalizedWeights(), endWeights, tokens);
}

function _startGradualWeightChange(uint256 startTime, uint256 endTime, ...) ... {

_setMiscData(
_getMiscData() .insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime,
< _END_TIME_OFFSET)
); // this convert the wvalues to 32 bits

function _calculateWeightChangeProgress() private view returns (uint256) {
uint256 currentTime = block.timestamp;
bytes32 poolState = _getMiscData();

uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET) ;
uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET) ;

if (currentTime >= endTime) { // will be true if endTime == (2%+32) capped to 32 bits == 0
return FixedPoint.ONE;
} else

Recommendation: Make use of a ManagedPool. sol version which solves this issue.
In the meantime verify before pool.updateWeightsGradually () is called that:

* startTime<= type(uint32) .max

* endTime <= type(uint32) .max
Gauntlet: Recommendation implemented in PR #145

Spearbit: Acknowledged.

https://github.com/GauntletNetworks/aera-contracts/pull/145

5.2.2 deposit and withdraw functions are susceptible to sandwich attacks

Severity: High Risk
Context: AeraVaultV1.sol#L402-L453, AeraVaultV1.sol#L456-L514

Description: Transactions calling the deposit () function are susceptible to sandwich attacks where an attacker
can extract value from deposits. A similar issue exists in the withdraw() function but the minimum check on the
pool holdings limits the attack’s impact.

Consider the following scenario (swap fees ignored for simplicity):

1.

6.

Suppose the Balancer pool contains two tokens, WETH and DAI, and weights are 0.5 and 0.5. Currently,
there is 1 WETH and 3k DAI in the pool and WETH spot price is 3k.

The Treasury wants to add another 3k DAT into the Aera vault, so it calls the deposit () function.

The attacker front-runs the Treasury’s transaction. They swap 3k DAI into the Balancer pool and get out 0.5
WETH. The weights remain 0.5 and 0.5, but because WETH and DAI balances become 0.5 and 6k, WETH's spot
price now becomes 12k.

Now, the Treasury’s transaction adds 3k DAT into the Balancer pool and upgrades the weights to 0.5*1.5: 0.5
=0.6: 0.4.

The attacker back-runs the transaction and swaps the 0.5 WETH they got in step 3 back to DAI (and recovers
the WETH's spot price to near but above 3k). According to the current weights, they can get 9k*(1 - 1/r) = 3.33k
DAI from the pool, where r = (2°0.4)°(1/0.6).

As a result the attacker profits 3.33k - 3k = 0.33k DAT.

Recommendation: Potential mitigations include:

+ Adopting a two-step deposit and withdraw model. First, disable trading and check that the pool’s spot price is

within range. If not, enable trading again and let arbitragers re-balance the pool. Once rebalanced, deposit
or withdraw from the pool. Then enable trading again (possibly with weights).

+ Avoid depositing or withdrawing if the pool balance has changed in the same block. The lastChangeBlock

variable stores the last block number where the pool balance was modified. By ensuring lastChangeBlock
is less than the current block number, same-block sandwich attacks can be prevented. Still, this mitigation
does not avoid multi-block MEV attacks.

« Similar to slippage protection, add price boundaries as parameters to the deposit () and withdraw() func-

tions to ensure pool’s spot price is within boundaries before and after deposit or withdrawal. Revert the
transaction if boundaries are not met.

» Use Flashbots to reduce sandwiching probabilities.

Gauntlet: As discussed, this is a problem with spot price agnostic depositing into an AMM. V2 will introduce
oracle-informed spot price updates. We will take the following actions for V1:

+ Advise treasuries against making large deposits

» For sensitive/larger deposits, offer an option to reject the transaction if balances have been changed in the

block (LastChangeBlock), implemented in PR #138.

+ Advise treasuries to use flash bots when possible

Spearbit: Actions taken on a procedural and not technical level.

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L402-L453
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456-L514
https://github.com/GauntletNetworks/aera-contracts/pull/138

5.2.3 allowance() doesn’t limit withdraw()s
Severity: High Risk
Context: PermissiveWithdrawalValidator.sol#L17-L27, IWithdrawalValidator.sol, AeraVaultV1.sol#L456-L514

Description: The allowance () function is meant to limit withdraw amounts. However, allowance () can only read
and not alter state because its visibility is set to view. Therefore, the withdraw () function can be called on demand
until the entire Vault/Pool balance has been drained, rendering the allowance () function ineffective.

function withdraw(uint256[] calldata amounts) ... {
uint256[] memory allowances = validator.allowance();
for (uint256 i = 0; i < tokens.length; i++) {
if (amounts[i] > holdings[i] || amounts[i] > allowances[i]) {
revert Aera__AmountExceedAvailable(...);

}

}

// can't update state due to view
function allowance() external view override returns (uint256[] memory amounts) {
amounts = new uint256[] (count);
for (uint256 i = 0; i < count; i++) {
amounts[i] = ANY_AMOUNT;
}

}

Recommendation: Remove the view keyword from the allowance() template, e.g. from both IWithdrawal-
Validator.sol and PermissiveWithdrawalValidator.sol to be able to update state in future versions of al-
lowance().

Gauntlet: | would say we need an additional callback to the Validator to notify it of actual withdraw amounts. In
case when allowance is greater than holdings there is no way for the Validator to know how much of its allowance
was actually used.

5.2.4 Managed Pools are still undergoing development and may contain bugs and/or significant changes
Severity: High Risk
Context: balancer-v2-monorepo

Description: The ManagedPool smart pool implementation of WeightedPool is still in active development by the
Balancer team and could have unknown bugs. Additionally, the current version in balancer’s github is different from
the version used in Mannon Vault.

Note: The Gauntlet team has also flagged this as an issue.

Recommendation Use the latest version of ManagedPool. Consider using new functionalities like AUM (manage-
mentAumFeePercentage) fees.

Also see the following issues:
» Check with Balancer team about best approach to add and remove funds
* Manager can cause an immediate weight change
» Important fields of Balancer can be overwritten by EndTime

Only deploy once ManagedPool is stable and considered production ready.

Gauntlet: Fix implemented in PR #11. We should still update to the latest version at this stage (and continue to
do so).

10

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/PermissiveWithdrawalValidator.sol#L17-L27
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/interfaces/IWithdrawalValidator.sol
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456-L514
https://github.com/balancer-labs/balancer-v2-monorepo/tree/master/pkg/pool-weighted
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol
https://github.com/GauntletNetworks/aera-contracts/issues/11

Spearbit: Acknowledged.

5.2.5 Malicious manager could cause Vault funds to be inaccessible
Severity: High Risk
Context: AeraVaultV1.sol#L794-L822

Description: The calculateAndDistributeManagerFees() function pushes tokens to the manager and if for
unknown reasons this action fails the entire Vault would be blocked and funds become inaccessible. This occurs
because the following functions depend on the execution of calculateAndDistributeManagerFees():

deposit(), withdraw(), setManager (), claimManagerFees(), initiateFinalization(), and therefore final-
ize () as well.

Within calculateAndDistributeManagerFees () the function safeTransfer() is the riskiest and could fail under
the following situations:

+ A token with a callback is used, for example an ERC777 token, and the callback is not implemented correctly.

+ A token with a blacklist option is used and the manager is blacklisted. For example USDC has such blacklist
functionality. Because the manager can be an unknown party, a small risk exist that he is malicious and his
address could be blacklisted in USDC.

Note: set as high risk because although probability is very small, impact results in Vault funds to become inacces-
sible.

function calculateAndDistributeManagerFees() internal {

for (uint256 i = 0; i < amounts.length; i++) {
tokens[i] .safeTransfer (manager, amounts([i]);

}

}

Recommendation: Beware of including tokens with callbacks such as ERC777 tokens into the Vault. Additionally,
use a pull over push pattern to let the manager retrieve fees. This way the Vault can never get blocked.

This recommendation can be implemented as follows:
* Rename calculateAndDistributeManagerFees() {0 calculateManagerFees().

* In calculateManagerFees() add up all management fees (for each manager address separate (e.g.
in a mapping), to prevent having to push the fees in setManager() + keep track of total of the fees
(managersFeeTotal) to make sure fees are not withdrawn);

* In withdraw() and returnFunds () make sure unclaimed fees cannot be withdrawn.

+ Let the manager retrieve fees via claimManagerFees (), use msg.sender as index to the mapping with the
fees. This function should retrieve Balancer funds, e.g. use the code of the second half of function calcu-
lateAndDistributeManagerFees(). It should also lower managersFeeTotal and the fee for msg. sender.

This also alleviates rounding issues with fees and reduces gas used by deposit () which could be relevant when
pools are deployed with a large number of tokens.

An alternative could be to use try/catch around the call to safeTransfer (), but this way the fees aren’t distributed
properly.
Gauntlet: We will be incorporating the suggestions.

11

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L794-L822

5.2.6 updateWeightsGradually allows change rates to start in the past with a very high maximumRatio
Severity: High Risk
Context: AeraVaultV1.sol#L599-L639

Description: The current updateWeightsGradually is using startTime instead of the minimal start time
that should be Math.max(block.timestamp, startTime). Because internally Balancer will use startTime =
Math.max (currentTime, startTime); as the startTime, this allows to:

* Have a startTime in the past.
* Have a targetWeights[i] higher than allowed.

We also suggest adding another check to prevent startTime > endTime. Although Balancer replicates the same
check it is still needed in the Aera implementation to prevent transactions to revert because of an underflow error
ONnuint256 duration = endTime - startTime;

Recommendation: Update the code to correctly initialize the startTime value and add a check to prevent having
endTime in the past (startTime > endTime). A possible solution looks as follows:

function updateWeightsGradually(...) ... {
+ startTime = Math.max(block.timestamp, startTime);

+ if (startTime > endTime) {
+ revert Aera__WeightChangeEndBeforeStart();
+ 7
if (
- Math.max(block.timestamp, startTime) +
+ startTime +
MINIMUM_WEIGHT _CHANGE_DURATION > endTime
) {
revert Aera__WeightChangeDurationIsBelowMin(...)
endTime - startTime, // no longer reverts

MINIMUM_WEIGHT_CHANGE_DURATION
)

Gauntlet: Recommendation implemented in PR #146

Spearbit: Acknowledged.

5.2.7 The vault manager has unchecked power to create arbitrage using setSwapFees
Severity: High Risk
Context: AeraVaultV1.sol#L663-L679, BasePool.sol#L58-1.59

Description: A previously known issue was that a malicious vault manager could arbitrage the vault like in the
below scenario:

1. Set the swap fees to a high value by setSwapFee (10% is the maximum).
2. Wait for the market price to move against the spot price.
3. In the same transaction, reduce the swap fees to ~0 (0.0001% is the minimum) and arbitrage the vault.

The proposed fix was to limit the percentage change of the swap fee to a maximum of MAXIMUM_SWAP_FEE_-
PERCENT_CHANGE each time. However, because there is no restriction on how many times the setSwapFee function
can be called in a block or transaction, a malicious manager can still call it multiple times in the same transaction
and eventually set the swap fee to the value they want.

Recommendation: Enforce a cooldown period of reasonable length between two consecutive setSwapFee func-
tion calls.

12

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L599-L639
https://github.com/GauntletNetworks/aera-contracts/pull/146
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L663-L679
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/dependencies/balancer-labs/pool-utils/contracts/BasePool.sol#L58-L59

5.2.8 Implement a function to claim liquidity mining rewards

Severity: High Risk

Context: AeraVaultV1.sol

Description: Balancer offers a liquidity mining rewards distribution for liquidity providers.

Liquidity Mining distributions are available to claim weekly through the MerkleOrchard contract. Liquid-
ity Providers can claim tokens from this contract by submitting claims to the tokens. These claims are
checked against a Merkle root of the accrued token balances which are stored in a Merkle tree. Claim-
ing through the MerkleOrchard is much more gas-efficient than the previous generation of claiming
contracts, especially when claiming multiple weeks of rewards, and when claiming multiple tokens.

The Aeravault is itself the only liquidity provider of the Balancer pool deployed, so each week it’s entitled to claim
those rewards. Currently, those rewards cannot be claimed because the AeraVault is missing an implementation to
interact with the MerkleOrchard contract, causing all rewards (BAL + other tokens) to remain in the MerkleOrchard
forever.

Recommendation: Add a function to allow the vault owner (the Treasury) to claim those rewards. More information
on how to claim rewards and interact with the contract can be found directly in the Balancer Documentation website.

Rewards claimed by the AeraVault can be lately distributed to the Treasury via the sweep function.
Gauntlet: Recommendation implemented in PR #146.

Spearbit: Acknowledged.

5.3 Medium Risk
5.3.1 Owner can circumvent allowance() Via enableTradingWithWeights()

Severity: Medium Risk
Context: AeraVaultV1.sol#L564-L593

Description: The vault Owner can set arbitrary weights via disableTrading() and then call enableTrading-
WithWeights() to set the spot price and create arbitrage opportunities for himself. This way allowance() in
withdraw() checks, which limit the amount of funds an owner can withdraw, can be circumvented.

Something similar can be done with enableTradingRiskingArbitrage () in combination with sufficient time.
Also see the following issues:

* allowance() doesn’t limit withdraw()s

* enableTradingWithWeights allow the Treasury to change the pool’s weights even if the swap is not disabled

» Separation of concerns Owner and Manager

function disableTrading() ... onlyOwnerOrManager ... {
setSwapEnabled(false);

}

function enableTradingWithWeights(uint256[] calldata weights) ... onlyOwner ... {
pool.updateWeightsGradually (timestamp, timestamp, weights);
setSwapEnabled(true) ;

}

function enableTradingRiskingArbitrage() ... onlyOwner ... {
setSwapEnabled(true) ;

}

13

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol
https://docs.balancer.fi/products/merkle-orchard
https://github.com/balancer-labs/balancer-v2-monorepo/blob/346ffdc995b709df2bd9e66f4e15ca22b2fc2c94/pkg/distributors/contracts/MerkleOrchard.sol
https://docs.balancer.fi/products/merkle-orchard/claiming-tokens
https://github.com/GauntletNetworks/aera-contracts/pull/146
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L564-L593

Recommendation: Consider allowing only the manager to execute the disableTrading() function although this
also has disadvantages. Additionally, use an oracle to determine spot price (as is already envisioned for the next
versions of the protocol).

Gauntlet: For safety reasons we want the treasury to have full control over trading. Given our current trust model,
this is won’t be an issue for V1 so no action will be taken at this time.

Spearbit: Acknowledged.

5.3.2 Front-running attacks on finalize could affect received token amounts

Severity: Medium Risk
Context: AeraVaultV1.sol#L539, AeraVaultV1.sol#L899-L910

Description: The returnFunds () function (called by finalize()) withdraws the entire holdings in the Balancer
pool but does not allow the caller to specify and enforce the minimum amount of received tokens. Without such
check the finalize () function could be susceptible to a front-running attack.

A potential exploit scenario looks as follows:

1. The notice period has passed and the Treasury calls finalize () on the Aera vault. Assume the Balancer
pool contains 1 WETH and 3000 DAI, and that WETH and DAI weights are both 0.5.

2. An attacker front-runs the Treasury’s transaction and swaps in 3000 DAI to get 0.5 WETH from the pool.

3. As an unexpected result, the Treasury receives 0.5 WETH and 6000 DAI. Therefore an attacker can force the
Treasury to accept the trade that they offer.

Although the Treasury can execute a reverse trade on another market to recover the token amount and distribution,
not every Treasury can execute such trade (e.g., if a timelock controls it). Notice that the attacker may not profit from
the swap because of slippage but they could be incentivized to perform such an attack if it causes considerable
damage to the Treasury.

Recommendation: Possible mitigations include:

+ Allowing the caller to specify the minimum amount of each token and revert the transaction if not enough
tokens are available.

» Adopting a two-step finalization pattern. First, disable trading and check if the token amounts in the Balancer
pool are as desired. If not, enable trading again and let arbitragers re-balance the pool. Once rebalanced,
finalize the vault.

+ Use Flashbots to reduce front-running probabilities.

Gauntlet: Based on our latest thinking, trading should be paused when initiateFinalization is run. That
should resolve this issue.

Spearbit: setSwapEnabled(false) has been added in initiateFinalization() in PR #137. It is worth not-
ing that pausing trading does not completely solve the issue. If initiateFinalization() happens to be front
run (although not profitable for a frontrunner, it could still happen), then the token distributions could still be off.
This situation should probably be detected (manually?) and corrected with enableTradingWithWeights() and
disableTrading().

Gauntlet: | think there are 2 things that are important:

« If the treasury is using withdraw and asking for a specific amount of tokens, that they don’t get less than that.
If there happens to be a front-running transaction, just like in an AMM they may not be able to withdraw what
they want

« If the treasury is finalizing they should expect to retain a decent amount of the value of the pool, but since
it's a liquidity share in an AMM, there aren’t guarantees about the specific ratios of token amounts. The only
guarantee is the relationship between token weights, balances and spot prices.

Spearbit: The value indeed stays the same. Only if the token distribution would be important you would want to
solve this.

14

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L539
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L899-L910
https://github.com/GauntletNetworks/aera-contracts/pull/137

Assuming the token distribution doesn’t matter then you might as well keep the code as is (unless there are other
reasons to change).

[e.g frontrun of initiateFinalization() + trade pause has the same effect as frontrun of finalize () while trade
hasn’t been paused]

Gauntlet: | still like the proposal as we see other benefits in pausing trading. Since trading is primarily a means of
rebalancing execution, we can shut it off post initiation of finalization to mitigate impermanent loss for the treasury.

Spearbit: Acknowledged. Beware that enableTradingWithWeights(), enableTradingRiskingArbitrage()and
disableTrading() still work after initiateFinalization(). This could be put to good use but also unwanted (in
that case additional checks are required in these functions).

5.3.3 safeApprove in depositToken could revert for non-standard token like USDT

Severity: Medium Risk
Context: AeraVaultV1.sol#L.893

Description: Some non-standard tokens like USDT will revert when a contract or a user tries to approve an al-
lowance when the spender allowance has already been set to a non zero value. In the current code we have
not seen any real problem with this fact because the amount retrieved via depositToken() is approved send to
the Balancer pool via joinPool() and managePoolBalance (). Balancer transfers the same amount, lowering the
approval to 0 again. However, if the approval is not lowered to exactly 0 (due to a rounding error or another unfore-
seen situation) then the next approval in depositToken () will fail (assuming a token like USDT is used), blocking all
further deposits.

Note: Set to medium risk because the probability of this happening is low but impact would be high.

We also should note that OpenZeppelin has officially deprecated the safeApprove function, suggesting to use
instead safeIncreaseAllowance and safeDecreaseAllowance.

Recommendation: Adopt a safer approach to cover edge cases such as the abovementioned USDT token and
implement the following solution:

function depositToken(IERC20 token, uint256 amount) internal {
token.safeTransferFrom(owner(), address(this), amount);
token.safeApprove (address(bVault), amount);
uint256 allowance = token.allowance(address(this), address(bVault));
if (allowance > 0) {
token.safeDecreaseAllowance (address(bVault), allowance);
}

token.safelncreaseAllowance (address(bVault), amount);

e S S S S S

Please note that the amount that should be used as a parameter for safeIncreaseAllowance should follow the
recommendations written in issue Fee on transfer can block several functions.

5.3.4 Consult with Balancer team about best approach to add and remove funds
Severity: Medium Risk
Context: AeraVaultV1.sol

Description: The Aera Vault uses AssetManager’s functionality of function managePoolBalance() to add and
remove funds. The standard way to add and remove funds in Balancer is via joinPool () / exitPool (). Using the
managePoolBalance () function might lead to future unexpected behavior. Additionally, this disables the capacity
to implement the original intention of AssetManagers functionality, e.g. storing funds elsewhere to generate yield.

Recommendation: Doublecheck with the Balancer team which is the best approach to implement. If either ways
are nonoptimal ask them to implement the functionality to support this.

15

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L893
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol#L38-L44
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol

In case the joinPool () / exitPool () path is recommended by the Balancer team, it can probably be implemented
in the following way:

+ Limit access to joinPool () via allowlist (as is already done)

+ Limit access to exitPool () via a custom pool with an onExit () callback function (which could also integrate
allowance())

+ Adjust the spotprice after joinPool() / exitPool() via updateWeights().
» Perhaps use the AUM (managementAumFeePercentage) fees.
* Only keep the BPT (pool tokens) in the vault.

Gauntlet: Both ways are probably not the "intended" use case, current version seems a bit more elegant code-
wise. We will get in touch with Balancer team about the best way to use these low-level functions.

Spearbit: Acknowledged.

5.3.5 Fee on transfer can block several functions

Severity: Medium Risk
Context: AeraVaultV1.sol#L456-L514

Description: Some tokens have a fee on transfer, for example USDT. Usually such fee is not enabled but could be
re-enabled at any time. With this fee enabled the withdrawFromPool () function would receive slightly less tokens
than the amounts requested from Balancer causing the next safeTransfer () call to fail because there are not
enough tokens inside the contract. This means withdraw() calls will fail.

Functions deposit () and calculateAndDistributeManagerFees() can also fail because they have similar code.

Note: The function returnFunds() is more robust and can handle this problem. Note: The problem can be
alleviated by sending additional tokens directly to the Aera Vault contract to compensate for fees, lowering the
severity of the problem to medium.

function withdraw(uint256[] calldata amounts) ... {
withdrawFromPool (amounts); // could get slightly less than amount with o fee on transfer
for (uint256 i = 0; i < amounts.length; i++) {
if (amounts[i] > 0) {
tokens[i] .safeTransfer (owner(), amounts[il); // could revert it the full amounts[i] isn't
— avatlable

yo.o..

}

Recommendation: Check the balance0f () tokens before and after a safeTransfer () or safeTransferFrom().
Use the difference as the amount of tokens sent/received.

16

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456-L514
https://etherscan.io/address/0xdAC17F958D2ee523a2206206994597C13D831ec7#code

5.3.6 enableTradingWithWeights allow the Treasury to change the pool’s weights even if the swap is not
disabled

Severity: Medium Risk
Context: AeraVaultV1.sol#L.574-1.583

Description: enableTradingWithWeights is a function that can only be called by the owner of the Aera Vault
contract and that should be used only to re-enable the swap feature on the pool while updating token weights.

The function does not verify if the pool's swap feature is enabled and for this reason, as a result, it allows the
Treasury to act as the manager who is the only actor allowed to change the pool weights.

The function should add a check to ensure that it is only callable when the pool’s swap is disabled.

Recommendation: Update the function to revert when the pool's swap is enabled.

function enableTradingWithWeights(uint256[] calldata weights)
external
override
onlyOwner
whenInitialized

bool isSwapEnabled = pool.getSwapEnabled() ;
if (isSwapEnabled) {
revert Aera__PoolSwapIsAlreadyEnabled();
b
uint256 timestamp = block.timestamp;
pool.updateWeightsGradually(timestamp, timestamp, weights);
setSwapEnabled(true) ;

+ + o+ o+ A

}

Gauntlet: Fixed in PR #126.
Spearbit: Acknowledged.

5.3.7 AeraVault constructor is hot checking all the input parameters

Severity: Medium Risk
Context: AeraVaultV1.sol#L260-L345

Description: The Aera Vault constructor has the role to handle Balancer's ManagedPool deployment. The con-
structor should increase the number of user input validation and the Gauntlet team should be aware of the possible
edge case that could happen given that the deployment of the Aera Vault is handled directly by the Treasury and
not by the Gauntlet team itself.

We are going to list all the worst-case scenarios that could happen given the premise that the deployments are
handled by the Treasury.

1. factory could be a wrapper contract that will deploy a ManagedPool. This would mean that the deployer could
pass correct parameters to Aera Vault to pass these checks, but will use custom and malicious parameters
on the factory wrapper to deploy the real Balancer pool.

2. swapFeePercentage value is not checked. On Balancer, the deployment will revert if the value is not in-
side this range >= 1e12 (0.0001%) and <= 1lel7 (10% - this fits in 64 bits). Without any check,
the Gauntlet accept to follow the Balancer’'s swap requirements.

3. manager_ is not checked. They could set the manager as the Treasury (owner of the vault) itself. This would
give the Treasury the full power to manage the Vault. At least these values should be checked: address(0),
address(this) or owner (). The same checks should also be done in the setManager () function.

4. validator_ could be set to a custom contract that will give full allowances to the Treasury. This would make
the withdraw() act like finalize () allowing to withdraw all the funds from the vault/pool.

17

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L574-L583
https://github.com/GauntletNetworks/aera-contracts/pull/126
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L260-L345

5.

6.

noticePeriod_ has only a max value check. Gauntlet team explained that a time delay between the ini-
tialization of the finalize process and the actual finalize is needed to prevent the Treasury to be able to
instantly withdraw all the funds. Not having a min value check allow the Treasury to set the value to 0 so
there would be no delay between the initiateFinalization() and finalize() because noticeTimeoutAt
== block.timestamp.

managementFee_ has no minimum value check. This would allow the Treasury to not pay the manager
because the managerFeeIndex would always be 0.

description_ can be empty. From the Specification PDF, the description of the vault has the role to “De-
scribes vault purpose and modelling assumptions for differentiating between vaults”. Being empty could lead
to a bad UX for external services that needs to differentiate different vaults.

These are all the checks that are done directly by Balancer during deployment via the Pool Factory:

BasePool constructor#L94-L95 min and max number of tokens.
BasePool constructor#L102token array is sorted following Balancer specification (sorted by token address).
BasePool constructor calling _setSwapFeePercentage min and max value for swapFeePercentage.

BasePool constructor calling vault.registerTokens token address uniqueness (can’t have same
token in the pool), it also checks that token != IERC20(0). Following the pathBasePool is calling
vault.registerTokens that should call function _registerMinimalSwapInfoPoolTokens from
MinimalSwapInfoPoolsBalance.

ManagedPool constructor calling _startGradualWeightChange Check min value of weight and that the total
sum of the weights are equal to 100%. _startGradualWeightChange internally check that endWeight >=
WeightedMath._MIN_WEIGHT and normalizedSum == FixedPoint.ONE.

Recommendation:

Create a factory to wrap both Aeravault and Validator deployment to reduce influence and possible mali-
cious attack from external actors.

Add a custom min/max value check for swapFeePercentage on top of Balancer’s check if needed.

Add checks on manager_ value to prevent an empty manager (address(0)) or that the manager
andAeraVault owner will be equal to the Treasury itself.

Added a min value check to the noticePeriod_ parameter if needed to prevent that the time between ini-
tiateFinalization and finalize call is too small.

Add a min value check to the managementFee_ parameter if needed to prevent the Treasury to not pay the
manager.

Add a check on description_ to prevent to deploy a AeraVault with an empty description that would create
confusion on web application that will display similar vaults.

Check meticulously that future Balancer’s version still maintain the same checks listed above. Consider
replicating those checks during deployment to be future-proof.

We also recommend carefully documenting the possible consequences of supporting "special" types of tokens:

Token with more than 18 decimals that are not supported by Balancer.
Token with small number of decimals.

ERC777 tokens.

Token with fees on transfer.

Token with blacklisting capabilities.

Gauntlet: In our trust model, we only decide to manage the vault if it has been correctly deployed. So leaving the
focus to be on human error, | think the following are actionable:

3.

(manager checks)

18

https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-utils/contracts/BasePool.sol#L94-L95
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-utils/contracts/BasePool.sol#L102
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-utils/contracts/BasePool.sol#L144-L145
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-utils/contracts/BasePool.sol#L108
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L161-L167

Add checks on manager_ value to prevent an empty manager (address(0)) or that the manager
and Aera Vault owner will be equal to the Treasury itself

4. (description checks)

Add a check on description_ to prevent to deploy a Aera Vault with an empty description that
would create confusion on web application that will display similar vaults.

I'll also take a documentation action for these:

Token with more than 18 decimals that are not supported by Balancer Token with small number of
decimals ERC777 tokens Token with fees on transfer Token with blacklisting capabilities

5.3.8 Possible mismatch between Validator.count and AeraVault assets count

Severity: Medium Risk
Context: PermissiveWithdrawalValidator.sol#L13, AeraVaultV1.sol#L456-L514

Description: A weak connection between WithdrawalValidator and Aera Vault could lead to the inability of
withdrawing from a Vault.

Consider the following scenario:

The Validator is deployed with a tokenCount < than Vault.getTokens() . length. Inside the withdraw() function
we reference the following code block:

uint256[] memory allowances = validator.allowance();
uint256[] memory weights = getNormalizedWeights();
uint256[] memory newWeights = new uint256[] (tokens.length);

for (uint256 i = 0; i < tokens.length; i++) {
if (amounts[i] > holdings[i] || amounts[i] > allowances[i]) {
revert Aera__AmountExceedAvailable(
address(tokens[i]),
amounts[i],
holdings[i] .min(allowances[i])

)

}

A scenario where allowances.length < tokens.length would cause this function to revert with an Index out of
bounds error. The only way for the Treasury to withdraw funds would be via the finalize () method which has a
time delay.

Recommendation: Ensure that when Aera Vault and Validator are deployed, Validator.count is the same
as the number of assets managed by the vault.

A potential solution is to create a Factory contract that will deploy both the Aera Vault and the Validator. In
such case remember to correctly set up the Aera Vault Ownable contract because the current deployer is also
the Vault’s owner and in the case of a Factory, the owner of the vault would be the Factory itself. This would cause
all onlyOwner calls to revert.

Additionally, see the following issue: Ensure integrity of deployment of vault.

Gauntlet: | think we are ok with trusting the treasury to deploy the validator. The main reason being is that we
don’t see a simple way to parametrize validators at the moment and each treasury partner will be highly trusted
early on so we'd be starting with permissive validators and then leaning on treasuries to suggest some custom
validators first.

Checked on allowances.length added in PR #141.
Spearbit: Acknowledged.

19

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/PermissiveWithdrawalValidator.sol#L13
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456-L514
https://github.com/GauntletNetworks/aera-contracts/pull/141

5.4 Low Risk
5.4.1 Ensure vault’s deployment integrity

Severity: Low Risk
Context: AeraVaultV1.sol

Description: The treasury could deploy on purpose or by accident a slightly different version of the contract and
introduce bugs or backdoors. This might not be recognized by parties taking on Manager responsibilities (e.g.
usually Gauntlet will be involved here).

Recommendation: Consider using a factory to deploy the contract(s), so only parameters can be set.

Gauntlet: We are ok with trusting the treasury to deploy the validator. The main reason being is that we don’t see
a simple way to parametrize validators at the moment and each treasury partner will be highly trusted early on so
we’d be starting with permissive validators and then leaning on treasuries to suggest some custom validators first.

Spearbit: Acknowledged.

5.4.2 Frequent calling of calculateAndDistributeManagerFees () lowers fees

Severity: Low Risk
Context: AeraVaultV1.sol#L682-L690, IManagerAPl.sol#L24-L25

Description: Via calculateAndDistributeManagerFees () a percentage of the Pool is subtracted and sent to the
Manager. If this function is called too frequently his fees will be lower.

For example:
« If he calls it twice, while both time getting 1%, he actually gets: 1% + 1% * (100% - 1%) = 1.99%
+ If he waits longer until he has earned 2%, he actually gets: 2%, which is slightly more than 1.99%

« If called very frequently the fees go to 0 (especially taking in account the rounding down). However the gas
cost would be very high.

The Manager can (accidentally) do this by calling claimManagerFees (). The Owner can (accidentally or on pur-
pose (e.g. using 0 balance change)) do this by calling deposit (), withdraw() or setManager ().

Note: Rounding errors make this slightly worse.

Also see the following issue: Possible rounding down of fees

function claimManagerFees() ... {
calculateAndDistributeManagerFees(); // get a percentage of the Pool
}

Recommendation: Encourage managers to not claim fees too often. For example, Natspec comments regarding
the claimManagerFees () function inside the IManagerAPI.sol contract document that the function should not be
called frequently.

Because the Owner is end responsible for the Vault and the gas costs most likely outweigh the fees it is probably
not worth taking actions.

Gauntlet: Added comment on claimManagerFees() in PR #138.
Spearbit: Acknowledged.

20

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L682-L690
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/interfaces/IManagerAPI.sol#L24-L25
https://github.com/GauntletNetworks/aera-contracts/pull/138

5.4.3 OpenZeppelin best practices
Severity: Low Risk
Context: AeraVaultV1.sol#L4-L11

Description: The Aera Vault uses OpenZeppelin release 4.3.2 which is copied into their github. The current
release of OpenZeppelin is 4.6.0 and includes several updates and security fixes.

The copies of the OpenZeppelin files are also (manually) changed to adapt the import paths. This has the risk of
making a mistake in the process.

import "./dependencies/openzeppelin/SafeERC20.s0l";
import "./dependencies/openzeppelin/IERC20.so0l";

import "./dependencies/openzeppelin/IERC165.s0l1";

import "./dependencies/openzeppelin/Ownable.sol";

import "./dependencies/openzeppelin/ReentrancyGuard.sol";
import "./dependencies/openzeppelin/Math.sol";

import "./dependencies/openzeppelin/SafeCast.sol";

import "./dependencies/openzeppelin/ERC165Checker.sol";

Recommendation: Use recent versions and consider OpenZeppelin best practices:

» Quite a lot of project seem to use NPM install which leaves the risk for a supply chain attack on NPM.
Another way would be to retrieve it from from OpenZeppelin releases repository but this also leaves the risk
for a github supply chain attack.

» Preferably don’t change the contracts to prevent mistakes.
» OpenZeppelin has a way to alert projects of vulnerabilities before public disclosures.
+ Monitor the updates to the releases.

+ Update to a new release if relevant bugfixes are applied. With every large release make sure a recent version
of the OpenZeppelin contracts is used (but preferably also somewhat battle tested).

5.4.4 Possible rounding down of fees

Severity: Low Risk
Context: AeraVaultV1.sol#L794-1.822

Description: If certain token has a few decimals numbers then fees could be rounded down to 0, especially if
time between calculateAndDistributeManagerFees() is relatively small. This also could slightly shift the spot
price because the balance of one coin is lowered while the other remains still. With fewer decimals the situation
worsens, e.g. Gemini USD GUSD has 2 decimals, therefore the problem occurs with a balance of 10_000 GUSD.
Note: The rounding down is probably neglectable in most cases.

function calculateAndDistributeManagerFees() internal {

for (uint256 i = 0; i < tokens.length; i++) {
amounts [i] (holdings[i] * managerFeeIndex) / ONE; // could be rounded down to 0

}

}

With 1 USDC in the vault and 2 hours between calculateAndDistributeManagerFees(), the fee for USDC is
rounded down to 0. This behavior is demonstrated in the following POC:

21

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L4-L11
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories
https://forum.openzeppelin.com/t/best-practices-for-using-openzeppelin-code-in-your-codebase/5548
https://github.com/OpenZeppelin/openzeppelin-contracts/releases
https://blog.openzeppelin.com/smart-contract-security-registry/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/CHANGELOG.md
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L794-L822
https://etherscan.io/token/0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd?a=0x5f65f7b609678448494De4C87521CdF6cEf1e932#readContract

import "hardhat/console.sol";
contract {
uint256 constant ONE = 10%*18;
uint managementFee = 10%%8; // MAX_MANAGEMENT_FEE = 10**9;
constructor() {
uint holdings = 1E6; // 1 USDC
uint delay = 2 hours;
uint managerFeelndex = delay * managementFee;
uint amounts = (holdings * managerFeeIndex) / ONE;
console.log("Fee",amounts) ; // fee is 0

}

Recommendation: Consider implementing one (or more) of the following suggestions:

1. Sum all the fees and only claim and transfer them on the initiative of the manager. This solves other issues
such as Malicious manager could result in inaccessible funds of the Vault.

2. Accept the rounding issue and document it. Do verify that the impact on the Pool price and the management
fees is indeed neglectable. Managers could also be reimbursed manually if necessary.

3. If the potential change in the Pool price cannot be ignored: update the weights like withdraw() is doing.

4. Round the manager fees up. Perhaps only when they are 0. However be aware of repeatedly calling claim-
ManagerFees () which could then get additional fees, although this is probably less than the gas costs.

5. Don't list tokens with a low number of decimals.

Gauntlet: We like 1 and 5. We think with 1, we would need to adjust the sweep function to disallow claiming vault
tokens.

Spearbit:
we would need to adjust the sweep function to disallow claiming vault tokens.

We would suggest to only claim the tokens from the vault when the manager claims them (e.g. have as few claims
as possible as this prevents rounding issues) That way you don’t have to change sweep

Gauntlet: Makes sense. FYI - if you claim too early, then you lose a little bit of value.

5.4.5 Missing nonReentrant modifier on initiateFinalization(), setManager () and claimManagerFees()
functions

Severity: Low Risk
Context: AeraVaultV1.sol#L517, AeraVaultV1.sol#L545, AeraVaultV1.sol#L682

Description: The initiateFinalization() function is missing a nonReentrant modifier while calculateAnd-
DistributeManagerFees() executes external calls. Same goes for setManager () and claimManagerFees () func-
tions.

Recommendation: Consider adding the nonReentrant modifier to functions that perform external calls.
Gauntlet: Solved in PR #112.
Spearbit: Acknowledged.

22

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L517
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L545
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L682
https://github.com/GauntletNetworks/aera-contracts/pull/112

5.4.6 Potential division by 0

Severity: Low Risk
Context: AeraVaultV1.sol#L402-L.514, AeraVaultV1.sol#L728-L749

Description: If the balance (e.g. holdings[]) of a token is 0 in deposit () then the dividing by holdings[1 would
cause a revert.

Note: Function withdraw() has similar code but when holdings[]1==0 its not possible to withdraw() anyway.
Note: The current Mannon vault code will not allow the balances to be 0. Note: Although not used in the current
code, in order to do a deregisterTokens(), Balancer requires the balance to be 0. Additionally, refer to the
following Balancer documentation about the-vault#deregistertokens.

The worst case scenario is deposit () not working.

function deposit(uint256[] calldata amounts) ... {

for (uint256 i = 0; i < amounts.length; i++) {
if (amounts[i] > 0) {
depositToken(tokens[i], amounts[i]);
uint256 newBalance = holdings[i] + amounts[i];
newWeights[i] = (weights[i] * newBalance) / holdings[il; // would revert if holdings[i] == 0

}

Similar divisions by 0 could occur in getWeightChangeRatio (). The function is called from updateWeightsGradu-
ally (). If this is due to targetWeight being 0, then it is the desired result. Current weight should not be 0 due
balancer checks.

function getWeightChangeRatio(uint256 weight, uint256 targetWeight) ... {
return
weight > targetWeight
7 (ONE * weight) / targetWeight // could revert if targetWeight == 0
: (ONE #* targetWeight) / weight; // could revert if weight==
}

Recommendation: Determine what should happen in the unlikely event that balances become 0 in deposit ()
and adapt the code if necessary. If it is relevant to return readable revert/error messages then the division by 0
situation could be intercepted and trigger a direct revert.

Gauntlet: The code should revert with 0 balances since having 0 at either side of the AMM pool breaks spot prices
and the ability to offer trades. Balancer does not allow 0 weight so this would be ok.

5.4.7 Use ManagedPoolFactory instead of BaseManagedPoolFactory to deploy the Balancer pool

Severity: Low Risk
Context: AeraVaultV1.sol#L305-L321, AeraVaultV1Fork.ts#L.219-L223

Description: Currently the Aera Vault is using BaseManagedPoolFactory as the factory to deploy the Balancer
pool while Balancer’s documentation recommends and encourages the usage of ManagedPoolFactory.

Quoting the doc inside the BaseManagedPoolFactory:

This is a base factory designed to be called from other factories to deploy a ManagedPool with a
particular controller/owner. It should NOT be used directly to deploy ManagedPools without controllers.
ManagedPools controlled by EOAs would be very dangerous for LPs. There are no restrictions on what
the managers can do, so a malicious manager could easily manipulate prices and drain the pool. In this
design, other controller-specific factories will deploy a pool controller, then call this factory to deploy the
pool, passing in the controller as the owner.

23

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L402-L514
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L728-L749
https://dev.balancer.fi/references/contracts/apis/the-vault#deregistertokens
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L305-L321
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/test/v1/integration/AeraVaultV1Fork.ts#L219-L223

Recommendation: Use ManagedPoolFactory instead of BaseManagedPoolFactory to deploy the Balancer pool
following Balancer’s best practices.

Gauntlet: Solved in PR #141.
Spearbit: Acknowledged.

5.4.8 Adopt the two-step ownership transfer pattern

Severity: Low Risk
Context: AeraVaultV1.sol#L762-L764, Ownable.sol#L61-L64

Description: To prevent the Aera vault Owner, i.e. the Treasury, from calling renounceOwnership() and effec-
tively breaking vault critical functions such as withdraw() and finalize(), the renounceOwnership() function is
explicitly overridden to revert the transaction every time. However, the transferOwnership() function may also
lead to the same issue if the ownership is transferred to an uncontrollable address because of human errors or
attacks on the Treasury.

Recommendation: Adopt the two-step ownership transfer pattern: (1) the owner sets the new owner, and (2) the
new owner accepts the ownership.

Gauntlet: Solved in PR #132.
Spearbit: Acknowledged.

5.4.9 Implement zero-address check for manager_

Severity: Low Risk
Context: AeraVaultV1.sol#L267

Description: Non-existent zero-address checks inside the constuctor for the manager_ parameter. If manager_-
becomes a zero address then calls to calculateAndDistributeManagerFees will burn tokens (transfer them to
address(0)).

Recommendation: Implement zero-address check for manager_ user input.

Example:

require(manager_ != address(0), "manager_: zero address");

Gauntlet: Fix implemented in PR #101.
Spearbit: Acknowledged.

24

https://github.com/GauntletNetworks/aera-contracts/pull/141
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L762-L764
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/dependencies/openzeppelin/Ownable.sol#L61-L64
https://github.com/GauntletNetworks/aera-contracts/pull/132
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L267
https://github.com/GauntletNetworks/aera-contracts/pull/101

5.5 Gas Optimization

5.5.1 Simplify tracking of managerFeelndex

Severity: Gas Optimization

Context: AeraVaultV1.sol#L769-L774, AeraVaultV1.sol#L794-1822, AeraVaultV1.sol#L70

Description: The calculateAndDistributeManagerFees() function uses updateManagerFeeIndex() to keep
track of management fees. It keeps track of both managerFeeIndex and lastFeeCheckpoint in storage vari-
ables (e.g. costing SLOAD/SSTORE). However, because managementFee is immutable this can be simplified to
one storage variable, saving gas and improving code legibility.

uint256 public immutable managementFee; // can't be changed

function calculateAndDistributeManagerFees() internal {
updateManagerFeeIndex () ;

if (managerFeeIndex == 0) {
return;

}
}}. use managerFeelndex
gégagerFeeIndex = 0;

}

function updateManagerFeeIndex() internal {
managerFeeIndex +=
(block.timestamp - lastFeeCheckpoint) *
managementFee;
lastFeeCheckpoint = block.timestamp.toUint64() ;

Recommendation: Consider changing the code as follows:

function calculateAndDistributeManagerFees() internal {
if (block.timestamp <= lastFeeCheckpoint) {

return;

}

if (managementFee == 0) {
return;

}

uint managerFeeIndex = (block.timestamp - lastFeeCheckpoint) * managementFee; // managerFeelndez
— 15 a local wvariable now
lastFeeCheckpoint = block.timestamp;

// use managerFeelndez

Remove the updateManagerFeeIndex () function.
Spearbit: Partly solved in PR #145, with a few attention points:
* managerFeeIndex could be local variable to safe gas (no need to store it between calls).

* In case managementFee happens to be 0 then gas is wasted (updated the recommendation above).

25

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L769-L774
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L794-L822
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L70
https://github.com/GauntletNetworks/aera-contracts/pull/145

5.5.2 Directly call getTokensData() from returnFunds ()
Severity: Gas Optimization
Context: AeraVaultV1.sol#L899-L910, AeraVaultV1.sol#L700-L708, AeraVaultV1.sol#L728-L749

Description: The function returnFunds () calls getHoldings () and getTokens (). Both functions call getTokens-
Data() thus waste gas unnecessarily.

function returnFunds() internal returns (uint256[] memory amounts) {
uint256[] memory holdings = getHoldings();
IERC20[] memory tokens = getTokens();

}

function getHoldings() public view override returns (uint256[] memory amounts) {
(, amounts,) = getTokensData();

}

function getTokens() public view override returns (IERC20[] memory tokens) {
(tokens, ,) = getTokensData();

}

Recommendation: Call getTokensData () directly from returnFunds().
Gauntlet: Solved in PR #100.
Spearbit: Acknowledged.

5.5.3 Change uint32 and uint64 to uint256
Severity: Gas Optimization
Context: AeraVaultV1.sol#L63-L88, AeraVaultV1.sol#L769-L774

Description: The contract contains a few variables/constants that are smaller than uint256: noticePeriod, no-
ticeTimeoutAt and lastFeeCheckpoint. This doesn’t actually save gas because they are not part of a struct
and still take up a storage slot. It even costs more gas because additional bits have to be stripped off. Additionally,
there is a very small risk of lastFeeCheckpoint wrapping to 0 in the updateManagerFeeIndex () function. If that
would happen, managerFeeIndex would get far too large and too many fees would be paid out.

Finally, using int256 simplifies the code.

contract is IAeraVaultV1, Ownable, ReentrancyGuard {
uint32 public immutable noticePeriod;
uint64 public noticeTimeoutAt;

uint64 public lastFeeCheckpoint = type(uint64).max;

function updateManagerFeeIndex() internal {
managerFeelndex +=
(block.timestamp - lastFeeCheckpoint) * // could get large when lastFeeCheckpoint wraps
managementFee;
lastFeeCheckpoint = block.timestamp.toUint64() ;

Recommendation:

* Replace uint32 and uint64 with uint256.

26

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L899-L910
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L700-L708
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L728-L749
https://github.com/GauntletNetworks/aera-contracts/pull/100
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L63-L88
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L769-L774

* Remove the conversion functions toUint64().
* Remove import "./dependencies/openzeppelin/SafeCast.sol";

* Remove using SafeCast for uint256;

5.5.4 Use block.timestamp directly instead of assigning it to a temporary variable.
Severity: Gas Optimization
Context: AeraVaultV1.sol#L883, AeraVaultV1.sol#L580

Description: It is preferable to use block.timestamp directly in your code instead of assigning it to a temporary
variable as it only uses 2 gas.

Recommendation: Use block.timestamp directly.

Example:

- uint256 timestamp = block.timestamp;
pool.updateWeightsGradually (timestamp, timestamp, weights);
+ pool.updateWeightsGradually(block.timestamp, block.timestamp, weights);

Gauntlet: Solved in PR #102.
Spearbit: Acknowledged.

5.5.5 Consider replacing pool.getPoolId() with bytes32 public immutable poolld to save gas and ex-
ternal calls

Severity: Gas Optimization
Context: AeraVaultV1.sol#L.394, AeraVaultV1.sol#L723-L725, AeraVaultV1.sol#L738, AeraVaultV1.sol#L855

Description: The currentimplementation of Aera Vault always calls pool.getPoolId () orindirectly getPoolId()
to retrieve the ID of the immutable state variable pool that has been declared at constructor time.

The pool.getPoolId() is a getter function defined in the Balancer BasePool contract:

function getPoolId() public view override returns (bytes32) {
return _poolld;

}

Inside the same BasePool contract the _poolId is defined as immutable which means that after creating a pool
it will never change. For this reason it is possible to apply the same logic inside the Aera Vault and use an
immutable variable to avoiding external calls and save gas.

Recommendation: Consider the following suggestions:
* Initializing an immutable variable with the poolId value after deploying the Balancer pool.
 Deleting all the reference to getPoolId () and pool.getPoolId().

* Replacing those reference with a direct read to the immutable poolId.

27

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L883
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L580
https://github.com/GauntletNetworks/aera-contracts/pull/102
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L394
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L723-L725
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L738
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L855

+ bytes32 private immutable poolld;
constructor(...) {

pool = IBManagedPool(
IBManagedPoolFactory (factory) .create(
IBManagedPoolFactory.NewPoolParams({ ... })
)
)3
+ poolld = pool.getPoolId();

}

Gauntlet: Fix has been implemented in PR #123.
Spearbit: Acknowledged.

5.5.6 Save values in temporary variables

Severity: Gas Optimization

Context: AeraVaultV1.sol#L427, AeraVaultV1.sol#L382, AeraVaultV1.sol#L481, AeraVaultV1.sol#L620,
AeraVaultV1.sol#L495, AeraVaultV1.sol#L906, AeraVaultV1.sol#L301, AeraVaultV1.sol#L652,
AeraVaultV1.sol#L808. AeraVaultV1.sol#L816, AeraVaultV1.sol#L858, AeraVaultV1.sol#L876

Description: We observed multiple occurrences in the codebase where <var>.length was used in for loops.
This could lead to more gas consumption as .length gets called repetitively until the for loop finishes.

When indexed variables are used multiple times inside the loop in a read only way these can be stored in a
temporary variable to save some gas.

for (uint256 i = 0; i < tokens.length; i++) { // tokens.length has to be calculated repeatedly

. = tokens[i] .balanceOf(...); // tokens[i] has to be evaluated multiple times
tokens[i] .safeTransfer (owner(), ...);

}

Recommendation: The value of <var>.length could be saved in a temporary variable for saving some gas cost.
Also <var>[i] could be saved in a temporary variable for saving some gas cost, provided it is used in a read only
way.

Example:

uint256 length = tokens.length; //temporary wvariable
for (uint256 i = 0; i < length; i++) {

IERC20 tmpToken = tokens[i]; //temporary variable
. = tmpToken.balanceOf(...);
tmpToken.safeTransfer (owner(), ...);

}

Gauntlet: Solved in PR #100.
Spearbit: Acknowledged.

28

https://github.com/GauntletNetworks/aera-contracts/pull/123
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L427
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L382
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L481
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L620
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L495
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L906
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L301
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L652
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L808
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L816
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L858
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L876
https://github.com/GauntletNetworks/aera-contracts/pull/100

5.6 Informational
5.6.1 Aera could be prone to out-of-gas transaction revert when managing a high number of tokens

Severity: Informational

Context: AeraVaultV1.sol#L350-L399, AeraVaultV1.sol#L402-L453, AeraVaultV1.sol#L456-L514,
AeraVaultV1.sol#L531-L541

Description: The Balancer ManagedPool used by Aera has a max limit of 50 token.

Functions like: initialDeposit(), deposit (), withdraw() and finalize() involve numerous external direct and
indirect (made by Balancer itself when called by Aera) calls and math calculations that are done for each token
managed by the pool.

The functions deposit () and withdraw() are especially gas intensive, given that they also internally call calcu-
lateAndDistributeManagerFees () that will transfer, for each token, a management fee to the manager.

For these reasons Aera should be aware that a high number of tokens managed by the Aera Vault could lead to
out-of-gas reverts (max block size depends on which chain the project will be deployed).

Recommendation: Consider the following suggestions:

» Monitor and tests gas consumption from those functions, simulating a managed pool that handles the max
number of tokens allowed by the Balancer’s ManagedPool.

 Consider adding a custom max limit on the number of tokens supported by the AeraPool.

+ Consider applying the suggestions reported in issue "Malicious manager could result in inaccessible funds
of the Vault".

» Consider the max block size currently available for the chains on which the project will be deployed.

Gauntlet: We are starting with 2 tokens for V1 and only gradually increasing. We will be incorporating the sug-
gestions in Malicious manager could result in inaccessible funds of the Vault.

5.6.2 Use a consistent way to call getNormalizedWeights ()
Severity: Informational
Context: AeraVaultV1.sol

Description: The functions deposit() andwithdraw() call function getNormalizedWeights () while the function
updateWeightsGradually () and cancelWeightUpdates() call pool.getNormalizedWeights(). Although this is
functionally the same, it is not consistent.

29

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L350-L399
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L402-L453
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456-L514
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L531-L541
https://github.com/balancer-labs/balancer-v2-monorepo/blob/f14de92ac443d6daf1f3a42025b1ecdb8918f22e/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L63
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol

function deposit(uint256[] calldata amounts) ... {
uint256[] memory weights = getNormalizedWeights();

emit Deposit(amounts, getNormalizedWeights());

}
function withdraw(uint256[] calldata amounts) ... {
uint256[] memory weights = getNormalizedWeights();

emit Withdraw(amounts, allowances, getNormalizedWeights());

}
function updateWeightsGradually(...) ... {

£i£t256[] memory weights = pool.getNormalizedWeights();
}
function cancelWeightUpdates() ... {

ﬁi£t256[] memory weights = pool.getNormalizedWeights();
}
function getNormalizedWeights() ... {

return pool.getNormalizedWeights();
}

Recommendation: Consistently using either getNormalizedWeights () or pool.getNormalizedWeights().
Gauntlet: Fixed in PR #137.
Spearbit: Acknowledged.

5.6.3 Add function disableTrading() t0 IManagerAPI.sol
Severity: Informational
Context: AeraVaultV1.sol#L347-L596, IManagerAPl.sol

Description: The disableTrading() function can also be called by managers because of the onlyOwnerOrMan-
agermodifier. However in AeraVaultV1.sol it is located in the PROTOCOL API section. It is also not present in
IManagerAPI.sol.

contract is IAeraVaultV1, Ownable, ReentrancyGuard {
/// PROTOCOL API ///

function disableTrading() ... onlyOwnerOrManager ... {

}
/// MANAGER API ///

interface IManagerAPI {
function updateWeightsGradually(...) external;
function cancelWeightUpdates() external;
function setSwapFee(uint256 newSwapFee) external;
function claimManagerFees() external;

} // disableTrading() isn't present

30

https://github.com/GauntletNetworks/aera-contracts/pull/137
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L347-L596
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/interfaces/IManagerAPI.sol

Recommendation: Update the comments in AeravaultV1i.sol. Add disableTrading() t0 IManagerAPI.sol.

5.6.4 Doublecheck layout functions

Severity: Informational
Context: AeraVaultV1.sol

Description: Different ways are used to layout functions. Especially the part between (...) and between) ... {
is sometimes done on one line and sometimes split in multiple lines. Also { is sometimes at the end of a line and
sometimes at the beginning. Although the layout is not disturbing it might be useful to doublecheck it.

Here are a few examples of different layouts:

function updateWeights(uint256[] memory weights, uint256 weightSum)
internal

{
}
function depositToken(IERC20 token, uint256 amount) internal {
}
function updatePoolBalance (
uint256[] memory amounts,

IBVault.PoolBalanceOpKind kind
) intermal {

}

function updateWeights(uint256[] memory weights, uint256 weightSum)
internal

{

}

function updateWeightsGradually (
uint256[] calldata targetWeights,
uint256 startTime,
uint256 endTime
) external override onlyManager whenInitialized whenNotFinalizing {

}

function getWeightChangeRatio(uint256 weight, uint256 targetWeight)
internal
pure
returns (uint256)

{

}

Recommendation: Double check the layout rules for functions.

Gauntlet: We use Prettier for code formatting and this issue is related to the tool itself. | believe the formatting
here is consistent as lines get broken up when they get too long rather than arbitrarily.

Spearbit: Acknowledged.

31

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol

5.6.5 Use Math library functions in a consistent way

Severity: Informational
Context: AeraVaultV1.sol#L24, AeraVaultV1.sol#L486, AeraVaultV1.sol#L605

Description: In the AeraVaultV1 contract, the OZ’s Math library functions are attached to the type uint256. The
min function is used as a member function whereas the max function is used as a library function.

Recommendation: To maintain consistency use Math.min at L486 or change L605 into the a.max (b) format.
Note: using Math for uint256; can be removed if the Math. .. pattern is used.

Gauntlet: Fixed in PR #111 and PR #139.

Spearbit: Acknowledged.

5.6.6 Separation of concerns Owner and Manager
Severity: Informational
Context: AeraVaultV1.sol#L545-L556

Description: The Owner and Manager roles are separated on purpose. Role separation usually helps to improve
quality.

However this separation can be broken if the Owner calls setManager (). This way the Owner can set the Manager
to one of his own addresses, do Manager functions (for example setSwapFee()) and perhaps set it back to the
Manager.

Note: as everything happens on chain these actions can be tracked.

function setManager (address newManager) external override onlyOwner {
if (newManager == address(0)) {
revert Aera__ManagerIsZeroAddress();

}

if (initialized && noticeTimeoutAt == 0) {
calculateAndDistributeManagerFees();

}

emit ManagerChanged(manager, newManager);
manager = newManager;

}

Recommendation: Depending on the usefulness of separation of concerns consider doing the following:

* Add require(newManager != owner()) to the setManager() function to prevent accidentally setting the
Owner as the Manager.

Note: as discussed this doesn’t protect against deliberately creating a separate address by the Owner and using
that.

» Have a third role to set the Manager, possibly managed by a multisig.

Gauntlet: We think it's important for the treasury to be able to direct and immediate control over the manager, so
we are not able to remove that power for V1. In future versions, this trust model may change.

32

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L24
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L486
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L605
https://github.com/GauntletNetworks/aera-contracts/pull/111
https://github.com/GauntletNetworks/aera-contracts/pull/139
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L545-L556

5.6.7 Add modifier whenInitialized to function finalize()

Severity: Informational
Context: AeraVaultV1.sol#L531-L541

Description: The function finalize() does not have the modifier whenInitialized while most other functions
have this modifier. This does not create any real issues because the function contains the check noticeTimeoutAt
== 0 which can only be skipped after initiateFinalization(), and this function does have the whenInitialized
modifier.

function finalize() external override nonReentrant onlyOwner { // no modifier whenlnitialized
if (noticeTimeoutAt == 0) { // can only be set via initiateFinalization()
revert Aera__FinalizationNotInitialized();

}

Recommendation: Add the whenInitialized modifier to function finalize().
Gauntlet: Fixed in PR #111.
Spearbit: Acknowledged.

5.6.8 Document the use of mustAllowlistLPs
Severity: Informational
Context: AeraVaultV1.sol#L305-.323

Description: In the Mannon Vault it is important that no other accounts can use joinPool () on the balancer pool.
If other accounts are able to call joinPool (), they would get Balancer Pool Tokens (BPT) which could rise in value
once more funds are added to the pool.

Luckily this is prevented by the mustAllowlistLPs parameter in NewPoolParams. Readers could easily overlook
this parameter.

pool = IBManagedPool(
IBManagedPoolFactory(factory) . create(
IBManagedPoolFactory.NewPoolParams ({

vault: IBVault(address(0)),
name: name,
symbol: symbol,
tokens: tokens,
normalizedWeights: weights,
assetManagers: managers,
swapFeePercentage: swapFeePercentage,
pauseWindowDuration: O,
bufferPeriodDuration: O,
owner: address(this),
swapEnabledOnStart: false,
mustAllowlistLPs: true, // prevent other account to use joinPool
managementSwapFeePercentage: 0

b

)

Recommendation: Add a comment showing the significance of the mustAllowlistLPs parameter.

33

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L531-L541
https://github.com/GauntletNetworks/aera-contracts/pull/111
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L305-L323

5.6.9 finalize can be called multiple times

Severity: Informational
Context: AeraVaultV1.sol#L531-L541

Description: The finalize function can be called multiple time, leading to the possibility to waste gas for no
reason and emitting again a conceptually wrong Finalized event. Currently, there’s no check that will prevent to
call the function multiple time and there is no explicit flag to allow external sources (web app, external contract) to
know whether the AeraVault has been finalized or not.

Scenario: the AeraVault has already been finalized but the owner (that could be a contract and not a single
EOA) is not aware of it. He calls finalize again and wastes gas because of the external calls in a loop done in
returnFunds and emit an additional event Finalized(owner(), [0, O, ..., 0]) with an array of zeros in the
amounts event parameter.

Recommendation: One simple change that could make the UX/DX much better would be to have a state variable
to track if the finalize function have been called already.

/// STORAGE SLOT START ///

+/// @notice Indicates that the Vault has been finalized
+bool public finalized;

function finalize() external override nonReentrant onlyOwner {
if (noticeTimeoutAt == 0) {
revert Aera__FinalizationNotInitialized();
}
if (noticeTimeoutAt > block.timestamp) {
revert Aera__NoticeTimeoutNotElapsed(noticeTimeoutAt);

}
+ finalized = true;

uint256[] memory amounts = returnFunds();
emit Finalized(owner(), amounts);

}

With the new finalized boolean, there are two possible solutions to the problem:

» Soft approach: the finalized == true in addition with the fact that all the token balances in the Balancer
pool are empty (equal to 0) is a consequence that the Aeravault have been already finalized and funds have
been withdrawn. This combined information can be used to let an external website/contract know that there
is no reason to call finalize again.

» Hard approach: add a if (finalized) revert Aera__AlreadyFinalized(); check after the present
checks to revert in the case that the finalize function have been already called previously. Something
important to keep in mind is that this would prevent the owner of the Vault to be able to withdraw funds in the
case where something on the Balancer side have gone wrong (without reverting the transaction) and not all
the remaining funds have been sent to the Aeravault.

Gauntlet: Let’s go for the hard option. Implemented in PR #137.

Spearbit: Acknowledged. The "hard approach” has been implemented.

34

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L531-L541
https://github.com/GauntletNetworks/aera-contracts/pull/137

5.6.10 Consider updating finalize to have a more "clean" final state for the Aeravault/Balancer pool

Severity: Informational
Context: AeraVaultV1.sol#L531-L541

Description: This is just a suggestion and not an issue per se. The finalize function should ensure that the pool
is in a finalized state for both a better UX and DX.

Currently, the finalize function is only withdrawing all the funds from the pool after a noticePeriod but is not
ensuring that the swap have been disabled and that all the rewards, entitled to the Vault (owned by the Treasury),
have been claimed.

Recommendation: Consider implementing the following actions to have, as a result, a more clean vault/pool clean
state after executing finalize:

+ claim remaining vault rewards and sweep them
+ disable swap if not already disabled

+ Consider speaking with Balancer to understand which is the best practice to follow when a pool is being
"retired". For example, should the LP token minted during the pool initial deposit be burned even if the Trea-
sury/Vault will not be able to withdraw them because of issue "Sweep function should prevent the Treasury
to withdraw pool’'s BPT"?

5.6.11 enableTradingWithWeights is hot emitting an event for pool’s weight change

Severity: Informational
Context: AeraVaultV1.sol#L574-L583

Description: enableTradingWithWeights is both changing the pool’s weight and enabling the swap feature, but
it's only emitting the swap related event (done by calling setSwapEnabled).

Both of those operations should be correctly tracked via events to be monitored by external tools.

Recommendation: The best thing to do is to create a new event that would also allow specifically to track this
delicate operation that is done by the Treasury, that usually would not have the ability to update the pool’s weight.

+/// @notice Emitted when enableTradingWithWeights is called.
+/// @param time timestamp of updates.

+/// @param weights Target weights of tokens.

+event EnabledTradingWithWeights(

+ uint256 time,
+ uint256[] weights
+);

function enableTradingWithWeights(uint256[] calldata weights)

external
override
onlyOwner
whenInitialized
{
uint256 timestamp = block.timestamp;
pool.updateWeightsGradually (timestamp, timestamp, weights);
- setSwapEnabled(true);
+ pool.setSwapEnabled(true);
+ emit EnabledTradingWithWeights(timestamp, weights) ;
}

Gauntlet: Fixed in PR #126.
Spearbit: Acknowledged.

35

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L531-L541
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L574-L583
https://github.com/GauntletNetworks/aera-contracts/pull/126

5.6.12 Document Balancer checks
Severity: Informational
Context: AeraVaultV1.sol#L574-L583, ManagedPool.sol#L.375-L387

Description: Balancer has a large number of internal checks. We've discussed the use of additional checks in the
Aera Vault functions. The advantage of this is that it could result in more user friendly error messages. Additionally
it protects against potential future change in the Balancer code.

contract is IAeraVaultVi, Ownable, ReentrancyGuard {
function enableTradingWithWeights(uint256[] calldata weights) ... {
{

. // doesn't check weights.length
pool.updateWeightsGradually (timestamp, timestamp, weights);

}
}
Balancer code:
function updateWeightsGradually(..., uint256[] memory endWeights) ... {
(IERC20[] memory tokemns, ,) = getVault().getPoolTokens(getPoolId());
InputHelpers.ensureInputLengthMatch(tokens.length, endWeights.length); // length check is here
}

Recommendation: Consider documenting where the code relies on checks in balancer. This makes reasoning
about the correctness of the Aera Vault easier, for Aera developers, auditors and users of the code.

Gauntlet: We reasoned that since Balancer has named errors it should be clear enough when those invariants
are broken. This is a treasury product which people will interact with mainly through the UL.

5.6.13 Rename FinalizationInitialized to FinalizationInitiated for code consistency
Severity: Informational
Context: AeraVaultV1.sol#L165, AeraVaultV1.sol#L207, AeraVaultV1.sol#L517

Description: The function at L517 was renamed from initializeFinalization t0 initiateFinalization to
avoid confusion with the Aera vault initialization. For code consistency, the corresponding event and error names
should be changed.

Recommendation: Rename the event at L165 to FinalizationInitiated, and the error at L207 to Aera__-
FinalizationNotInitiated.

Gauntlet: Fixed in PR #111.
Spearbit: Acknowledged.

36

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L574-L583
https://github.com/balancer-labs/balancer-v2-monorepo/blob/master/pkg/pool-weighted/contracts/smart/ManagedPool.sol#L375-L387
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L165
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L207
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L517
https://github.com/GauntletNetworks/aera-contracts/pull/111

5.6.14 Consider enforcing an explicit check on token order to avoid human error
Severity: Informational
Context:

+ AeraVaultV1.sol#L350

» AeraVaultV1.sol#L402

» AeraVaultV1.sol#L456

* AeraVaultV1.sol#L574

» AeraVaultV1.sol#L599-L603

Description: The Balancer protocol require (and enforce during the pool creation) that the pool’s token must be
ordered by the token address.

The following functions accept an uint256[] of amounts or weights without knowing if the order inside that array
follow the same order of the tokens inside the Balancer pool.

* initialDeposit

* deposit

* withdraw

* enableTradingWithWeights
* updateWeightsGradually

While it's impossible to totally prevent the human error (they could specify the correct token order but wrongly swap
the input order of the amount/weight) we could force the user to be more aware of the specific order in which the
amounts/weights must be specified.

A possible solution applied to the initialDeposit as an example could be:

37

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L350
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L402
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L456
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L574
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L599-L603
https://dev.balancer.fi/resources/joins-and-exits/pool-joins#token-ordering

function initialDeposit(IERC20[] calldata tokensSorted, uint256[] calldata amounts)
external
override
onlyOwner

// ... other code
IERC20[] memory tokens = getTokens();

// check that also the tokensSorted length match the lenght of other arrays
if (tokens.length != amounts.length || tokens.length != tokensSorted.length) {
revert Aera__AmountLengthIsNotSame (
tokens.length,
amounts.length

)

// ... other code

for (uint256 i = 0; i < tokens.length; i++) {
// check that the token position assoctiated to the amount has the same position of the one in
— the balancer pool
if (address(tokens[i]) !'= address(tokensSorted[i])) {
revert Aera__TokenOrderIsNotSame (
address(tokens[i]),
address (tokensSorted[i]),
i
);
}

depositToken(tokens[i], amounts[i]);

// ... other code

Another possible implementation would be to introduce a custom struct

struct TokenAmount {
IERC20 token;
uint256 value;

Update the function signature function initialDeposit(TokenAmount[] calldata tokenWithAmount) and up-
date the example code following the new parameter model.

I's important to note that while this solution will not completely prevent the human error, it will increase the gas
consumption of each function.

Recommendation: Evaluate the possibility to reduce hypothetical human errors, enforcing a more explicit check
on token amounts/weights order when updating the pool at the cost of increasing the gas consumption.

Gauntlet: Spearbit:

38

5.6.15 Swap is not enabled after initialDeposit execution

Severity: Informational
Context: AeraVaultV1.sol#L350-L399

Description: In the current deployment flow of the AeravVault the Balancer pool is created (by the constructor)
with swapEnabledOnStart set as false.

When the pool receives their initial funds via initialDeposit the pool has still the swap functionality disabled. It
is not explicitly clear in the specification document and in the code when the swap functionality should be enabled.

If the protocol wants to enable the swap as soon as the funds are deposited in the pool, they should call,
after bvVault.joinPool(...), setSwapEnabled(true) Or enableTradingWithWeights(uint256[] calldata
weights) in case the external spot price is not aligned (both functions will also trigger a SetSwapEnabled event)

Recommendation: Ensure to call setSwapEnabled(true) Or enableTradingWithWeights(uint256[] calldata
weights) at the end of initialDeposit if you intend to enable swapping after the pool has been funded.

Gauntlet: Suggestion has been implemented in PR #123.

Spearbit: Acknowledged. This behavior change should also be documented in both high-level documentation and
natspec.

5.6.16 Remove commented code and replace input values with Balancer enum
Severity: Informational
Context: AeraVaultV1.sol#L.371-L380

Description: Inside initialDeposit function, there is some commented code (used as example) that should be
removed for clarity and future confusion. The initUserData should not use direct input values (0 in this case) but
use the correct Balancer’s enum value to avoid any possible confusion.

Following the Balancer documentation
» Encoding userData
+ JoinKind
The correct way to declare initUserData is using the WeightedPoolUserData.JoinKind.INIT enum value.
Recommendation:
* Remove the code example comments
+ Update the code to user Balancer’s enum value
Gauntlet: Fixed in PR #102.
Spearbit: Acknowledged.

5.6.17 The Created event is not including all the information used to deploy the Balancer pool and are
missing indexed properties

Severity: Informational
Context: AeraVaultV1.sol#L95-L111, AeraVaultV1.sol#L334-L342

Description: The current Created event is defined as

39

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L350-L399
https://github.com/GauntletNetworks/aera-contracts/pull/123
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L371-L380
https://dev.balancer.fi/helpers/encoding
https://dev.balancer.fi/resources/joins-and-exits/pool-joins#userdata
https://github.com/GauntletNetworks/aera-contracts/pull/102
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L95-L111
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L334-L342

event Created(
address indexed factory,
IERC20[] tokens,
uint256[] weights,
address manager,
address validator,
uint32 noticePeriod,
string description

)

And is missing some of the information that are used to deploy the pool. To allow external tools to better monitor
the deployment of the pools, it should be better to include all the information that have been used to deploy the
pool on Balancer.

The following information is currently missing from the event definition:
¢ name
* symbol
* managementFee
* swapFeePercentage

The event could also define both manager and validator as indexed event parameters to allow external tools to
filter those events by those values.

Recommendation: We recommend to:
+ Change manager and validatoras indexed event parameter

+ Add the missing information to the event

event Created(
address indexed factory,
+ string name,
+ string symbol,
IERC20[] tokens,
uint256[] weights,
+ uint256 swapFeePercentage,
- address manager,
- address validator,
+ address indexed manager,
+ address indexed validator,
uint32 noticePeriod,
+ uint256 managementFee,
string description

)

» Update the event natspec comment to include documentation for the added event parameters

» Update the emit Created event code to include the missing informations

40

emit Created(
factory,
name,

+ symbol,
tokens,
weights,

+ swapFeePercentage,
manager_,
validator_,
noticePeriod._,

+ managementFee_
description_

)

Gauntlet: Fixed in PR #101.
Spearbit: Acknowledged.

5.6.18 Rename temp variable managers to assetManagers to avoid confusions and any potential future
mistakes

Severity: Informational
Context: AeraVaultV1.sol#L300

Description: The managers declared in the linked code (see context) are in reality Asset Manager that have a
totally different role compared to the Aeravault Manager role. The AssetManager is able to control the pool’s
balance, withdrawing from it or depositing into it.

To avoid confusion and any potential future mistakes, it should be better to rename the temporary variable managers
to a more appropriate name like assetManagers.

- address[] memory managers = new address[] (tokens.length);
+ address[] memory assetManagers = new address[] (tokens.length);

for (uint256 i = 0; i < tokens.length; i++) {
- managers[i] = address(this);
+ assetManagers[i] = address(this);

}

pool = IBManagedPool(
IBManagedPoolFactory(factory) .create(
IBManagedPoolFactory.NewPoolParams ({

vault: IBVault(address(0)),
name: name,

symbol: symbol,

tokens: tokens,
normalizedWeights: weights,

- assetManagers: managers,

+ assetManagers: assetManagers,
swapFeePercentage: swapFeePercentage,
pauseWindowDuration: O,
bufferPeriodDuration: O,
owner: address(this),
swapEnabledOnStart: false,
mustAllowlistLPs: true,
managementSwapFeePercentage: 0

b

41

https://github.com/GauntletNetworks/aera-contracts/pull/101
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L300

Recommendation: Rename managers t0 assetManagers to avoid confusion and any potential future mistakes.
Gauntlet: Fixed in PR #123.
Spearbit: Acknowledged.

5.6.19 Move description declaration inside the storage slot code block

Severity: Informational
Context: AeraVaultV1.sol#L72-L74

Description: In the current code, the description state variable is in the block of /// STORAGE /// where all the
immutable variable are re-grouped.

As the dev comment say, string cannot be immutable bytecode but only set in constructor SO it would
be better to move it inside the /// STORAGE SLOT START /// block of variables that regroup all the non-constant
and non-immutable state variables.

Recommendation: Move the description state variable inside the /// STORAGE SLOT START /// code part
Gauntlet: Fixed in PR #112.
Spearbit: Acknowledged.

5.6.20 Remove unused imports from code
Severity: Informational
Context: AeraVaultV1.sol#L6

Description: The current implementation of the AeravaultVi1 contract is importing OpenZeppelin IERC165 inter-
face, but that interface is never used or references in the code.

Recommendation: Remove the import

-import "./dependencies/openzeppelin/IERC165.s01";

Gauntlet: Fixed in PR #102.
Spearbit: Acknowledged.

5.6.21 shortfall is repeated twice in IWithdrawalValidator natspec comments

Severity: Informational

Context: IWithdrawalValidator.sol#L7-L8

Description: The word shortfall is repeated twice in the natspec comment.

Recommendation: Remove one instance of the word following the used style guide (row max length)
Gauntlet: Fixed in PR #101.

Spearbit: Acknowledged.

42

https://github.com/GauntletNetworks/aera-contracts/pull/123
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L72-L74
https://github.com/GauntletNetworks/aera-contracts/pull/112
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L6
https://github.com/GauntletNetworks/aera-contracts/pull/102
https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/interfaces/IWithdrawalValidator.sol#L7-L8
https://github.com/GauntletNetworks/aera-contracts/pull/101

5.6.22 Provide definition of weights & managementFee_ in the NatSpec comment

Severity: Informational
Context: AeraVaultV1.sol#L251-L259

Description: The NatSpec Format is special form of comments to provide rich documentation for functions, return
variables and more. We observed an occurrence where the NatSpec comments are missing for two of the user
inputs (weights & managementFee_).

Recommendation: Provide proper definition of weights & managementFee_ in the NatSpec format comment i.e.
O@param

Gauntlet: Fixed in PR #101.
Spearbit: Acknowledged.

43

https://github.com/GauntletNetworks/aera-contracts/blob/d48ddedf1dc70b9d13cb17d07ebee481a1d0b8d2/contracts/v1/AeraVaultV1.sol#L251-L259
https://github.com/GauntletNetworks/aera-contracts/pull/101

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Critical Risk
	Important Balancer fields can be overwritten by EndTime
	sweep function should prevent Treasury from withdrawing pool's BPTs

	High Risk
	Manager can cause an immediate weight change
	deposit and withdraw functions are susceptible to sandwich attacks
	allowance() doesn't limit withdraw()s
	Managed Pools are still undergoing development and may contain bugs and/or significant changes
	Malicious manager could cause Vault funds to be inaccessible
	updateWeightsGradually allows change rates to start in the past with a very high maximumRatio
	The vault manager has unchecked power to create arbitrage using setSwapFees
	Implement a function to claim liquidity mining rewards

	Medium Risk
	Owner can circumvent allowance() via enableTradingWithWeights()
	Front-running attacks on finalize could affect received token amounts
	safeApprove in depositToken could revert for non-standard token like USDT
	Consult with Balancer team about best approach to add and remove funds
	Fee on transfer can block several functions
	enableTradingWithWeights allow the Treasury to change the pool's weights even if the swap is not disabled
	AeraVault constructor is not checking all the input parameters
	Possible mismatch between Validator.count and AeraVault assets count

	Low Risk
	Ensure vault's deployment integrity
	Frequent calling of calculateAndDistributeManagerFees() lowers fees
	OpenZeppelin best practices
	Possible rounding down of fees
	Missing nonReentrant modifier on initiateFinalization(), setManager() and claimManagerFees() functions
	Potential division by 0
	Use ManagedPoolFactory instead of BaseManagedPoolFactory to deploy the Balancer pool
	Adopt the two-step ownership transfer pattern
	Implement zero-address check for manager_

	Gas Optimization
	Simplify tracking of managerFeeIndex
	Directly call getTokensData() from returnFunds()
	Change uint32 and uint64 to uint256
	Use block.timestamp directly instead of assigning it to a temporary variable.
	Consider replacing pool.getPoolId() with bytes32 public immutable poolId to save gas and external calls
	Save values in temporary variables

	Informational
	Aera could be prone to out-of-gas transaction revert when managing a high number of tokens
	Use a consistent way to call getNormalizedWeights()
	Add function disableTrading() to IManagerAPI.sol
	Doublecheck layout functions
	Use Math library functions in a consistent way
	Separation of concerns Owner and Manager
	Add modifier whenInitialized to function finalize()
	Document the use of mustAllowlistLPs
	finalize can be called multiple times
	Consider updating finalize to have a more "clean" final state for the AeraVault/Balancer pool
	enableTradingWithWeights is not emitting an event for pool's weight change
	Document Balancer checks
	Rename FinalizationInitialized to FinalizationInitiated for code consistency
	Consider enforcing an explicit check on token order to avoid human error
	Swap is not enabled after initialDeposit execution
	Remove commented code and replace input values with Balancer enum
	The Created event is not including all the information used to deploy the Balancer pool and are missing indexed properties
	Rename temp variable managers to assetManagers to avoid confusions and any potential future mistakes
	Move description declaration inside the storage slot code block
	Remove unused imports from code
	shortfall is repeated twice in IWithdrawalValidator natspec comments
	Provide definition of weights & managementFee_ in the NatSpec comment

