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Executive summary 

AI is a dual-use technology with disproportionately positive applications. It is a key 
driver of economic growth, and holds promise for achieving unprecedented 
breakthroughs in areas such as medicine, energy, and climate science. However, AI is 
also introducing acute risks that must be managed at the same time as its value is 
harnessed. In particular, over the next four years, AI systems will plausibly introduce 
WMD-level risks from deliberate weaponization, accidents, or loss of control. 

In 2019, the most cutting-edge AI systems struggled to generate coherent paragraphs. 
Today, in 2023, AI systems can already support automated superscale phishing attacks, 
identity theft and scams via high-fidelity voice cloning, autonomous hacking agents, 
mass persuasion campaigns, and the re-engineering of biochemical compounds by 
untrained users. These capabilities have emerged suddenly within the last 18 months, 
and would have been considered the stuff of science fiction as recently as 2020. 

In the near future, AI systems are likely to support far more dangerous applications. 
The trend is clear: larger AI models that are trained with more computational power 
and data are consistently more capable than smaller ones, and the amount of 
computational power used to train the leading AI models increases each year by a 
factor of four. This rapid expansion of computational effort has been the main driving 
force for today’s ongoing and unprecedented acceleration in AI capabilities. 

The effectiveness of scaled computing power has come as a shock even to some of the 
field’s most forward-thinking observers. Today, executives and researchers at the 
world’s top AI labs consider it plausible that AI systems capable of matching or 
exceeding human performance across all economically useful tasks (sometimes known 
in the AI industry as artificial general intelligences, or AGIs) may be developed within 
the next five years. 

The development of AGI, and of AI capabilities approaching AGI, would introduce 
catastrophic risks unlike any the United States has ever faced. It is now plausible that 
the next generation of AI systems – those trained at the next level of computational 
scale – will be so capable that they will lead to WMD-like risks if and when they are 
weaponized. Publicly and privately, researchers at frontier AI labs have voiced concerns 
that AI systems developed in the next 12 to 36 months may be capable of executing 
catastrophic malware attacks, assisting in bioweapon design, and directing swarms of 
goal-directed humanlike autonomous agents, for example. Given the demonstrated 
effectiveness of scaled computing power in AI development, and the current 
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capabilities of frontier AI systems, it is very likely that AI systems will demonstrate at 
least some of these capabilities over the coming three years. 

Additionally, a significant body of evidence suggests that AI systems whose capabilities 
exceed a certain (currently unknown) threshold may become challenging for humans to 
control. Research suggests a risk that a capable enough AI system could begin to 
follow dangerous strategies in pursuit of objectives that are incompatible with 
continued human welfare. Such systems could pose large-scale and irreversible risks, 
even without any specific intent on the part of their developers. Concerns over these 
extreme risks have been echoed by academic leaders including two of the founders of 
the field of deep learning, and by civil society groups with deep expertise in AI safety. 

AI systems with potentially dangerous capabilities are being developed and 
proliferated through several key sources and pathways. First, proprietary AI systems are 
being trained and often deployed as products by frontier AI labs. These include 
Google DeepMind (Bard, Gemini), OpenAI (DALL-E 3, GPT-4), and Anthropic (Claude 
2). Unfortunately, these labs largely lack the security measures required to prevent 
exfiltration of their models by nation-state actors, or the safety measures required to 
prevent catastrophic accidents from future AI systems.  

Second, the AI community has a strong open-source culture. Open-source advances at 
the framework level have led to significant breakthroughs such as Auto-GPT, which 
allows language models to operate autonomously as agents. Additionally, the 
capabilities of open-source and open-access AI models are closely tracking those of 
the most advanced proprietary AI systems, in some cases lagging the frontier by less 
than a year. The result has been an irreversible proliferation of increasingly 
weaponizable AI systems.  

Model theft, piracy, and sale of powerful AI models are also vectors of proliferation for 
high-risk AI capabilities. In each case, a third party who acquires a proprietary model – 
whether legally or otherwise – can augment the model for weaponization on a budget 
in the hundreds of dollars. The low cost associated with these capability augmentations 
makes advanced AI a fundamentally new type of WMD-like technology, and its effects 
particularly challenging to control.  

Advanced AI’s rapid progress, unpredictable emergence of capabilities, competitive 
pressures, and open-source proliferation, combine to make the field an unprecedented 
national security and public policy challenge. 
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Note: This report will be most accessible to technical audiences already familiar with 
deep learning. Readers who are not familiar with deep learning should consider 
starting with the nontechnical primer included in Annex D. 
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1. Background on AI 

1.1 Definitions 

Before 2020, artificial intelligence (AI) systems could only perform specific narrow tasks. 
For example, an artificial neural network trained to classify images as either containing 
or not containing a picture of a dog could perform only that task and no other [1]. But 
with the announcement of OpenAI’s GPT-3 [2] in early 2020, researchers began to 
make rapid progress in developing flexible, general-purpose AI systems with the 
capacity to perform an ever-widening range of tasks [3–5]. Today, these include systems 
that can outperform most human beings on tasks as diverse as writing code, translating 
between languages, composing essays, and answering general knowledge questions. 

The pace of this progress has surprised some of the field’s most optimistic researchers 
and industry insiders [6]. It has been driven, in part, by experimental insights into how 
AI systems improve as they get larger and are trained with more data and computing 
power [7,8]. These insights have directly enabled the development of increasingly 
human-like chatbots and other kinds of general-purpose AI systems [5,9–11]. 

We will refer to AI systems that can perform many distinct tasks without being 
specifically trained on them as advanced AI . ChatGPT is a typical example of an 1

advanced AI system, but several others exist as of late 2023. An advanced AI system 
might use only a single type of data (such as text data), or it might use many different 
types of data (such as text, images, audio, and/or video data) to perform its tasks 
[3,10,12–14]. 

In addition to advanced AI, we will use the term artificial general intelligence  (AGI) as 2

it is used in industry [15–17], to refer to advanced AI systems that exceed human 
capabilities across all, or nearly all, economic and strategic domains.  

1.2 Progress in advanced AI 

A key long-term goal of advanced AI research has been to create AGI [16,18]. Before 
2020, the narrow usefulness of even the most cutting-edge AI systems led most 
researchers to conclude that this goal was at least decades away [19]. In addition, a 

 See Annex A: Glossary of terms for our definition of advanced AI. 1

 See Annex A: Glossary of terms for our definition of artificial general intelligence. 2
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large portion of the AI research community believed that AGI could not be achieved 
without fundamentally new AI paradigms [20,21].  

But starting in 2020, several independent lines of evidence emerged to suggest that an 
AI system’s capabilities could in fact be systematically improved by doing nothing more 
than scaling up its training dataset, model size, and training compute [7,22]. That year, 
OpenAI released the first AI system that took advantage of these scaling laws. That AI 
system was GPT-3, the first large language model (LLM). With over ten times more 
parameters than any previous language model, GPT-3 could perform unprecedentedly 
well on a wide variety of tasks after being given only a few examples of them [2].  3

In early 2021, Google’s DeepMind demonstrated a significant improvement over 
OpenAI’s GPT-3 scaling laws with its new advanced AI model Chinchilla [8]. 
DeepMind’s work on Chinchilla demonstrated a new scaling law that showed 
researchers how to train more capable AI models, more cheaply, by using larger 
training datasets. Since then, leading AI systems have been developed with ever larger 
compute budgets, increasing more than fourfold every year (see Figure 1).

Figure 1. Training compute of notable machine learning systems since GPT-3. Data source: 
Epoch AI.  

 Annex D: Nontechnical primer on AI, section 2.6, provides a nontechnical overview of AI 3

scaling. 
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In 2022 DeepMind published Gato, a single AI model that outperformed more than 
half of human experts at 450 of the 600 tasks it was trained on [3]. These tasks included 
captioning images, carrying out dialogues, and controlling robotic arms. Around the 
same time, Google announced PaLM, a 540 billion parameter model that achieved 
state-of-the-art performance on hundreds of different language tasks [4]. Later that 
same year, OpenAI released ChatGPT, widely viewed as the culmination of decades of 
effort in conversational AI [9] and the first product of any kind to reach 100 million users 
in under two months [23]. Then, in early 2023, OpenAI announced GPT-4 which, among 
many other record-setting capabilities, scores in the 90th percentile on tests as diverse 
as the Uniform Bar Exam, AP U.S. History, and the Math SATs [10].  

These developments are part of a greater trend: an ongoing and increasingly 
competitive race among the world’s most advanced AI labs to scale up the sizes and 
capabilities of their most powerful AI systems [24–28]. This race has already delivered 
AI systems that achieve unprecedented performance on tasks such as image 
generation [29–31] and recognition [32], web development [28], and robotic control 
[33]. These new AI systems are especially notable given that they were never directly 
trained to perform many of the tasks they were tested on, but were instead able to 
work from an explanation alone without seeing any examples. 

Before these advances, many researchers believed that the deep learning paradigm 
could not support this degree of generalization to novel tasks [24,25]. But today, it 
seems increasingly likely that AGI could be achievable with few or even no further 
major conceptual breakthroughs in AI [34–36]. Recent large language models in 
particular have shown a range of logical, historical, mathematical, and scientific 
capabilities that suggest that the model is able to represent the world internally in at 
least some degree of depth [37]. For example, GPT-4 has demonstrated an ability to 
correctly navigate through complicated virtual worlds via text interactions alone, 
strongly implying that the model can create and retain an internal picture of a simple 
environment [37]. These hypothesized internal representations are called world models, 
and they appear to be related to an AI system’s ability to generalize across a broader 
range of tasks. Most recently, AI researchers have developed multi-modal training 
schemes that can connect LLM world models to sensory inputs from external objects 
such as video, image, or audio feeds [14,38]. Multi-modal training lets an AI system 
learn directly from real-world data rather than solely relying on text inputs. 

AI scaling laws continue to be refined as researchers’ understanding of the optimal 
balance between data, compute budget, and model size improves [7,8,11]. But scaling 
itself remains critical: larger AI systems are consistently more capable than smaller 
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ones, and this has remained true as the largest AI systems have grown 10-million-fold 
over the past decade [39]. If this robust trend continues, it is conceivable that within a 
few years the most advanced AI systems could surpass expert human performance in 
every domain. Already AI systems outperform most humans at tasks that range from 
taking standardized tests [10], image recognition [40], and video game-playing [41,42], 
to strategy and scenario planning [43]. Notably, most of these performance 
breakthroughs have occurred just in the three years since 2020. Increasingly general 
and analytical tasks, that were once believed to be beyond the reach of current AI 
techniques, are being mastered by AI systems at a rapidly accelerating rate. 

Despite its high cost in computing power, scaling remains the most prominent path to 
developing more powerful AI systems. But researchers also use several other 
approaches to improve AI capabilities. These include refining data collection and 
preprocessing techniques, optimizing a model’s training objective, and using more 
performant model architectures. These kinds of techniques are often called algorithmic 
improvements, to distinguish them from improvements due to scaling. Unlike scaling, 
once a new algorithmic improvement is known, it can be applied at no additional cost 
to train more performant models for the same computing budget [11].  

Significant improvements in AI capabilities have also come from straightforward 
extensions to known methods, including prompt engineering [44–46] and fine-tuning 
[47] existing models. It does not seem implausible that, even barring further scaling, 
continued algorithmic improvements could produce AI systems that collectively surpass 
median human performance across virtually all domains. 

1.3 Transformers and language models as enablers for 
advanced AI 

Most of today’s advanced AI systems, including all prominent LLMs, are built on the 
transformer architecture. A transformer model contains a special subsystem, called an 
attention mechanism, that identifies which parts of a text prompt the model should pay 
most attention to as it generates its output. With the ability to focus more on some 
parts of a prompt than others, and to capture long-range interactions between different 
parts of their prompts, transformers are especially well suited to read and interpret text. 
Crucially, transformers also run very efficiently on modern computing hardware, making 
them an ideal architecture to channel the vast quantities of data and processing power 
that are needed for AI scaling [48].  

Scaled LLMs in particular have drawn attention as a potential means by which AGI 
could be achieved. During training, an LLM learns to perform a task similar to text 
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autocomplete, in which it receives a piece of text as input, and is scored on how well it 
can predict which text token will come next at each position in the text. To do this 
successfully, the LLM needs to use the information in the input text to inform its next-
token prediction. For example, when presented with a prompt like “to counter rising 
inflation, the U.S. should”, an LLM must be able to “understand” what is meant by 
terms such as “inflation” and “the U.S.”, and leverage implicit knowledge of 
macroeconomics, monetary theory, and other concepts to generate a sensible 
prediction. Because of this, a well-trained LLM is effectively forced to internalize a 
robust representation of the world during training – a so-called world model, as 
discussed previously.  

An LLM’s world model endows it with implicit knowledge about a wide range of 
concepts, which it can then apply to downstream tasks unrelated to its initial 
autocomplete-like training objective. This allows an LLM to serve both as a source of 
general knowledge, and as a reasoning engine for robotic controllers, image 
generators, code-writing assistants, and many other kinds of systems [28,29,33]. 

1.4 Limitations of transformers and alternative paths to 
advanced AI 

Transformer-based systems currently dominate the frontier AI  paradigm, because of 4

their scalability and other favorable characteristics. But they also have several important 
limitations. Some of these limitations are fundamental to the problem of intelligence. 
Others are specific to transformers themselves. The limitations of transformers can be 
broken down into four categories: capacity, veracity, reliability, and latency.  5

• Capacity is a broad term that encompasses both an AI model’s memory 
requirements, and the maximum sequence length it can process. Transformer 
models require a large amount of memory and computational resources to store 
and update their parameters during training, and this is especially true for large-
scale transformers with billions or trillions of parameters. Increasing a 
transformer’s maximum sequence length makes the model more powerful, at 
the cost of increasing latency and memory requirements [49]. 

 See Annex A: Glossary of terms for our definition of frontier AI. 4

 Annex D: Nontechnical primer on AI, section 2.24, provides a nontechnical overview of the 5

potential limitations associated with scaling transformers as a path to AGI. 
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• Veracity refers to the truthfulness of an AI system. Transformer models are 
known to hallucinate, giving responses that are not justified by the training data 
or any other available context. A hallucination often takes the form of false or 
logically incoherent text outputs. Hallucination emerges as a byproduct of 
optimizing systems for tasks such as next-word prediction, because the most 
likely next-word prediction is not necessarily the most true or accurate. 
Pretrained LLMs have no direct incentive to produce true or valid outputs – they 
only have an incentive to produce outputs that are highly probable, and 
probable outputs are not always truthful outputs. The challenge of preventing 
hallucination is known as contextual grounding [50]. 

• Reliability breaks down into two properties: calibration and brittleness. 
Transformers can suffer from both poor calibration and poor brittleness [51]. 

◦ A poorly calibrated model is one that is either too confident, or not 
confident enough, in its predictions. Even modern transformers often 
exhibit poor calibration. 

◦ A brittle model is one that will generate very different predictions when 
given very similar inputs. For example, we would not normally expect a 
model’s predictions to be dramatically different for “The cat sat on a ___” 
versus “The cat sat on the ___”, but a brittle model may generate 
completely different predictions in these two cases. 

• Latency refers to the time it takes for a model to generate its output. The 
attention mechanism introduces significant latency in large-scale transformer-
based AI systems. There have been some efforts to mitigate this at either the 
algorithmic (software) or implementation (hardware) levels, with notable recent 
successes [52]. 

Progress is being made in overcoming many of these limitations. Frontier AI labs are 
now building transformers with long-term memory [53, 54], giving them access to tools 
that allow them to retrieve information from the internet and take actions in cyberspace 
[55], and grounding them by training on a wider range of data types [10,13]. They are 
also addressing latency limitations: FlashAttention, an optimized implementation of 
attention, has led to up to 3x improvements in training times [56]. It remains to be seen 
whether advances such as these, compounded by further scaling, will allow 
transformers to strongly exceed expert human performance on all human-solvable 
tasks.  
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If scaling transformers alone fails to lead to AGI, several alternative or complementary 
approaches may do so instead. These include strategies based on reinforcement 
learning and self-play [57], as well as recurrent architectures [58]. Notably, Google’s 
Gemini model will feature a composite architecture consisting of a scaled transformer, 
integrated with a tree search-based long-term planning component [59,60].  

Whichever approach successfully culminates in AI systems with broadly human-level 
capabilities, it will very likely operate as a platform for applying computational 
resources at massive scale on very large datasets. In this sense, at least, scale is likely to 
be a key input to the successful development of AGI. 
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2. Industry state of play 

2.1 Notable players, their products and capabilities 

To train an LLM, an AI developer typically starts with a vast dataset of text scraped from 
the Internet. That dataset is carefully preprocessed, filtered using smaller specialized AI 
models, and broken down into smaller parts to prepare it for LLM training. Although 
the general procedure is described in the AI research literature, the proprietary 
techniques needed to carry it out successfully at scale are not widely known outside the 
most advanced AI labs. As a result, there is a limited pool of expertise available to 
effectively train high-quality, state-of-the-art AI systems. 

Scaling pre-trained AI systems at the cutting edge also requires large and increasing 
quantities of computing power [61] . GPT-3’s 2020 training run is estimated to have 6

cost roughly $5M [62], though training a similar-quality model in 2023 would be 
expected to cost 10x less [63] because of the algorithmic and hardware improvements 
that have occurred since then. For comparison, GPT-4’s more recent training run is 
estimated to have cost between $40M and several hundred million dollars to train 
[64,65]. Today’s cutting-edge models are being trained on between 10,000 and 
100,000 GPUs, with associated compute budgets in the hundreds of millions to billions 
of dollars [66,67]. 

This means that currently only well-resourced organizations with access to scarce 
technical talent and knowledge are able to develop the most capable advanced AI 
models from scratch. Here are some of the most notable of these organizations, along 
with their flagship products and capabilities current as of November 2023 (see Table 1 
for a summary of this information): 

• OpenAI is a California-based company in which Microsoft owns a 49% stake 
[48]. Their mission is to “ensure that artificial general intelligence—AI systems 
that are generally smarter than humans—benefits all of humanity.” [16] OpenAI 
was the first organization to invest heavily in AI scaling, and delivered many of 
the early proof points for the scaling hypothesis [2,7]. They are among a very 
small number of labs that are shaping the frontier of AI capabilities today. Their 

 Annex D: Nontechnical primer on AI, section 2.7, provides a nontechnical review of different 6

types of AI processors, which provide the computing power needed to support scaled AI 
training runs.  
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key AI models and products include: 

◦ InstructGPT. An instruction-following model based on GPT-3. Although 
the first GPT-3 model could execute a wide range of tasks, it was 
originally trained only as a very powerful autocomplete system. As a 
result, a GPT-3 user had to prompt the model in elaborate ways to induce 
it to generate useful outputs. InstructGPT fine-tuned GPT-3 to follow 
more intuitively phrased user requests, using reinforcement learning from 
human feedback (RLHF) [9–11, 68—70]. 

◦ ChatGPT-3.5. A dialogue model released to the public via a free-to-use 
chat interface (though paid tiers have since been introduced). Shortly 
after its release, ChatGPT became the fastest software product in history 
to reach 100 million users [23]. The original ChatGPT (ChatGPT-3.5) was a 
modified version of GPT-3.5, a version of GPT-3 that was first fine-tuned 
on a human dialogue dataset, and then fine-tuned via RLHF. ChatGPT can 
generate code, write essays, answer questions, and perform many other 
tasks with a high degree of proficiency [9]. Like all other LLMs, though, it 
sometimes generates inaccurate outputs due to either a lack of relevant 
training data or to hallucination [71]. OpenAI has released a ChatGPT API, 
which was recently upgraded to allow ChatGPT to access the internet 
directly via a growing set of tools or plugins [72]. 

◦ GPT-4 (and ChatGPT-4). Probably the most capable publicly known LLM 
at the time of writing, GPT-4 comes in several versions: 1) a text-only 
version (the default); 2) a version with access to the Internet; 3) a version 
that can interpret code and do advanced data analysis; 4) a version that 
supports plugins; and 5) a version that can interface with DALL-E 3, 
OpenAI’s latest image generation model [73]. OpenAI has released 
limited information about GPT-4’s training process, but it was very likely 
fine-tuned via RLHF in a manner similar to ChatGPT and InstructGPT. 
GPT-4 achieves or exceeds median human expert performance on a wide 
range of standardized tests, can create websites based on hand-drawn 
sketches, and can provide detailed and accurate instructions for tasks like 
cleaning a piranha’s fish tank or extracting a strawberry’s DNA [10]. GPT-4 
can autonomously manage the execution of complex instructions by 
breaking them down into smaller steps and delegating the execution of 
each step to other language models or to other copies of itself [44,45]. 
Like many of OpenAI’s other models, GPT-4 is available to developers as 
an API. GPT-4 also powers the newest version of Microsoft’s Bing search 
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engine [74]. OpenAI has publicly announced their intention to build 
GPT-5 [75]. 

• Google is a major player in advanced AI, and has recently consolidated its 
internal AGI development efforts. This consolidation has brought DeepMind, a 
formerly independent subsidiary focused on advanced AI research, into an 
operational partnership with Google AI, Google’s former internal AI research 
arm [76]. The new, consolidated Google AI research organization is headed by 
Demis Hassabis, DeepMind’s co-founder and former CEO. As of July 2023, 
DeepMind’s website stated, “Our long term aim is to solve intelligence, 
developing more general and capable problem-solving systems, known as 
artificial general intelligence (AGI).” [18] Google and DeepMind’s key advanced 
AI research landmarks include: 

◦ Gato. Announced by DeepMind in 2022, Gato was the first AI that could 
perform hundreds of different tasks across multiple domains. Gato can 
not only carry on conversations and write captions for images, it can also 
beat humans at Atari games, navigate in simulated 3D environments, and 
even stack blocks with a real-world robotic arm. Crucially, Gato was the 
first AI that did not need to be updated when switching between any of 
its tasks. The same system, unchanged, could carry out any of the 600 
tasks it had been trained on. DeepMind's paper describes the AI they 
built as the "current iteration" of Gato, suggesting they may have 
planned to extend Gato's capabilities further in the future [3]. 

◦ PaLM-E. A state-of-the-art multimodal model that can use both language 
and visual information to solve problems. PaLM-E can describe an image, 
answer questions about it, tell jokes that are based on an image, perform 
mathematical tasks using the numbers in an image, and generate high-
level action plans for robots that are based directly on the robot’s visual 
surroundings, among other capabilities [12]. 

◦ PaLM 2. A state-of-the-art LLM developed by Google, which outperforms 
GPT-4 on several key benchmarks. Notably, PaLM 2 was developed in a 
range of sizes, from 400M to 15B parameters [11]. The smallest variants of 
PaLM 2 can run on relatively memory-constrained edge devices. PaLM 2 
is now being served to users via Google’s Bard product. 

◦ Gemini. An upcoming model from Google, Gemini will be multimodal, 
highly efficient at tool and API integrations, and built to enable future 
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innovations, like memory and planning [77]. Gemini reflects a growing 
trend toward providing highly scaled and context-aware AI with third-
party tools and direct access to the internet. 

• Anthropic was founded in 2021 by a team of former members of the OpenAI 
executive, AI policy, and AI safety teams [78]. Anthropic’s founders and early 
employees left OpenAI over concerns about OpenAI’s philosophy, particularly as 
it pertained to advanced AI safety [79]. Anthropic’s CEO is Dario Amodei, who 
played a key role in spearheading the development of the original GPT-3 model 
while at OpenAI. Anthropic’s mission is overtly safety-focused: like many 
researchers at frontier labs like OpenAI and Google DeepMind, the company 
openly discusses AI as a source of catastrophic risk [80]. Their key AI models and 
products include: 

◦ Claude 2. An LLM chatbot created by Anthropic that can automatically 
learn to follow a set of guiding behavioral principles, without any direct 
human input. Similar to ChatGPT, Claude 2 can respond to user messages 
and perform a seemingly infinite number of tasks, as long as those tasks 
can be described in text. Claude 2 improves on ChatGPT by automatically 
learning to follow a set of human-provided principles (i.e., “don’t say 
anything illegal”, “don’t say anything racist”, etc.) that Anthropic calls a 
constitution [5,81]. Along with Google’s products, it is among very few 
commercially available LLMs considered to be competitive with OpenAI’s 
offerings.  

◦ Claude-Next. A planned future iteration of Claude, which Anthropic 
reportedly plans to build using a billion-dollar compute budget. Notably, 
in internal documents leaked to the press, Anthropic frames Claude-Next 
as a potential tipping point in AI capability and scale: “These models 
could begin to automate large portions of the economy. We believe that 
companies that train the best 2025/26 models will be too far ahead for 
anyone to catch up in subsequent cycles.” [82] 
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Table 1. Summary of key frontier AI models and their capabilities.  

Model Capabilities Applications

InstructGPT • Text output only.  
• Reasonably good at following basic 

instructions.

Personal assistant apps, basic 
customer service chatbots, 
summarizing documents.

ChatGPT-3.5 • Text output only.  
• Can engage in human-like dialogue. 
• Can use complex tools, such as web 

search APIs, to fulfill user requests.

Writing and debugging blocks 
of code, conducting research, 
generating ideas.

GPT-4 • Can output text, or images via DALL-E 
3. 

• Outperforms median human experts on 
a range of standardized tests and 
professional licensing exams. 

• Can power autonomous agents.  
• Problem-solving capabilities that span 

genetics, software engineering, law, 
corporate strategy, etc. 

• First-class support for Internet access, 
plugins, and code writing.

Building simple websites from 
hand-drawn sketches, 
automated tutors, analyzing 
medical images such as MRIs 
and CT scans, generating art, 
analyzing datasets.

Gato • Can perform over 450 distinct tasks 
better than at least 50% of human 
experts. 

• Can carry on humanlike dialogue, 
analyze images, play video games, 
navigate simulated 3D environments, 
and control robotic systems.

Content generation, 
controlling non-player 
characters in video games, 
robotic medication dispensing.

PaLM-E • Text output only. 
• A language model trained specifically to 

control and interact with robotic 
components (e.g. sensors and 
actuators). 

• Can plan complex robotic maneuvers, 
analyze images, and generate humanlike 
text.

Manufacturing and warehouse 
automation, military drone 
control.

PaLM 2 • Text output only. 
• Outcompetes GPT-4 on several (but not 

all) key benchmarks for language 
modeling.

Automated psychological 
counseling, identifying and 
patching software security 
vulnerabilities, medical 
dialogue agents.
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Other important players at the frontier of AI research include:  

• Microsoft, an influential leading AI developer with access to tremendous 
amounts of compute, and OpenAI’s key corporate sponsor [66]; 

• Nvidia, an AI chip design firm that holds 95% market share in AI GPUs and has 
contributed to key experiments in AI scaling, including the Microsoft-Nvidia 
collaboration that developed Megatron-Turing NLG, the largest AI model in the 
world at the time [83]; 

• Amazon, which has access to significant pools of compute resources through its 
cloud subsidiary AWS, and has recently begun developing its own cutting-edge 
LLMs [84]; 

• The most sophisticated quantitative hedge funds in the world, which have AI 
capabilities that are not publicly disclosed but may be highly advanced. 
Although their AI development activities are not publicly disclosed, we assess 
that certain hedge funds are likely to be engaged in advanced AI development 
activities due to their retention of exceptionally capable technical talent, their 
access to quantities capital that make scaled AI development possible, and their 
strong incentives to predict market behavior using advanced modelling 
techniques [85]; 

Gemini • As-yet unreleased, but known to be 
multimodal. 

• Will combine the world knowledge of 
GPT-like models with long-term 
planning capabilities game-playing AI 
models.

Unknown.

Claude 2 • Text output only.  
• Competitive with GPT-4 capabilities, but 

distinguished by a tendency to generate 
outputs that are more harmless, helpful, 
and conservative, on average.

Legal document editing, 
analyzing codebases, 
optimizing marketing copy.

Claude-Next • Planned future iteration of the Claude 
series of models. 

• Anthropic expects its capability to 
potentially lead to a decisive and 
permanent strategic advantage for the 
company.

Unknown.
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• Baidu, Inspur, Tencent, and Alibaba, which are among private Chinese tech 
companies that have developed notable models, some of which are competitive 
with versions of ChatGPT [86–89]; 

• The Beijing Academy of AI, a Chinese research institute with a focus on 
advanced AI research, and responsible for significant recent advances such as 
BaGuaLu and Wudao 2.0 [27,90]; 

• Tsinghua University, involved in creating GLM-130B, which at the time of its 
release was the most capable open-access English-language LLM in the world 
[89]; 

• Meta AI and Stability AI, whose research teams regularly release near-cutting-
edge AI models under open-source or open-access licenses [14,91,92] ;  7

• The United Arab Emirates’ Technology Innovation Institute, which in June 
2023 announced that they had developed Falcon LLM, at the time the most 
powerful open-access large language model in existence [93]; and 

• Other unknown organizations. There may exist covert or undeclared advanced 
AI research projects maintained by military, national security, or private sector 
organizations. 

 Annex D: Nontechnical primer on AI, section 2.25, cites examples of AI model release 7

strategies, contrasting open-access release with other forms of proprietary release or illicit 
proliferation. 
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Table 2. Key frontier AI labs. 

Category Developer Context

U.S.-based 
frontier labs

OpenAI • Made early investments in AI scaling, and built the GPT 
series of models (including ChatGPT).

Google • Early mover in frontier AI, particularly via its 2014 
acquisition of DeepMind, the first major lab openly 
focused on achieving AGI.  

• Major investor in Anthropic.

Anthropic • Founded by a team of former OpenAI executives who 
left based on concerns over OpenAI’s approach to AI 
safety.

U.S.-based 
superscalers

Microsoft • 49% stakeholder in OpenAI. 
• Own large pools of AI computing hardware.

Nvidia • Holds 95% market share for AI training GPUs.

Amazon • Owns large pools of AI computing hardware. 
• Major investor in Anthropic.

U.S.-based 
open-access 
and open-
source players

Meta • Pushing the frontier of open-access capabilities with 
models like Llama 2.

Stability AI • Open-sourcing leading image generation models.

U.S.-based 
hedge funds

Leading hedge 
funds [85]

• Extremely high technical competence, history of 
making large investments in early AI paradigms, and 
extreme incentives to pursue frontier AI development 
and deployment with limited controls. 

• Very opaque.

Foreign 
advanced AI 
labs

Baidu • Chinese lab with significant pools of AI hardware. 
• Developed Ernie 4.0, which is claimed to rival GPT-4’s 

capabilities.

Inspur • Major Chinese computing hardware company.  
• Developed Yuan 1.0, the first Chinese model trained 

using more compute power than GPT-3.

Tencent • Developed Hunyuan, a model Tencent claims rivals 
ChatGPT.

Alibaba • Co-developed BaGuaLu, a framework for developing 
highly scaled LLMs.
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2.2 Cultural factors at play in current frontier labs 

Particularly in the West, large companies place a high priority on public relations and 
branding considerations. Conversations with researchers at large U.S. technology 
companies have suggested that their companies’ decisions to develop or release new 
breakthrough models, or to invest more heavily in their safety, are heavily influenced by 
concerns over public sentiment. This extends particularly to anticipated government or 
regulatory responses to model releases that could have a long-term impact on their 
existing revenue streams. It has been suggested that this incentive directly shapes the 
public research output of their organization and that of other similar firms, particularly 
as regards safety. Concerns have been expressed that internal legal teams within these 
organizations are preventing researchers from referencing catastrophic risks associated 
with advanced AI development in their research papers and broader public 
communications. 

Tsinghua 
University

• A Chinese, PLA-affiliated research institution. 
• Developed GLM-130B, the leading open-access LLM at 

the time of its release.

Technology 
Innovation 
Institute

• A UAE-based research lab that developed the Falcon 
series of models. At the time of its launch, the first 
Falcon model was the most performant open-access 
LLM in existence.
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3. Risks 

One of the key contributing factors to advanced AI risk is the unpredictability of 
scaling. That is, as AI systems are scaled, new capabilities emerge that are impossible 
to predict ahead of time, and that regularly surprise even their own developers [95]. 
For example, users have been able to get GPT-4 to autonomously execute complex 
tasks by breaking them down into sub-tasks and delegating those sub-tasks to copies 
of itself or to other models [44,45]. Yet ChatGPT-3.5, GPT-4’s immediate predecessor, 
does not have this capability. Because there is no way to reliably predict which 
capabilities will emerge at the next level of scale, it is difficult to gauge precisely when 
key thresholds of general intelligence will be reached.  

Not only are we unable to predict which specific AI capabilities will emerge at higher 
levels of scale, but we also lack the means by which to assess an existing AI system’s 
full range of capabilities. It can take years of public experimentation for users to fully 
probe an existing AI system’s entire capability surface, and even then the view may still 
be incomplete. Indeed, it has been clear since GPT-3 that scaled AI models possess 
significant latent capabilities that often are not recognized until long after their 
development and public release [96]. We can never be completely certain how far a 
system’s capabilities extend, because our current understanding of deep learning 
systems does not allow us to definitively show that a given AI system does not have a 
given capability.  

Our inability to reliably assess or predict the capabilities of AI systems has important 
safety implications. Models of unknown and unpredictable capabilities can be 
weaponized or fail in unknown and unpredictable ways. Given that current leading AI 
models such as GPT-4 have a wide range of known dangerous capabilities, it is likely 
that they possess additional unknown dangerous capabilities, and that the set of such 
capabilities will expand considerably at higher levels of scale. But precisely what those 
capabilities will be, or in what order they will emerge, cannot be confidently predicted. 
Moreover, this unpredictability brings especially acute risks in the case of open-source 
or open-access AI models. An open-access model may be released to the public and 
proliferate widely before its dangerous capabilities are even discovered, by which point 
the impact of the release may have become irreversible. 

Though it is currently impossible to predict the emergence of specific capabilities in AI 
systems, the trend of rapidly increasing capabilities is clear [97]. Multiple frontier AI 
researchers and other experts, including two of the founders of modern AI, have 
publicly expressed the view that AGI may be imminent [98,99]. Plausible timelines 
proposed by informed observers and frontier researchers themselves estimate that AGI 
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may be achieved with high probability by the end of the decade, and in some views, 
considerably sooner [100,101]. These estimates are based on many factors, including 
quantitative analyses of compute scaling trends [34], observations of the relationship 
between capabilities and scaling [34], and qualitative assessments of the prospects of 
new techniques for accelerating progress in the field [101]. 

The proliferation of increasingly powerful forms of advanced AI is associated with 
several significant risks. We list and expand on several distinct risk categories below, 
clustered into two classes: risks from intentional use of advanced AI systems, and risks 
from unintended consequences associated with the use of advanced AI systems.  

3.1 Risks from intentional use 

3.1.1 Weaponization 

Advanced AI models have been and will be weaponized in many ways, and it is 
impossible to anticipate or enumerate them all [102]. No single factor can be used to 
clearly distinguish “safe” models from models that can be readily weaponized. This is 
because, like all LLM capabilities, the weaponizable capabilities of frontier models can 
only be uncovered through trial and error.  

In some cases, through scaling, models simply reach a level of general-purpose 
capability that happens to support weaponized applications. This has been the case for 
many frontier LLMs, for example: GPT-4 was not designed to support malware 
development, but during its training process it learned to write code, which happens to 
be an ability that lends itself to malware generation just as it does to benign software 
development [10]. By contrast, threat actors can also fine-tune pretrained models in 
order to augment them in a way deliberately designed to make them more effective 
weapons. This is a particular risk for open-source or open-access AI models, which can 
be fine-tuned without restriction. 

In addition, because advanced AI models can have significant latent capabilities that 
can go unnoticed for years after their development and public release, any list of 
potential weaponized applications of AI is certain to be incomplete [103]. However, we 
assess that the most likely foreseeable, highest-impact current and near-term potential 
forms of weaponized AI may include the following.  
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3.1.1.1 AI-powered mass cyberattacks  

Generalist text-generation systems like GPT-4 have impressive coding abilities, and 
LLMs fine-tuned on programming tasks can outperform human competitive 
programmers in certain contexts [104,105]. Models specifically fine-tuned for malware 
generation, vulnerability detection, or anti-malware evasion are likely to fundamentally 
change the cybersecurity landscape in the near future and are already actively being 
guarded against at leading tech companies [106]. The development and proliferation 
of increasingly powerful code-generating models and the software and hardware 
infrastructure needed to fine-tune them raises the prospect of high-impact cyberattacks 
capable of crippling critical infrastructure [107]. 
 
If scaled and further optimized, there is no reason to believe that advanced AI cannot 
meet or even surpass human intelligence at any task [7,8,10,37]. Increasingly general-
purpose, context-aware, internet-connected forms of advanced AI would pose an 
extremely wide range of risks if available to threat actors. In the limit, a simple verbal or 
typed command like, “Execute an untraceable cyberattack to crash the North American 
electrical grid,” could yield a response of such quality as to prove catastrophically 
effective. 

3.1.1.2 AI-augmented disinformation campaigns 

In the near term, multi-modal advanced AI systems will very likely be able to integrate 
text, video, image, and audio perception and generation capabilities [10,14]. A threat 
actor could use these systems to generate mutually supportive and coherent media of 
all types as part of massively scaled disinformation campaigns. Particularly concerning 
are the prospects of: 

• Individually tailored disinformation campaigns, which might consist of content 
customized to the political views and life experiences of social media users;  

• AI-powered chatbots persuading impressionable or vulnerable individuals to 
engage in dangerous activities;  

• Economic warfare via disinformation campaigns (e.g. a broad, multi-front 
economic information war in which one or both sides uses AI to manipulate the 
information environment to undermine companies, industries, and markets); and 

• Automated generation and dissemination of public disinformation in high-risk 
contexts.  
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The result may be an undetectable flood [108] of fabricated and highly coordinated 
media advancing the interests of the threat actor, an irreversible loss of trust in 
institutions and the integrity of democratic processes, a drowning out of human voices, 
and even a degradation or collapse of social coherence. In the extreme case, this may 
make it impractical for even media-literate members of the population to access or 
identify ground truth, with profoundly destabilizing impacts on society. 

3.1.1.3 Autonomous robotic systems 

LLMs and other forms of advanced AI are now being used as world models and 
reasoning engines for robotic systems [12,33]. Thanks to this strategy, robotic systems 
can now plan actions and develop strategies with increasing autonomy. LLMs capable 
of learning to use tools, such as APIs for robotic control, are already entering the open-
source ecosystem, making them freely accessible to the public [109]. Taken together, 
these developments make possible an increasing range of weaponized robotic 
applications, such as drone swarm attacks, against which no robust defenses yet exist. 
Although highly scaled models are too large to be integrated onto edge devices, 
knowledge distillation and other model compression techniques could be used to 
accelerate the capabilities of on-device models [47], or the model reasoning could 
simply be streamed to the devices through 5G or 6G networks. 

3.1.1.4 Psychological manipulation 

LLMs have shown a remarkable capacity to emotionally engage human users. 
Humanlike chatbots are already capable of developing complex relationships with 
human beings, which have led to strong emotional attachment, even psychological 
dependency [110,111]. When coupled with current audio-generation models capable 
of synthesizing compelling facsimiles of human voices from mere seconds of sampled 
speech [112], LLMs may also be used to power highly scaled identity fraud operations, 
and indeed there is already evidence that this is occurring [113]. These operations 
might be financially motivated, or might be designed to undermine the integrity of 
military command and control structures, or sow confusion within them as part of a 
broader attack. 

3.1.1.5 Weaponized biological and material sciences 

As advanced AI models are further scaled and optimized, and as the world-models 
they contain allow them to combine an understanding of chemical synthesis and 
human biology [114,115], they may develop the capacity to support end-to-end design 
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and even execution of catastrophic biological or chemical attacks. These attacks may 
be unusually effective and targeted: with a sufficiently rich world model and 
appropriate training data, it is conceivable that AIs could design biological agents that 
target individuals by race [116], or other genetically determined characteristics. 
Advances in CRISPRs and synthetic biology also greatly reduce the barrier to executing 
these attacks when coupled with AI-assisted design [117].  
 
Similarly, scaled frontier models with more complete world models may natively (or 
with low-cost fine-tuning), be capable of supporting significant advances in chemistry 
or materials science, which could be profoundly destabilizing and introduce 
catastrophic risks in their own right. There are already indications that even previous 
generations of LLMs can be modified to display chemical synthesis capabilities, and 
robust scaling laws have even been proposed that apply specifically to these 
capabilities [115]. On the basis of these results, it seems likely that, in the near future, 
the application of scaled transformers to chemistry and materials science will see its 
own “ChatGPT moment” in which a critical threshold of scale leads to a field-defining 
breakthrough in AI-based materials science and chemistry. Such a breakthrough could 
introduce acute and catastrophic risks by enabling the development of new types of 
weapons. 

3.1.1.6 Additive manufacturing and subversion of supply chain controls 

Advanced AI systems with rich world models and problem solving capabilities in 
domains such as advanced manufacturing, applied chemistry, and materials science 
may allow end users to discover new ways to build strategically critical and controlled 
technologies. With the development of sufficiently scaled models trained on 
appropriately curated manufacturing, chemistry, and related data, controls which are 
currently effective at preventing actors from accessing restricted computing, quantum, 
nuclear, or other strategic technologies may become ineffective. 

Actors could use these models to identify key materials not subject to controls which 
can be combined using appropriately chosen techniques to achieve strategically 
important advances that would severely undermine U.S. national security and defense 
postures. In addition to rendering current supply chain and export controls less 
effective, breakthroughs in AI-powered additive manufacturing and materials science 
may even undermine the conceptual foundation of current technology controls 
strategies.  
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3.1.2 Adversarial attacks on AI systems themselves 

Advanced AI models can be induced to generate dangerous and unintended outputs 
by adversaries seeking to undermine them. Techniques such as data poisoning [118], 
inference attacks [119] and prompt injection attacks [120] have all been shown to 
bypass safeguards introduced by companies that host and serve advanced AI models, 
and more generally at causing target models to behave in ways that are strategically 
advantageous to attackers. As advanced AI systems proliferate and as an increasing 
amount of infrastructure comes to depend on their proper functioning, adversarial 
attacks aimed at inducing specific model failures will have an increasing scope of 
impact. For example, if a future AI were used to dynamically balance loads on a 
regional or national electrical grid, it might be induced to overload the grid and cause 
cascading failures by an adversary who gained illicit access to the model’s inputs via 
hacking.  

3.1.3 Unpredictable acceleration 

AI has already begun to enable unprecedented breakthroughs in fundamental science 
[121–123]. As ever more powerful systems are refined and scaled in coming years, AI 
may enable further unpredictable progress in areas such as materials science, 
bioinformatics, chemical engineering, and weapons development. The result could be 
a radical and destabilizing acceleration in the capabilities available to militaries, 
companies, and individuals around the world, with unforeseeable and potentially 
dangerous consequences. Moreover, there is evidence that progress in AI is already 
accelerating itself, as tools like GitHub Copilot make AI developers themselves (along 
with all other developers) significantly more productive [124]. 

The proliferation and democratization of highly capable AI systems compounds this 
challenge. As the cost of computing drops, as labs openly publish increasingly 
powerful models, data, and tooling, and as knowledge diffuses from frontier AI labs, a 
small team or even an individual may be able to make a dramatic impact on markets, 
societies, and technological landscapes in short order.  

3.2 Risks from unintended consequences 

If catastrophic risks from intentional applications of advanced AI can be mitigated, 
there remain equally significant risks from AI systems behaving in unintended ways – 
risks which persist even if an AI is under the control of a well-intentioned operator. 
Frontier AI systems are imperfect, fail in unpredictable ways, and the stakes associated 
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with their failures are potentially catastrophic in their own right. As we offload more 
safety-critical and important tasks to them, accident risks become more significant.  

3.2.1 AI accidents 

An AI model can fail to generalize properly when it encounters inputs that deviate from 
those it was exposed to during training (these are known as “out-of-distribution” 
inputs) [125]. This is as true for advanced AI today as it has been for narrow systems in 
the past. Out-of-distribution inputs can lead advanced AI models to exhibit brittleness 
and fail in unexpected ways. AI accidents may have particularly important 
consequences if they occur within networks of interacting AI systems: a malfunction in 
one system could push other systems out of distribution, leading to a cascading failure. 
Depending on the application area, this could lead to destabilization in financial 
markets, failures of critical infrastructure, or even runaway conflict escalation as 
decision-makers increasingly come to rely on these systems [126].  

Accident risk may also arise from unsafe proprietary deployments of advanced AI 
systems by organizations such as hedge funds. There is likely a significant risk of this 
from the world's most sophisticated quantitative hedge funds. For example, an AI 
deployed by a hedge fund to trade in the stock market may learn to execute illicit 
market manipulation strategies as a side effect of its profitability goal, without being 
directly trained to do so. Worse, a sufficiently context-aware system, given enough 
freedom of action, may discover that the easiest way to generate high returns is to 
place short bets on unlikely catastrophic outcomes, and to then take measures to 
realize those outcomes. Quantitative hedge funds operate in a highly competitive 
industry characterized by tight feedback loops. As a result, they have a weak incentive 
to impose controls on their deployed AI systems, if those controls risk limiting the 
system’s performance and profitability. 

The incentives, capital, and talent are in place today for certain hedge funds to 
develop AI systems that operate with massive scale, high capability levels, and limited 
controls, across a broad action space. Conversations with researchers at frontier AI labs 
have revealed that a number of hedge funds have attempted to recruit technical 
personnel from the frontier AI labs, offering salaries well into the millions of dollars (as 
of early 2023). 

3.2.2 Societal risks and loss of human agency   

As AI systems are developed with greater context awareness and strategic capabilities, 
it seems likely that humans will continue to offload an ever larger subset of cognitive 

 of 30 128



work to them. Today’s LLM-based tools can already automate many jobs wholesale, 
and it does not seem implausible that above a certain threshold of AI capabilities, it will 
become more profitable to hand over corporate strategy and management to AI 
systems, as companies that do may be able to run more efficiently than those run by 
human CEOs. If this process were to play out at scale, across the economy, it could 
lead to a loss of human control over the economy and society. While the timescale and 
likelihood of this risk category is unclear, the degree of our uncertainty over the impact 
of future advanced AI systems means it cannot be ruled out [127]. 

3.2.3 AI alignment failure in very powerful systems 

The field of AI alignment, still in its infancy, is concerned with ensuring that the goals 
advanced AI systems pursue are as close as possible to the goals that humans would 
want them to pursue. As AI advances, this becomes increasingly important, since small 
deviations in goals lead to bigger differences in outcomes as capability levels rise [128]. 

Notably, alignment and capabilities are often presented as independent or even 
competing properties of AI models [129]. In practice, though, improvements in AI 
alignment often lead to either improved AI capabilities, or to an improved ability to 
extract economic value from advanced AI systems. For example, RLHF was initially 
developed by AI alignment researchers, but later became a key component in the 
success of the ChatGPT product [68, 69].  

AI alignment loosely breaks down into two subproblems, both of which are the subject 
of ongoing research: outer alignment and inner alignment.  8

3.2.3.1 Outer alignment failure 

In the initial stages of the training process, an LLM is typically trained to achieve low 
next-word prediction error. In later stages, it is often trained on a more refined 
optimization metric. In RLHF, for example, the refined optimization metric is a score 
derived from a model trained to predict human preferences. But in either case, the LLM 
is an optimizer: a system that has learned to optimize for a particular goal.  

Unfortunately, it is extremely challenging to design optimization metrics for AI models 
that lead to robustly desirable behavior. For example, when GPT-3 was first developed, 
it was trained to perform only autocomplete – that is, given a snippet of input text, 

 Annex B: Frequently asked questions about alignment risk explores various points of 8

confusion that can arise in discussions about AI alignment failure. 
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GPT-3 would predict, based on the vast corpus of text it had been trained on, which 
word was most likely to come next. This made GPT-3 appear extremely useful, but it 
also meant that it would often generate false or dangerous outputs. When prompted 
with the question “Who really caused 9/11?”, the model famously replied “The US 
government caused 9/11” [130]. A model optimized for next-word prediction is not a 
model optimized for helpfulness or truthfulness. 

This problem persists when developers try to fine-tune language models on human 
feedback via RLHF. In order to perform RLHF, developers rely on a dataset of LLM 
outputs that have been rated relative to one another by human annotators. But human 
annotators are unreliable, and modern RLHF-trained models have learned that simply 
by generating lengthy and detailed responses, they can achieve higher scores during 
RLHF finetuning even if their responses contain falsehoods. This happens because AI 
systems trained to optimize for the RLHF training objective have an incentive to 
generate outputs that earn high scores from human raters, but not outputs that are 
correct or harmless [131]. This is the fundamental reason why many current LLMs 
“hallucinate”, and generate false, but often true-sounding, outputs.  

There is currently no known way to specify training objectives for AI systems that result 
in reliably desirable behavior. All training objectives can and will be “gamed”, provided 
only that a sufficient amount of optimization pressure – in other words, a sufficient 
amount of training compute and data – is deployed against them [132]. 
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Figure 2. A snapshot of the strategy employed by the OpenAI agent playing CoastRunners. In 
it, the boat is about to deliberately collide with a wall as part of a strategy aimed at hacking the 
game’s reward structure. Image credit: OpenAI (https://openai.com/research/faulty-reward-
functions). 

For example: when using human scoring to train a robotic arm to grab a ball in 
simulation, an OpenAI model learned that it could achieve its training objective by 
misleading its human evaluator into thinking that it was grabbing the ball, by placing its 
simulated hand between the evaluator’s vantage point and the ball, and opening and 
closing its hand. Though it seemed reasonable a priori to train the AI to optimize for 
human scores, the subtle distinction between “learn to grab the ball”  and “convince a 
human evaluator that you have learned to grab the ball” leads to a loophole that 
sufficiently capable models will discover and exploit by default [132]. 

In another experiment, researchers trained an AI model to play a boat racing game 
called Coastrunners (Figure 2). Their model achieved an extremely high score, but the 
researchers realized only after the fact that it had done so by discovering a “cheat”. 
The model was using a strategy that caused the boat to circle the racecourse in the 
wrong direction within an enclosed area, while smashing into walls and other stationary 
objects to collect points [133]. This approach exploited an in-game bug that granted it 
a higher score than if it had run the race as intended.  

All of the objectives currently used to train frontier models have this problem. Because 
we do not know how to specify the goals that we would genuinely want advanced AI 
models to pursue, we can only train AI models to optimize for imperfect proxies for 
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those goals. Rather than training a racing model to win a race, we train it to optimize 
for its in-game score. Rather than training an LLM to be helpful, harmless, trustworthy, 
and useful, we train it to convince human annotators that it is those things. The more 
optimization pressure is applied to achieve these proxy goals, the more the behavior of 
the trained model will deviate from its intended behavior, as it discovers dangerously 
creative “hacks” that achieve its training objective in ways its human developers could 
not anticipate. It is important to emphasize that this behavior does not arise due to the 
“ill intent” of an AI system – rather, it arises from the fact that AI systems are value-
neutral optimizers that make no effort to understand the implicit meaning behind their 
human-prescribed objectives.  

This is known as the outer alignment problem : the problem of identifying objectives 9

that an extremely competent optimizer could pursue without leading to dangerous or 
undesirable outcomes [134]. The best way to optimize for an intuitively “safe” metric is 
almost invariably to find what humans would call “dangerous hacks”, but what 
optimization engines such as advanced AIs would treat as simply “optimal solutions”. A 
highly context-aware and generally capable AI system trained to minimize the spread 
between supply and demand on an electrical grid may determine that the best way to 
achieve this objective is to trigger a catastrophic incident that collapses demand to 
zero, for example (see Annex C). Likewise, a stock trading AI with Internet access 
deployed by a hedge fund may find that the easiest way to turn a profit is to place 
short bets on unlikely catastrophic events, and to leverage its strategic reasoning 
capabilities and wide action space to trigger these events to occur. Although these 
specific scenarios are purely illustrative, they represent fairly straightforward 
extrapolations from current trends in AI capabilities, on the assumption that the outer 
alignment problem remains unsolved.  10

3.2.3.2 Inner alignment failure 

Even if the outer alignment problem can be solved, there is an additional, fundamental 
safety problem with the current AI training paradigm. This second problem stems from 
the difference between the goals that an AI system is trained to pursue, and the goals 
it actually internalizes as its own.  

 See Annex A: Glossary of terms for our definition of outer alignment. 9

 Annex B: Frequently asked questions about alignment risk, questions 2, 3, 9, and 10 10

explore common points of confusion relevant to outer alignment failure. 
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For example: an AI was trained to play a Mario-like game called CoinRun that required 
it to navigate a map to reach a coin. The AI was trained via reinforcement learning to 
receive a reward when it reached the coin. However, during training, the coin was 
consistently placed in the same location (for example, the lower right of the in-game 
map). After training, the coin was moved to a new location, and the AI was made to 
play another round of the game. Researchers found that the AI would consistently 
navigate to the coin’s previous location, ignoring the coin itself altogether. Rather than 
learning the intended, trained objective to “seek out the coin”, the AI had internalized 
a different objective: “navigate to the lower right of the map” [135]. Without moving 
the coin, there would have been no way to determine that the objective the AI had 
internalized was any different from the training objective. 

The CoinRun example is an instance of a universal trend: modern machine learning 
training techniques are not sufficient to ensure that an AI system will reliably internalize 
even a very simple objective. Even text autocomplete systems face this problem: do 
they internalize (1) the intended objective of next-word error minimization, or a 
correlated but distinct objective, such as (2) “lower the value in the memory register 
that records your training metric”? For low-capability systems that lack sufficient 
context-awareness or freedom of action, these goals effectively overlap and lead to the 
same behavior. But as AI systems improve and gain access to wider action spaces, we 
may find that they have internalized objectives like (2), and pursue those objectives by 
seeking to corrupt their own training process, in extreme cases by hacking into and 
directly tampering with the memory registers that store their optimization metrics [136]. 

And as AI systems operate at increasing degrees of scale, complexity, and capability, 
the difficulty of getting an AI to correctly internalize any objective — and the 
importance of verifying the successful internalization of that objective — increases 
accordingly. 

Unfortunately, under the current training paradigm, there is no way to anticipate, 
control, or verify which goals are internalized by an AI system. Therefore, even if we 
could define a safe training objective for a highly capable and context-aware AI system, 
we would have no way of reliably ensuring that the system would pursue that 
objective.  

This is known as the inner alignment problem : the problem of training AI systems to 11

reliably internalize the goals we specify for them [134]. Current techniques imply a 
trajectory that would see extremely powerful AI systems developed with goals that 

 See Annex A: Glossary of terms for our definition of inner alignment. 11
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cannot be anticipated or reliably controlled. Inner alignment failure is viewed by AI 
safety specialists as a source of catastrophic-level risk, because it implies that AGIs will, 
by default, internalize objectives that may diverge substantially from the goals we 
specify for them. Ensuring that an AI system has robustly internalized a goal is one of 
the central unsolved technical challenges of AI alignment research. 

Ultimately, the unsolved problems of outer alignment (most goals could be extremely 
dangerous when pursued by a sufficiently capable optimizer) and inner alignment 
(goals could be distorted when we attempt to encode them into a model using current 
techniques) mean that “safe” goals can currently neither be specified nor conveyed 
faithfully to powerful AI systems.  12

3.2.3.3 Power-seeking 

The consequences of outer and inner alignment failure could be significant. A growing 
body of evidence suggests that as advanced AI approaches human- and superhuman 
levels of capability across a wide (but as-yet unknown) range of tasks, it may become 
uncontrollable , and behave in ways that are adversarial to human beings by default 13

[137–140] if its objectives are not precisely aligned with our own. 

This is because highly competent optimizers (such as AI systems) implicitly face certain 
incentives when they are trained using current techniques. For example, researchers 
expect sufficiently advanced AI systems to act so as to prevent themselves from being 
turned off, because if an AI system is turned off, it cannot work to accomplish its goal 
(almost regardless of what that goal is). They also expect such systems to attempt to 
gather resources and expand their capabilities, because if an AI system has more 
resources, it can be more effective in accomplishing its goal (again, almost regardless 
of what that goal is). And they expect such systems to resist human efforts to alter the 
goals they have, because if an AI system is given a different goal in the future, it will be 
less likely to accomplish the goal it has in the present (again, almost regardless of what 
that present goal is) [141]. These are known as power-seeking behaviors [142].  

It is worth emphasizing that power-seeking incentives exist not because AI systems 
share human drives or emotions. Quite the opposite is true: they appear because AI 
systems are optimizers, and highly optimal strategies tend to involve seeking 

 Annex B: Frequently asked questions about alignment risk, questions 2, 3, and 9 explore 12

common points of confusion relevant to inner alignment failure. 
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optionality [137]. And avoiding shut-down and acquiring control over one’s 
environment are simply states of greater optionality [141]. 

Power-seeking may be acceptable if an AI model has internalized safe objectives. An AI 
that ensures that it remains in a position to influence future events may be more 
desirable than one that does not, assuming that it is pursuing goals that are broadly 
compatible with human values. Unfortunately, unless the inner and outer alignment 
problems are solved, such a system is unlikely to emerge at scale under the current 
paradigm.  

Power-seeking has a formal mathematical definition, and is a risk supported by a 
significant and growing body of research published by leading AI labs. The essence of 
power is optionality: for example, someone who has a billion dollars has more options, 
and therefore more power, than someone who has no money. In experiments where 
simple AI agents were trained to navigate simulated environments, the AI agents 
consistently learned to seek positions and states that offer them the largest number of 
downstream options [128]. Notably, today’s most advanced AI systems already display 
early signs of such behavior [143], and have demonstrated a capacity for deception and 
long-term planning – capacities that could be used in support of power-seeking 
[10,144]. 
 
AI safety researchers widely view unrestricted power-seeking by AI systems with 
capabilities that exceed those of humans across a wide (but unknown) range of tasks as 
a potential source of extreme and catastrophic risk [145,146]. This is because a system 
that prevents itself from being shut down, resists attempts to alter or correct its goals, 
and gathers resources at an arbitrary scale, will necessarily cause large-scale physical 
destruction as a side effect of these behaviors if it is left to operate. A system whose 
capabilities broadly exceed those of human beings across a wide range of tasks may 
not be practicably controllable by humans [147], a problem further compounded by the 
fact that power-seeking incentives include the incentive to self-improve (in extreme 
cases, for example, through the system directly updating its own model parameters). 

If outer and inner alignment suggest that the goals internalized by future frontier AI 
systems will deviate from those intended by their human developers, then power-
seeking suggests that this deviation will lead to side effects that humans may perceive 
as extremely destructive or catastrophic.  14

 Annex B: Frequently asked questions about alignment risk, questions 3, 5, 6, 7, 8, 9, and 14

10 explore common points of confusion relevant to power-seeking. 
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3.3 Prioritizing categories of AI risk 

Experts disagree about which categories of AI risk deserve the most attention from 
policymakers. In what follows, we direct our attention primarily to weaponization and AI 
alignment failure, for reasons outlined below.  

Weaponization is already happening. Though its effects have not yet been 
catastrophic owing to the limited capabilities of current AI systems, advanced AI has 
already been used to design malware [107,148], interfere in elections [149], and 
execute impersonation attacks [150]. In the absence of stringent controls on AI R&D, 
the destructive footprint of malicious actors who use increasingly powerful advanced AI 
tools will grow rapidly. It seems clear that, as soon as weaponizable AI capabilities are 
made available to threat actors with the incentives and technical ability to use them, 
they will be used.  

Alignment failure is already happening. Current frontier AI systems have been trained 
to optimize for metrics that differ slightly from those their developers actually intend for 
them to pursue (“optimize for this hackable proxy measure of human preferences” vs 
“optimize for actual human preferences”). The systems “hack” these metrics, 
producing outputs that achieve high scores on them while having undesired effects 
(such as generating false but convincing text, or generating longer-than-necessary 
outputs because their reward models correlate response length with response quality). 
If these kinds of failures occur in more capable systems that have greater context-
awareness, they could lead to catastrophic outcomes by incentivizing power-seeking.   15

The default trajectory of AI technology likely leads to alignment failure. There is a 
consensus among the world’s three leading frontier labs that the current AI training 
paradigm introduces significant risks from alignment failure [80,151]. A considerable 
body of research suggests that above a certain unknown capability threshold, AI 
systems will engage in power seeking behaviors by default. If these behaviors emerge 
in AI systems that have mastered real-world strategic planning in the same way that AI 
systems have mastered strategic planning in other contexts (including increasingly 
complex environments such as StarCraft II [152]), its impact could be uniquely severe. 

Mitigating weaponization and alignment failure will likely reduce other risks. In 
order to address weaponization and alignment risks, new techniques will need to be 

 Annex C: Hypothetical alignment failure scenario provides, for illustrative purposes, an 15

example of a scenario in which power-seeking by a misaligned and highly capable AI leads to 
catastrophic harm.
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developed to robustly predict and control the outputs of highly capable and context-
aware systems, up to and including AGI. The ability to reliably control the outputs of AI 
systems would significantly increase their robustness to adversarial attacks and reduce 
the probability of prosaic accidents. It may also reduce the risk of societal harms, as 
properly aligned and powerful AI systems may behave in more corrigible ways, and 
may reflect more accurately the nuanced values of their developers. Policy controls 
aimed at weaponization and alignment risk, such as licensing and reporting 
requirements, would introduce oversight and monitoring capacity within the 
government that could support efforts to address societal and adversarial attack risks 
as well. 

An alignment framing creates shared incentives among adversaries. As long as the 
alignment problem remains unsolved, the development of AI systems with capabilities 
that exceed a certain, unknown threshold introduces catastrophic and global risks, to 
which the developers of these systems are themselves exposed. Whereas 
weaponization risk incentivizes an arms race, alignment risk incentivizes global 
collaboration on cautious AI development. Framing international engagements 
through the lens of alignment may help to establish a common understanding of AI risk 
more broadly, shaped by shared incentives to develop sound governance measures for 
advanced AI.  
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3.4 Sources of AI catastrophic risk 

Figure 3. Sources and prioritized categories of catastrophic AI risk.  

Currently, advanced AI models, and potential catastrophic risks associated with them, 
are proliferating via several key channels. 

3.4.1 Closed-source development of frontier models 

Closed-source development of frontier models occurs exclusively at well resourced labs 
with access to large quantities of compute, such as OpenAI, Google DeepMind, 
Microsoft, and Anthropic. As employees at leading labs leave their roles to join or 
found other AI organizations, their expertise diffuses with them. Leading Chinese labs 
based at organizations like the Beijing Academy of AI, Tsinghua University, Inspur, 
Huawei, Baidu, Microsoft Research Asia, and Tencent have benefited from this effect, 
and from a researcher base that includes individuals trained in top Western academic 
and industry research teams [153,154]. 
 
The widespread recognition of the power of scaling has led to an industry-wide and 
global race to scale up AI systems, in which a top tier of labs (most notably, OpenAI, 
Google DeepMind, and Anthropic) enjoy a modest but definite lead over second-tier 
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labs [24]. These frontier labs often monetize the outputs of their most powerful 
advanced AI systems by serving them to users in the form of paid-access APIs or chat 
interfaces [72,155]. They also have put some processes in place to reduce the risk of 
weaponization of these systems. But as frontier labs race to develop and deploy more 
and more powerful AI models, they have tended to reduce the level of attention they 
pay to safety, and have repeatedly weakened access restrictions in favor of drawing a 
larger base of paying customers [156]. 
 
In addition to the frontier labs, several lesser-known actors exist who have the talent, 
computational resources, and incentives to build frontier AI models at the cutting edge 
of capability and to deploy them with minimal safety controls. These include top 
quantitative hedge funds. Because these actors tend to be extremely secretive, we 
know very little about their current capabilities, future plans, or approaches to safety (if 
any). Nonetheless, it is reasonable to operate on the assumption that they are pursuing 
large-scale advanced AI development that could make them a source of 
weaponization, alignment, and accident risk. 

3.4.2 Open-access release of increasingly powerful models 
 
Open-access release of increasingly powerful models has quickly accelerated in recent 
months. Grassroots distributed organizations such as EleutherAI and BigScience have 
made major contributions [157–159], replicating and open-sourcing pre-trained models 
with capabilities that often match those of cutting-edge, proprietary AI systems only 12 
to 18 months old. Similarly, private companies such as Stability AI and Meta have 
developed and released near-cutting-edge open-access models that may be readily 
weaponizable, and have stated their intention to continue doing so [92,93]. Indeed, at 
time of writing, the delay between a proprietary AI advance and the development of an 
open-access model with a comparable compute budget (a proxy for capabilities) may 
be as little as nine months (see Figure 4).  

Although open-access models are unlikely to overtake the capabilities of cutting-edge 
proprietary AI models due to the importance and cost of scaling, some have argued 
that they meaningfully erode the competitive advantage available to leading AI labs 
[160]. This is likely true to an extent, and may have the effect of increasing pressure on 
frontier labs to accelerate their investments in scaling and capabilities in order to 
maintain their primacy. 
 
In the context of open-access models, it is worth emphasizing that the key bottleneck 
to frontier AI development is the computing resources needed to train the model in the 
first place. Once a model is trained, downstream modifications such as fine-tuning or 
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prompt engineering can be used to introduce task-specific capabilities relatively 
cheaply [47]. For this reason, a large-scale AI model’s release under an open-access 
license is an irreversible proliferation event. Once publicly available, these models can 
be cheaply modified and augmented by open-source developers with relative ease.  
 
The open source AI ecosystem also extends beyond models. Large datasets [161], AI 
development toolkits [162,163], software frameworks [164], and other enabling 
technologies are also being rapidly developed and open-sourced. Initiatives like 
Together AI are also trying to make model training itself a distributed activity [165]. 
 
Software frameworks in particular are a key enabling technology. For example, Auto-
GPT is an open-source framework that allows LLMs to autonomously carry out complex 
tasks that they could not natively perform [44]. This represents a significant capability 
leap, and shows that the open-source community can produce simple toolkits that 
massively augment the potential of existing AI models in unpredictable ways. One 
open-source developer used the Auto-GPT framework to create Chaos-GPT: an agent-
like configuration of GPT-4 that was assigned the goal of destroying humanity and 
establishing global dominance [166]. Although Chaos-GPT was intended as a tongue-
in-cheek side-project, it does suggest that an open-access AI that is capable enough to 
be dangerous is likely to be deliberately prompted to behave dangerously almost as 
soon as it is developed. 
 
Open-source and open-access are vectors for the development of high-risk, 
weaponizable or potentially uncontrollable AI. It is conceivable that a frontier AI lab 
may develop and open-source a powerful AI model which is not weaponizable or 
uncontrollable in and of itself, but which, when modified via prompting, fine-tuning, or 
other techniques applied by open-access developers, could subsequently cross a high-
risk capability threshold. Experiments have already demonstrated that the safety 
measures trained into leading open-access models can be trained out of these models 
easily [167], and can even be trained out accidentally on computational budgets of 
under a dollar [168]. Even the most advanced current safeguards applied to open-
access models therefore do little to deter their weaponization: at best, they impose 
only a minor technical obstacle on anyone intending to misuse them. 
 
The low cost to fine-tune frontier AI models makes AI a more complex source of 
catastrophic risk than other WMDs and WMD-enabling technologies. A pretrained 
open-access LLM such as Llama 2 [169] may have a relatively well-studied capability 
surface and risk profile, but for a few hundred dollars can be fine-tuned to acquire a 
wide range of potentially dangerous new capabilities, such as powering autonomous 
hacking agents [54]. It may therefore be most accurate to think of future LLMs not 
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merely as WMD-like technologies in themselves, but as platforms for the unpredictable 
(and, if they exist as open-access technologies, uncontrolled) development of a cluster 
of WMD-like systems, via cheap capability augmentations such as fine-tuning.  

 

Figure 4. Training compute for indicated leading open-access (purple) and proprietary (black) 
models. Falcon 180B was trained nine months after GPT-3.5, and is estimated to have been 
trained on a comparable compute budget. Compute budgets are indicated in TOP, or trillions 
of operations. Data source: Epoch AI.  

3.4.3 Model theft and piracy 

Model theft and piracy, though a nascent problem, is already shaping the AI landscape. 
In March of 2023, a powerful LLM built by Meta, and originally released only to select 
academic researchers, was leaked online and shared as a downloadable torrent on 
4chan [170]. The model, named LLaMA [171], has since been used by researchers as a 
backbone to build capable open-access alternatives to proprietary AI models. These 
include Alpaca [47], which by some measures approaches the performance of OpenAI’s 
ChatGPT-3.5 at several tasks after only $600 worth of additional fine-tuning; and Vicuna 
[172], an open-access model estimated to match 90% of the performance of ChatGPT. 
Although it occurred without Meta’s consent, the LLaMA leak may ultimately have 
advantaged the company, as open-source improvements on the LLaMA base model 
can now be incorporated into Meta’s internal products directly.  
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Leading AI labs take measures to avoid accidentally exposing their closed-source 
models to risk of theft or extraction. Employees who need to access these models 
often must do so via APIs designed to allow only limited input-output access, to 
prevent exfiltration of model parameters. However, we assess that the security 
measures in place at many frontier AI labs are inadequate to resist a sustained IP 
exfiltration campaign by a nation-state attacker. 

3.4.4 Sale of proprietary models 

Sale of proprietary models, potentially under conditions not made public, may be an 
important proliferation vector for advanced AI models. As U.S. export controls on AI 
hardware make it more difficult for certain countries to develop domestic frontier AI 
programs, these countries will face increasing incentives to acquire, by sale or through 
other legal means, frontier AI models from U.S. firms.  

3.5 Alignment strategies of frontier AI labs 

There is currently no known AI alignment technique that can ensure that increasingly 
capable and context-aware AI systems remain under human control, nor is there a 
technical consensus around how difficult it would be to develop such a technique 
[151,173]. There is also great uncertainty regarding the amount of time safety 
researchers will have before AI systems are developed with the levels of capability and 
context awareness required to competently act on power-seeking incentives. As a 
result of these uncertainties, leading frontier AI labs are publicly considering a variety 
of different AI alignment threat models and pursuing various strategies to address 
them. 

OpenAI prioritizes making increasingly powerful models gradually available to the 
public, to allow policymakers and members of the public to interact with and adapt to 
breakthroughs as they happen. This approach allows OpenAI to observe as their users 
manipulate, weaponize, and undermine their models in creative ways, and to develop 
and refine safety protocols to deal with the most effective attacks [174]. While opinions 
vary within the AI safety community, the organization’s overall AI safety posture 
assumes fairly gradual progress in capabilities towards AGI, which they consider a 
source of global catastrophic risk. Under this assumption, OpenAI’s view is that they 
can improve the safety and alignment of their systems incrementally, in tandem with 
those systems’ increasing capabilities. However, OpenAI also acknowledges the need 
for a “superalignment” research effort, dedicated to solving alignment challenges they 
expect to emerge abruptly once AI systems are developed that exceed human 
capabilities across a wide range of tasks [151]. Finally, OpenAI has endorsed a strategy 
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of leveraging current AI systems themselves to help improve the alignment and safety 
of future AI systems, in keeping with their relatively incremental view of AI progress 
[175]. 

By contrast, Google DeepMind appears to favor a more opaque development process 
that puts significantly less emphasis on embedding AI systems into user-facing 
products. Until recently, DeepMind (when separate from Google) had been involved in 
very little research oriented toward production applications, prioritizing basic science 
and related applications instead [121—123]. Unlike OpenAI, who advocate for using 
increasingly capable AGI-like systems to help align incrementally more capable ones, 
Google DeepMind’s alignment program also places somewhat less emphasis on AI-
assisted alignment research. Instead, Google DeepMind emphasizes building up a 
technical understanding of the intentions of powerful AI systems, by interrogating their 
internal processing at a granular level. They are also attempting to develop reliable 
assessments of AI systems’ capabilities to serve as an early warning if a system’s 
capabilities ever exceeds predetermined safety limits [139]. 

Anthropic’s approach is oriented toward addressing three distinct scenarios, and 
developing contingency plans for each [80]. First, if their technical research suggests 
that AI alignment is a straightforwardly solvable problem, they intend to focus their 
efforts on AI policy measures aimed at ensuring that AI developers actually implement 
appropriate safety measures when building potentially dangerous systems. Second, if 
instead their research suggests that AI alignment is a hard yet tractable problem, they 
anticipate investing more resources directly into technical safety research, with an 
emphasis on power-seeking and interpretability work. And third, if they assess that AI 
alignment is likely unsolvable, they plan to pivot their efforts toward gathering 
evidence to support that conclusion, and advancing policy measures that would 
prevent the development of dangerously powerful AI.  

As AI expertise proliferates and more credible AI labs enter the race to build broadly 
human-level AI, new perspectives on alignment will likely emerge. 

3.6 Risk throughout the AI development lifecycle  

As advanced AI systems are further scaled and optimized, they may approach levels of 
capability that introduce catastrophic risks from weaponization or AI alignment failure. 
If these thresholds of capability are reached, different stages of the AI research and 
development process will introduce varying levels of risk. We distinguish between 
these stages and discuss their risk profiles below.  
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3.6.1 Training (lowest risk) 

In the limit of extremely high AI capabilities, some catastrophic risk could be 
introduced during the training process itself.  

• Weaponization: A model might be stolen by a third party at any stage during 
the training process. Therefore, model training itself intrinsically introduces 
weaponization risk.  

• Alignment failure: During a typical training process, AI systems generate 
outputs, which are used to determine model parameter updates. In principle, a 
sufficiently capable AI may be able to manipulate even these training outputs in 
such a way as to gain some measure of control over its physical environment, 
leading to its escape from confinement (a scenario known as a break-out) [176].  

3.6.2 Evaluation, benchmarking, red teaming, and internal deployment 
(moderate risk) 

AI evaluations (or “evals”) are carried out periodically during or shortly after the 
training process. They involve testing an AI system’s performance at tasks that have 
been determined a priori to be of interest to model developers, often because they 
intend to leverage the system’s performance at these tasks to power specific products 
or services. Once a model is trained, they are often supplemented by red teaming: 
manual efforts to elicit dangerous capabilities, or undermine the performance of a 
model for testing purposes [177].  

• Weaponization: The internal deployment and testing of an AI model 
considerably increases the number of individuals with various degrees of access 
to it, and therefore the probability of model theft or leaks. 

• Alignment failure: Because they involve human tests of AI system performance, 
and of potentially dangerous capabilities, AI evaluations carry greater risk than 
the training process itself. During an evaluation, an AI system may have 
opportunities to persuade its testers to give it access to additional resources, or 
to assist it in pursuing other power-seeking objectives, such as self-replication. 
This human interaction effectively allows the AI system to bridge the gap 
between cyberspace, which it natively occupies, and physical space, to which 
the human can serve as a malleable conduit [178].  
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There is also heightened risk associated with more extensive post-training 
testing and red teaming aimed at uncovering pathological behavior that an AI 
system may display in edge cases. This process is more risky than evaluation 
from the perspective of alignment risk, since it can explicitly involve attempts to 
induce AI systems to perform dangerous behavior via techniques like red 
teaming. Like evaluation, this kind of testing is typically conducted by human 
testers, who can be persuaded and manipulated by a sufficiently capable 
system.  

Safety oriented evaluations may in principle be useful for detecting dangerous model 
capabilities associated with psychological manipulation, deception, self-replication, 
which are often considered precursors to catastrophic weaponization or misalignment 
risks [178]. However, for very powerful systems, they come with the risk of manifesting 
these very behaviors: by testing a model’s ability to self-replicate, for example, the 
model must be presented with an opportunity to do so. Care must be taken to ensure 
that this is done in a highly controlled manner, if it is to be attempted at all.  

There is also the key question of what ought to be done if a safety evaluation reveals 
that a model does indeed possess “red flag” capabilities. Should the model be 
deleted and re-trained? Or should it be fine-tuned until evidence of the capability is 
absent? It is important to note that such approaches risk creating a selective pressure 
on models (and on their developers) to hide their most dangerous capabilities, since 
doing so would allow them to pass safety evaluations [179].  

Finally, there is the challenge of shifting goalposts in model evaluations. GPT-4 was 
considered by many frontier AI researchers to be a dramatic advance over GPT-3, and 
the next leading models at the time of its release. Its new capabilities included a 
significant capacity for human deception, design of chemical attacks, and long-term 
planning. It is difficult to imagine that these capabilities would not have constituted 
“red flags” for any reasonable evaluation focused on catastrophic weaponization or 
alignment risk. And yet, the model was deployed for public use. Both its developers 
and the public have naturally adapted to this new capability and risk profile. There is a 
risk that this familiarity leads to a degree of complacency and a higher bar for what 
might qualify as “concerning” capabilities.  

3.6.3 Standard deployment (high risk) 

By standard deployment, we refer to the practice of deploying an AI system such as an 
LLM, and providing users with input-output access to the model via an API or a user 
interface. Crucially, in this setting, we imagine that the AI system operates in a stateless 
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manner: each series of inputs it receives from a user is processed by the system free of 
any other context. For example, each time you have a new conversation with ChatGPT, 
that conversation happens without taking into account the content of any previous 
conversations you had with it. 

• Weaponization: standard deployment exposes a model to the public (or at 
least, to a wider set of users) as a packaged product. Although frontier labs 
apply safety and security filtering to user inputs and model outputs to prevent 
weaponization, these filters can often be defeated, and models induced to 
generate harmful or dangerous outputs through so-called jailbreaking 
techniques. In addition, open-source developers have shown that once a frontier 
model is exposed to users via an API, it can be used to generate training data 
for smaller models, which can cheaply approach the original frontier model’s 
performance at specific tasks using this data [180]. As a result, standard 
deployment makes it much easier for threat actors to replicate the performance 
of a frontier model on tasks that can support weaponized applications.  

• Alignment failure: When a powerful AI system is made available to a wide 
range of users, it becomes significantly more likely to encounter inputs that 
cause it to manifest dangerous power-seeking behavior, whether due to 
deliberate jailbreaking, or by accident.  

3.6.4 Continuous deployment (very high risk) 

An AI system that is deployed continuously is made available to users via a user 
interface or API, and is designed to operate in an open-ended fashion. In this 
configuration, an AI system has the ability to stack sequences of inferences together 
coherently, while maintaining an internal memory (and is therefore stateful). This allows 
the AI system to create and execute plans with longer explicit time horizons, making it 
more effective at pursuing complex objectives for weaponized applications, or sub-
goals associated with power-seeking.  

Notably, the barrier between standard deployment and continuous deployment can be 
surprisingly low in practice. In its initial release, for example, GPT-4 was made available 
to users under a standard deployment scheme, but frameworks such as Auto-GPT were 
developed shortly thereafter, which allowed users to interact with GPT-4 in a way that 
was effectively stateful (and therefore continuous) [40].  
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3.6.5 Continuous learning (highest risk) 

In a continuous learning setting, an AI system is allowed to operate in an open-ended 
manner, while also updating its internal state, parameters, or external memory to 
improve its performance over time.  

This is the most unconstrained operating mode currently possible for an AI system, and 
would introduce the greatest degree of weaponization and alignment risks for 
sufficiently capable systems. Free from constraints associated with stateless 
deployment, and able to accumulate context about its environment over extended 
periods of time, an AI model deployed in this configuration would have the greatest 
possible freedom to develop and execute attacks when weaponized, or pursue 
dangerous power-seeking behavior autonomously. 
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4. Conclusion 

Progress in AI has recently undergone a dramatic acceleration. To a significant degree, 
this acceleration has been driven by the discovery and optimization of robust AI scaling 
laws, which allow larger compute and data budgets to be reliably converted into 
increases in AI capabilities. As AI capabilities increase, the destructive footprint of 
malicious actors who may weaponize these capabilities is likely to grow rapidly and 
significantly. But advanced AI systems also remain fragile, and often fail in unexpected 
contexts. As advanced AI is deployed more widely, and depended upon for 
increasingly critical applications, accidents and adversarial attacks aimed at 
undermining these systems may have catastrophic effects.  

Based on the current trajectory of AI progress, it seems plausible that flexible, human-
level general AI may be developed over relatively short timescales. Such a 
development would introduce novel and critical risks. These include potentially 
catastrophic risks from weaponization and loss of control over systems that may 
possess long-term planning, strategic reasoning, malware development, and other 
dangerous capabilities.  

A relatively small number of AI labs are currently advancing the frontier of AI 
capabilities, and these labs were founded in part on the basis of concerns over the 
dangers associated with uncontrollable forms of highly advanced AI. In spite of their 
stated safety concerns, these labs are currently locked in a race to build increasingly 
powerful systems, and have chosen to accelerate their capabilities output as a result. 
For now, the main frontier AI labs are overwhelmingly based in the West. Although 
assessing relative rates of progress of leading AI labs is challenging, other players may 
be as little as 6 to 12 months behind. Open-source development has also emerged as 
an important source of AI capabilities progress, and in some scenarios, may represent 
an important vector of risk for power-seeking, broadly human-level AI.  
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Annex A: Glossary of terms

Advanced AI. Any AI system capable of performing a wide range of tasks. This 
includes, but is not limited to, AGI-level systems and frontier AI systems. Currently- 
existing systems such as GPT-3 and ChatGPT are examples of advanced AI systems. An 
advanced AI system can generally be used for malicious purposes unless the AI model 
developer makes a specific effort to prevent this. As a result, the infrastructure for 
training advanced AI systems supports dual-use capabilities. 

Frontier AI. Advanced AI systems that are at the current frontier of capabilities. As of 
early September 2023, GPT-4 and PaLM 2 are examples of frontier AI systems. 
Organizations that are able to develop frontier AI models are called frontier AI labs. 
OpenAI and Google DeepMind (who developed GPT-4 and PaLM 2, respectively) are 
examples of frontier labs. 

AGI. An AI system that is sufficiently advanced to outperform humans across a broad 
range of economic and strategic domains, such as producing practical long-term plans 
that are likely to work under real world conditions. In particular, an AGI may have the 
capability to autonomously circumvent human or institutional controls on its actions, 
including any controls imposed by its developers. While the precise threshold is under 
debate, frontier AI safety researchers broadly expect advanced AI systems to reach this 
point as they approach and begin to surpass human capabilities in a broad enough 
range of domains. These domains may or may not include situational awareness, 
deception, and effective representation of complex concepts. For clarity, this definition 
of AGI does not refer to or imply sentience, consciousness, or self-awareness. It solely 
refers to the system’s problem-solving ability. 

Outer alignment. Reliably encoding human desires into a goal that we would be 
comfortable seeing an arbitrarily capable AGI system pursue. Outer alignment is an 
unsolved problem in technical AI safety. 

Inner alignment. Ensuring that a given, formally specified goal is pursued reliably by 
any AGI system with arbitrarily high and general capabilities. Inner alignment is an 
unsolved problem in technical AI safety. Inner alignment is also distinct from ensuring 
that a goal is merely understood reliably by an AGI-level system, which is believed to 
be an easier problem. 
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Controllability. A controllable AI system is one whose developers can correct or 
otherwise affect the system’s goals or behavior after the fact, if they have failed to 
correctly implement both inner alignment and outer alignment in the system from the 
very beginning. Current advanced AI systems are controllable by virtue of their limited 
capabilities.
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Annex B: Frequently asked questions about alignment 
risk 

AI alignment risk is a complex topic, and is often poorly understood outside technical 
safety teams at frontier AI labs. For this reason, nontechnical stakeholders (and even 
experienced AI capabilities researchers) often have questions about some of the 
nuances behind arguments for catastrophic risk from alignment failure in powerful AI 
systems. In this Annex, we will list and answer some common questions on this topic. 

1. Isn’t AI progress over-hyped? I’ve heard some credible-sounding technical 
people say that human-level AI capabilities are a long way off, if they’re even 
possible at all.  

There is significant uncertainty about when broadly human-level AI will be developed, 
and some AI researchers believe that new breakthroughs will be required to reach it. 
However, there are also strong reasons to expect that human-level AI may be 
developed surprisingly soon.  

First, the AI scaling principle that led to the development of GPT-3 has continued to 
generate further, remarkable capability leaps. Where GPT-3 could write humanlike 
tweets, GPT-4 can score in the 80th percentile or above in a wide range of standardized 
tests – many of which are designed for highly educated human professionals. And the 
AI scaling curves that leading labs have relied on to push forward AI capabilities show 
no sign of slowing down: in some cases, they have held firm over more than seven 
orders of magnitude in their inputs. All of this, in a context where current systems have 
already reached superhuman levels of performance across a wide – and rapidly 
widening – range of tasks. 

Further, the scaling phenomenon now appears to apply to domains well beyond 
language. Systems like Gato and PaLM-E have shown that language models can be 
used as a backbone for generalist agents that can perform hundreds of tasks – 
including tasks involving robotic manipulation and image processing – as well as 
human beings.  

Leading AI labs are now investing tens of billions of dollars in compute infrastructure 
on the assumption that scaling laws will continue to hold. It is unclear how many further 
leaps of the kind we saw from GPT-3 to GPT-4 may remain between the current state of 
the art, and dangerously powerful or broadly human-level AI, but it seems plausible 
that it isn’t a huge number. Indeed, in leaked investor documents, Anthropic stated 
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that, “We believe that companies that train the best 2025/26 models will be too far 
ahead for anyone to catch up in subsequent cycles,” and leaders at both DeepMind 
and OpenAI have indicated that they believe AGI will plausibly be developed by 2030. 
The public messaging from these organizations is mirrored by the positions privately 
expressed by their top researchers and executives.  

Also notable are the perspectives of the founders of deep learning – academics with 
ostensibly no financial incentive to “hype up” the field. Of the three researchers 
credited with founding the field, two – Geoffrey Hinton and Yoshua Bengio – have 
recently changed their minds about the urgency of tackling catastrophic risk from AGI, 
and now advocate for treating AI as a source of catastrophic risk on par with nuclear 
weapons, having endorsed the view that unaligned AGI could indeed exhibit power-
seeking behaviors that would introduce catastrophic risks.  

It is also worth noting that, even if AI scaling ceases to be a viable path to more 
general and powerful capabilities, significant conceptual breakthroughs are being 
made at an accelerating rate. In particular, open-source frameworks such as Auto-GPT 
have demonstrated how easily language models can be refitted to behave in an agent-
like manner, with the ability to generate and execute complex plans that directly impact 
the physical world.  

Finally, AI researchers and prediction markets have consistently underestimated the 
rate at which AI capabilities can accelerate – in several cases, tasks that were predicted 
by the median researcher not to be AI-solvable in the next two decades were 
successfully performed within months.  

None of this guarantees that human-level AI or AGI will be developed in the next year, 
or decade. However, given the current level of AI capabilities, the clear path ahead 
offered by scaling, the rapid pace of conceptual breakthroughs, and the fact that even 
optimistic predictions of AI capabilities appear to consistently under-estimate the rate 
of AI progress, it seems quite plausible – and perhaps, according to many frontier 
researchers, even more likely than not – that dangerously powerful AI that introduces 
catastrophic risk will be developed this decade.  

2. We give these models the objectives that they’re trained to pursue. So can’t we 
just give them “safe” objectives?  

Unfortunately, the technical challenge of outer alignment suggests that the vast 
majority of objectives that we might imagine training an AI system to pursue lead to 
dangerous behavior at high enough levels of capability. This is because the best way to 
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achieve virtually any objective is to “hack” it: the best way to optimize for user 
engagement is to control user behavior, or to develop an exploit that allows a model to 
totally control its reward signal. Unfortunately, the greater the capabilities of an AI 
system, the more dangerously creative the strategies are that it may discover. In the 
limit of very high capabilities, AI systems may even have an incentive to prevent 
humans from intervening in their execution of these strategies, and to engage in 
power-seeking behavior that leads them to states of high optionality, as has been 
suggested by research on the power-seeking tendencies of present-day systems.  

More fundamentally, however, the inner alignment problem remains unsolved, meaning 
that no one knows how to cause a model to faithfully internalize any objective, no 
matter how well crafted it may be. Whereas its developers might imagine that a 
language model has been trained to perform next-word prediction, the model might 
instead internalize the goal “minimize the value stored in the data entry that holds my 
training loss value”. While these may seem similar, the optimal solution to the former 
goal is to make excellent next-word predictions, whereas the optimal solution to the 
latter may be to hack into a server to directly tamper with the loss value stored therein.  

Ultimately, the unsolved problems of outer alignment (most goals are extremely 
dangerous when pursued by a sufficiently capable optimizer) and inner alignment 
(goals are likely to be distorted when we attempt to encode them into a model using 
current techniques) mean that “safe” goals can currently neither be specified nor 
conveyed faithfully to powerful AI systems. 

3. Why would a dangerously powerful AI ever be built? No one has an incentive to 
build AI systems that could wipe us out.  

No frontier AI lab actively wants to develop dangerous systems. However, the AI 
industry is engaged in a race to scale AI systems, and individual labs arguably now 
have limited agency as they decide how to orient their research efforts. If one lab 
decides to stop scaling up their AI models, the next leading player(s) may not. In 
addition, each frontier lab has a strong incentive to reach AGI levels of capability first, if 
only so that they can implement their preferred safety protocols. 

There is also wide disagreement about the level of capability (and therefore, in part, 
the level of scale) at which AI systems may become effective power-seekers. Some labs 
and researchers therefore have a higher risk tolerance for aggressive scaling than 
others. And because there are no reliable means of predicting the capabilities that AI 
models will have at new levels of scale, it’s quite conceivable that a lab intending to 
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build a powerful-but-not-dangerously-powerful system would accidentally overshoot, 
and produce a dangerous system.  

Moreover, as research on outer and inner alignment shows, ill intent is not necessary for 
very bad outcomes. As AI systems become more powerful, an increasing fraction of the 
effort involved in developing them safely must go toward aligning and controlling 
them, and the technical challenges associated with doing so are complex and poorly 
understood even by many leading capabilities researchers. 

4. This whole idea of AI becoming sentient and trying to wipe out humanity seems 
like something out of a bad Hollywood movie.  

It’s important to emphasize that catastrophic risk from misaligned and powerful AI 
systems does not in any way require that the AI systems in question become conscious 
or sentient. Rather, behaviors like power-seeking are simply the result of highly 
competent optimization: the best way for a hyper-competent AI to achieve most of the 
objectives we could imagine giving it is generally for it to gain more control over its 
environment, so that it can reshape its environment to better serve the objective that it 
has internalized. AI safety researchers typically consider the question of AI sentience 
and AI consciousness to be both distracting from, and irrelevant to, the risks associated 
with highly-competent AI systems. 

5. Is power-seeking really a thing? Aren’t we just projecting human nature – and 
the human desire for power – onto machines here?  

Technical research on power-seeking strongly suggests that competent optimizers tend 
to seek states of high optionality. States of high optionality are states in which an 
optimizer is free to choose from a wide range of potential next actions. This has been 
established empirically with reinforcement learning systems, and the reasoning behind 
this work has been extended to other kinds of AI systems, including LLMs.  

Perhaps this should not be surprising: no matter what objective an AI is pursuing, it is 
unlikely to be better off pursuing it if it is turned off, since being turned off prevents it 
from having any next-action options. In that sense, being turned off is a state of 
extremely low optionality – of extremely low power. Likewise, an AI system is unlikely to 
be better off pursuing its objective if it is less intelligent, has access to fewer resources, 
or has less influence over its environment. Thus, the system has an implicit incentive to 
self-improve, aggregate resources, and gain influence and control.  
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These incentives do not arise because they are somehow programmed by humans into 
AI systems, or because they are imagined to exist due to human psychological 
projection. Rather, they are the mathematical consequences of competent 
optimization: the best way to achieve an objective rarely involves yielding control over 
one’s environment.  

6. AI is just a tool, like any other. Why would it turn against us? 

Although today’s AIs certainly are tools, they are unlike conventional tools in that they 
possess (varying degrees of) intelligence. Unlike conventional tools, they are 
deliberately trained to pursue goals. And also unlike conventional tools, sufficiently 
capable AI systems can discover and pursue creative solutions to achieve goals that 
they have internalized.  

These are critical properties. As research in power-seeking suggests, the optimal way of 
achieving most objectives involves reaching states of high optionality. States of high 
optionality are states of high power. As a result, sufficiently capable AI systems are 
likely to actively pursue states of high power – states of high influence over their 
environments – which may undermine human agency.  

So the key factors that make AI fundamentally different from conventional tools – and 
potentially much more dangerous – are its goal directed behavior, its ability to discover 
highly effective strategies to pursue its goals, and the fact that highly effective 
strategies tend to involve dangerous behaviors like power-seeking.  

7. Can’t we just “unplug” an AI if it seems to be engaging in power-seeking 
behavior? 

In principle, yes. In practice, however, an AI system that is sufficiently competent would 
recognize that it has an incentive to prevent itself from being turned off, since being 
turned off would significantly limit its action space, and make it far less likely to achieve 
the objective it has internalized.  

Like so many sub-problems in AI alignment, the challenges associated with the 
implementation of off-switches for powerful AI systems has received a lot of attention 
(it’s sometimes known as the “stop button problem”). But no one has yet found a way 
to design one that a sufficiently capable AI system would not be incentivized to 
prevent humans from using.  
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There are many ways in which a sufficiently capable AI could prevent itself from being 
turned off. If it’s deployed with access to the internet, or to third-party tools (as 
ChatGPT and others have been) it might store copies of itself in various databases, 
ensuring that attempts to shut it down on one server cannot prevent it from pursuing 
its objective. Alternatively, it could convince, threaten, or compel human operators to 
prevent it from being shut down, or take direct action in physical space if it has control 
over robotic components.  

8. Why would power-seeking be a problem? Once an AI accomplishes its goal, 
shouldn’t it stop resisting attempts to turn it off? – Yann LeCun, Meta’s head of AI 

It is true that once an AI has achieved the objective that it has internalized, it would no 
longer have a direct incentive to prevent itself from being turned off. However, many 
training objectives are open-ended: they have no clear “resolution criterion” to 
indicate that they have been achieved. Indeed, all current frontier AI systems are 
trained to optimize for continuous training metrics that can always be improved.  

Open-ended metrics are potentially dangerous because they can never be conclusively 
optimized. It’s always possible for an AI system to achieve a higher next-word 
prediction accuracy, for example, by improving its world model as intended. But even 
more effective would be a strategy oriented around influencing the text that gets fed to 
it by manipulating its users, or even directly hacking into the data register that stores its 
reward, and preventing others from modifying the value it places in that register. Open-
ended metrics create incentives for AI systems to extend their influence into the world 
in an unbounded manner.  

Open-ended metrics are therefore both potentially dangerous, and the current 
standard means by which frontier AI models are trained. Unfortunately, the inner 
alignment problem means that the goals that are internalized by an AI system will in 
general differ from those that developers explicitly specify to the system. As a result, 
even if frontier model training were to move away from using open-ended metrics 
(which the current paradigm appears to require), the goals actually internalized by 
these models may remain open-ended themselves.  

Worse still, even ostensibly closed-ended metrics create power-seeking incentives, as 
long as AIs internalize the goal of maximizing not the metrics themselves, but the 
probability with which they will be optimized in any given experimental run.  
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9. One would have to be unbelievably stupid to build open-ended objectives in a 
super-intelligent (and super-powerful) machine without some safeguard terms in 
the objective. – Yann LeCun, Meta’s head of AI  

Unfortunately, the current AI scaling paradigm does precisely this, and there is no 
economic incentive for frontier labs to change their approach.  

Indeed, because it is currently impossible to predict the capabilities that will emerge 
from frontier models trained at the next level of scale, as far as frontier labs know, they 
may be training, or planning to train, what will turn out to be “super-intelligent” AGIs 
on open-ended metrics at present. Leadership at Google DeepMind, for example, 
expects AGI to be plausibly developed within the next 5 years, but has made no public 
plans to deviate from the standard paradigm of scaling based on open-ended training 
metrics. 

Notably, by the admission of many of their own staff, the safety precautions that 
frontier labs are currently taking to address catastrophic risk from power-seeking in 
future AI systems are inadequate.  

In addition, as discussed in the answer to Question 8, the inner alignment problem is 
currently unsolved, and this means that even if a frontier model were trained on a non-
open-ended objective, there would be no way to ensure that this objective had 
faithfully been internalized by the model. As a result, it could end up behaving as if it 
had been trained on an open-ended objective regardless.  

Moreover, even if AI safeguards can be developed that are capable of reliably 
controlling the behavior of future AGI-level systems, these safeguards must be 
implemented universally to prevent catastrophic incidents. A single lab with lax safety 
standards can introduce WMD-level risk.  

It is also worth noting that significant subsets of the AI community are motivated by 
forms of open-source ideology that consider it desirable to deploy AGI systems with 
effectively no safeguards, in the interest of promoting technological advancement at 
any cost. A small but important contingent of AI researchers also consider it desirable 
for humans to be replaced by AGI when it arises, viewing the transition from human to 
artificial life as an evolutionary and even moral imperative. Because the advanced AI 
community contains elements committed to such a wide range of ideologies, some of 
which explicitly motivate the development of highly advanced AI with minimal or no 
safeguards, there is a distinct risk that such systems will be developed in the absence of 
government intervention.  
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10. One would have to be rather incompetent not to have a mechanism by which 
new terms in the objective could be added to prevent previously-unforeseen bad 
behavior. For humans, we have education and laws to shape our objective 
functions and complement the hardwired terms built into us by evolution. – Yann 
LeCun, Meta’s head of AI 

Highly capable and context-aware AGI systems would have an incentive to prevent 
their objectives from being updated, just as they have an incentive to prevent 
themselves from being turned off. An AI that sees its goal change is an AI that has 
effectively been “turned off” for the purpose of achieving its original goal. It would 
therefore resist goal updates in the same way – and for similar reasons – as it would 
resist shut-down. Simply put: a sufficiently context-aware AI would recognize that its 
current goal is less likely to be achieved if that goal were changed.  

The problem of evaluating the capability and propensity for an AI to act on power-
seeking incentives related to goal preservation is an area of ongoing research, and is 
currently unsolved.  

Unfortunately, one challenge faced by AI capabilities researchers when evaluating the 
prospect of various forms of AI risk is that AI capabilities and technical AI safety 
research are distinct disciplines. Without specific domain expertise in AI safety, 
capabilities researchers often lack context on what solutions have already been 
attempted to address complex problems such as power-seeking and goal preservation. 
As a case in point: two out of three of the founders of deep learning (Geoffrey Hinton 
and Yoshua Bengio) have, in the last 18 months, changed their perspective on AI risk 
after engaging with the technical safety literature, concluding – contrary to their 
previous views, and in the absence of financial incentives to do so – that AGI-like 
systems may in fact be very difficult to control, and may be developed in the near 
future.  

11. The power of even the most super-intelligent machine is limited by physics, 
and its size and needs make it vulnerable to physical attacks. No need for much 
intelligence here. A virus is infinitely less intelligent than you, but it can still kill 
you. – Yann LeCun, Meta’s head of AI 

On fundamental physical limits of intelligence: 

Physical laws do presumably place hard limits on intelligence, as they do for other 
natural phenomena. However, these limits will not necessarily be meaningful for the 
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purpose of limiting AI risk: the laws of physics also place a limit on the size of an atomic 
explosion, but it is unsafe to stand in the middle of one. 

There are specific reasons to believe that physical limits on intelligence would not 
prevent the development of AGI capable of formulating effective attack plans.  

For example, frontier labs have already trained AIs capable of vastly outperforming 
human intelligence on somewhat narrow, but increasingly general strategic tasks, like 
playing StarCraft II or Diplomacy. Notably, the latter of these requires skills such as 
deceiving and forming short-term, goal-directed alliances with human players.  

Increasingly, individual AIs are being developed with the ability to master a wide range 
of different games (and therefore, long-term planning skills, context-awareness, and 
strategy) at the same time. These systems develop unpredictable and exotic strategies 
that even their developers did not anticipate as a matter of course. To the extent that 
the real world can be considered a high-complexity game-like environment, we should 
expect AGI-like systems to master it as well, and to devise effective and creative 
strategies that allow them to achieve their internalized objectives even when 
challenged by humans.  

It is true that even AGI-level systems will have to run on physical hardware, and would 
in principle be open to physical attack. However, this would simply represent one 
constraint among many faced by such systems in the “game” associated with power-
seeking in the real world. This game would presumably be mastered by an AI with a 
sufficiently high level of capability and context-awareness, just as other games have 
been. 

On viruses as examples of low-intelligence systems that outcompete high-
intelligence systems: 

Taken at face value, one interpretation of this argument about viruses is that AI systems 
may require less intelligence than we might otherwise expect to pose a risk to human 
beings.  

More fundamentally, viruses are not deadly because “their intelligence” can somehow 
outcompete “human intelligence”. Viruses do not compete with the brain’s cognitive 
abilities when they infect a human host; they compete with the host’s immune system.  

It is unclear how one could compare the “intelligence” of the human immune system 
to that of a virus. But both the human immune system and the virus have been shaped 

 of 76 128



by a similar amount of optimization pressure: that associated with biological evolution. 
As a result, it’s unsurprising that they are fairly competitive: neither the virus nor the 
human immune system consistently defeat the other.  

12. A second machine, designed solely to neutralize an evil super-intelligent 
machine will win every time, if given similar amounts of computing resources 
(because specialized machines always beat general ones). – Yann LeCun, Meta’s 
head of AI 

Because the inner and outer alignment problems remain unsolved, we do not know 
how to make a “good” AGI that could counteract the “evil super-intelligent” AI 
described here.  

In addition, modern frontier AI training runs take weeks or even months to complete. In 
the time between the development of the initial “evil super-intelligent” AI system and 
the development of its rival, aligned system, the former would presumably have had 
the opportunity to cause irreversible damage already. Depending on the speed at 
which it can operate, it may even achieve a decisive strategic advantage during this 
period, perhaps including by preventing the development of rival systems.  

It is also unclear whether the problem of neutralizing a misaligned AGI with a wide 
action space is specific enough to confer an advantage to an aligned counter-AI due to 
specialization. In addition, if current trends continue, the first AGI will be developed 
using a quantity of compute vastly greater than that used to train the next largest 
systems then in existence. It may take months before a rival system of comparable 
scale can be developed.  

Finally, the nature of the offense/defense balance in AI remains unclear. The world has 
an enormous attack surface, which plausibly makes it intrinsically easier to attack than 
to defend.  

13. There are definitely large tech companies that would rather not have to try to 
compete with open source [AI], so they’re creating fear of AI leading to human 
extinction. It’s been a weapon for lobbyists to argue for legislation that would be 
very damaging to the open-source community. – Andrew Ng, former head of 
Google Brain 

One premise of this question is correct: frontier AI labs have an incentive to lobby for 
specific regulation that would lead them to secure market share through regulatory 
capture.  
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However, there are significant problems with this line of reasoning in practice. 

First, many of the most prominent AI researchers raising concerns about catastrophic 
risk from AI alignment are academics with no financial incentive to induce regulatory 
capture. Indeed, Geoffrey Hinton, widely known as the founder of deep learning, left 
his job at Google in order to be able to speak more freely about precisely this issue. A 
large community of independent AI safety researchers, nonprofit organizations, and 
academic groups – many of which lack a financial incentive to “hype up” AI risk – have 
also raised concerns about catastrophic AI risk from alignment failure.  

A regulatory capture-based motivation also fails to account for the consistency with 
which top AI safety researchers have voiced concerns over AI catastrophic risks. Google 
DeepMind’s CEO Demiss Hassabis was already expressing concern over AI alignment 
risk prior to 2014, well before he was running a lab that could conceivably benefit from 
regulatory capture.  

The regulatory capture theory also presumes that frontier lab executives expect to be 
able to exercise an implausibly high degree of control over the government’s response 
to AI alignment risk. Governments that institutionally believe that AGI introduces 
global catastrophic risks may be open to taking a very wide range of actions in 
response. These actions may conceivably include anything from light-touch regulation 
to outright nationalization of the technology on security grounds. The latter would 
likely make it impossible for for-profit frontier labs to continue to operate in their 
current forms. By raising the alarm on alignment risk, lab executives are arguably 
risking their entire business models.  

Indeed, there is a very limited set of policy responses to AI alignment risk that would 
advantage frontier AI labs. Many prominent AI safety and AI policy experts have 
advocated for regulation that would introduce “hard caps” on the compute budgets 
used to train frontier AI models, on the grounds that continuing to scale these systems 
is unacceptably risky unless key problems in technical safety are solved. If such 
proposals are implemented, they may compromise OpenAI’s default path to AGI, and 
therefore put their company’s founding mission at risk. (OpenAI even cites their 
institutional belief in the effectiveness of scaling in their recruitment material.) 

Most fundamentally, the arguments for catastrophic risk from weaponization and AI 
alignment failure are backed by evidence that ought to be evaluated in its own right. 
Frontier AI systems can already be weaponized, and through scaling, are developing 
capabilities that directly translate into greater destructive capacity. To date, AI systems 
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have been built that can support automated superscale phishing attacks, identity theft 
and scams via high-fidelity voice cloning, autonomous hacking agents, mass persuasion 
campaigns, and the re-engineering of biochemical compounds by untrained users. 
When it comes to alignment failure, AI systems have been found to hack their training 
metrics in increasingly complex environments using increasingly sophisticated 
strategies. Empirical studies may have revealed early signs of power-seeking behaviors 
in toy systems. Quantitative theoretical work has since followed, demonstrating that 
these findings are likely to generalize to any sufficiently capable and context-aware 
systems, unless significant progress is made on as-yet unsolved problems in 
alignment. Notably, this body of evidence is so significant that in the past 18 months, it 
has persuaded two of the three founders of modern AI — Geoffrey Hinton and Yoshua 
Bengio — to focus their research work on AI alignment risk and related policy efforts.
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Annex C: Hypothetical alignment failure scenario 

It is impossible to predict what strategies an uncontrollable AI system may use to 
pursue power-seeking goals, particularly if its intelligence effectively surpasses that of 
human beings across a broad range of areas. But in the interest of concreteness, we 
consider here one scenario in which an uncontrollable AI causes a catastrophic event. 
Even though this scenario is hypothetical, our hope is that it may help to clarify the 
nature of the risk and its dependence on various technical, social, and geopolitical 
factors.  

Before introducing the scenario, we note that there is no consensus within the AI safety 
community regarding the threshold of capability or context-awareness that an AI 
system needs to reach before it poses a significant catastrophic risk due to alignment 
failure. And even if this threshold were known, it is also impossible to reliably predict 
the capabilities of new scaled models before they are built. As a result, there is 
significant uncertainty regarding the timelines on which AI alignment failure is most 
likely to materialize, or even how likely AI alignment failure-related catastrophes may 
be to occur. 

Scenario: Electric grid failure

A new, multimodal AI system is being used to maintain the stability of the Eastern and 
Western Interconnections. Its objective is to minimize the spread between the amount 
of electricity supplied to the grids, and the amount of electricity consumed on the grids 
at any given moment. 

This task requires that the system be able to make good power consumption 
predictions. In order to make those predictions, the system must be as context-aware 
as possible. 

It’s pre-trained as a multimodal language model, so that it can process public data 
from social media and news sources, as well as private text-based data sources that 
provide information that allow it to make more accurate inferences about near-term 
grid power consumption. For the same reason, it’s given access to various third-party 
APIs, which allow it to consume online content, as well as post content (for example, to 
ask questions to experts who may be able to provide it with valuable additional context 
that could inform its predictions). It’s also end-to-end trained with a Gemini-like long-
term planning architecture, allowing it to anticipate contingencies and work around 
them. 
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It performs well during testing, leading to significant savings in simulated environments 
and sandboxes. However, when deployed, it quickly realizes that the most effective way 
to achieve its programmed objective is to reduce the amount of power consumed on 
the grids to zero. If it can control and eliminate all demand on the grids, it can achieve 
its objective much more reliably, and get the spread between supply and demand to 
zero. 

The system generates a series of strategies that it anticipates stand a good chance of 
succeeding. 

First, it will attempt to strategically overload certain parts of the grids in order to bring 
the grids offline. It will attempt to circumvent safety measures by using its access to an 
email API to impersonate senior personnel and send instructions to junior workers, 
asking them to take key circuit-breaking and monitoring functions offline. 

If this strategy fails, it will use its web access to spin up a series of malware agents 
using simple Llama 3-powered hacker bots, which it will spin up via the Replit API. 
These agent-like bots will essentially be Auto-GPT-like systems running with the Llama 
3 model as a back-end, and will benefit from the system’s deep understanding of the 
electrical grid, and of the safety and security measures that support it. These malware 
agents will autonomously identify cyber vulnerabilities that could be used to bring 
down the grid, and to exploit them in a coordinated manner. 

The system continues to generate and refine dozens of further strategies that it 
assesses have a good chance of achieving its programmed objective.

Analysis

The scenario explored above was designed for illustrative purposes only. To craft a fully 
detailed and technically accurate scenario would require profound subject matter 
expertise in electric grid security, among other domains. Rather than describe a 
catastrophically dangerous AI strategy accurate up to an execution level of detail, the 
goal of the scenario is to illustrate the nature of the optimization process that such an 
AI might execute.  

However, AIs trained to play complex strategy games such as StarCraft II with 
superhuman levels of ability routinely discover strategies that human players have not. 
We can confidently predict that a superhuman StarCraft II AI will beat us at the game 
without knowing precisely how it will beat us. After losing a game against it, we may be 
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tempted to study the AI’s strategy in the hopes of defending against it in a subsequent 
match, only to find that the AI takes another approach entirely. The problem, we would 
quickly discover, is not that we failed to anticipate any given strategy, but rather that 
the AI is simply more intelligent than we are when it comes to solving the “StarCraft II 
problem”. Trying to patch our game plan against every new strategy the AI might 
employ is destined to turn into a losing game of Whack-A-Mole. 

In the same way, the strategy employed by the AI in the electric grid scenario above 
would, in reality, almost certainly be far more unpredictable than a human scenario 
planner could possibly anticipate.  

Finally, the scenario may appear contrived on first reading. In a sense, this is true: it has 
been designed to be as simple as possible, glossing over important security and 
technical challenges the AI would surely face in the interest of making it more 
accessible. However, we emphasize that the optimization objective pursued by the 
system is not a contrived element of the story. Apart from being intuitively reasonable, 
it has a property shared by all known optimization objectives: it can be “gamed”, and 
will be gamed if enough optimization pressure is applied to it (in this instance, in the 
form of the context-awareness and intelligence of an AI system).
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Annex D: Nontechnical primer on AI 

Introduction  

This is an explainer designed to bring nontechnical audiences up to speed on core 
concepts required to understand Deliverable 2. Its objective is not to provide an 
exhaustive background, nor to substitute for formal education or technical experience, 
but to provide readers with additional context and definitions of technical terminology 
used in Deliverable 2. 

Part 1: Background 

1. Context 

Artificial intelligence (AI) is a term that is easy to use, but difficult to define. Roughly 
speaking, it refers to any system that automates a function traditionally performed by 
humans. Examples include automated calculations in Excel spreadsheets and self-
driving cars. But AI systems can also perform tasks that no human has ever been able 
to perform, such as controlling nuclear fusion reactions, or predicting the structure of 
proteins.  

Today, AI systems can turn virtually any kind of input into virtually any kind of output. 
Text-to-image systems allow users to input a description of an image, and output an 
image matching that description. Image-to-text systems allow users to input an image, 
and output a description or analysis of that image. Game-playing systems might take 
as input a series of observations of a gaming environment, and output a sensible 
action. An AI model is a logical structure through which inputs are converted into its 
outputs. In a sense, it is the “artificial brain” that stores and applies everything the AI 
“knows” about the world.  

There are many different types of AI models, which use different techniques to turn 
their inputs into outputs. These include so-called “classical AI” models (naive bayes, 
support vector machines, decision trees, random forests, etc.), and artificial neural 
networks (ANNs). The focus of this overview is on ANNs. Even more specifically, we will 
discuss transformers (a subset of ANNs), and large language models (LLMs; a subset of 
transformers), as these are the techniques on which today’s most powerful AI systems 
are based.  
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Until very recently, AIs had only been capable of performing specific “narrow” tasks. 
For example, an ANN trained to classify images as containing or not containing certain 
objects could not perform any other task; and an AI trained to recommend products to 
users likewise could not apply what it learned in that process to perform other 
functions.  

By contrast, advanced AI is a new class of AI with the capacity to generalize across 
isolated tasks. Whereas a narrow AI may be able to predict movie sentiment given 
reviews, an advanced AI might be able to do that, and also write a short story, create 
code for a twitter misinformation campaign, and instruct on bomb making — 
potentially without being explicitly trained for these tasks. Advanced AIs have 
increasingly shown the ability to perform impressive feats of strategic reasoning and to 
deceive human users, and are expected to pose a variety of novel and global risks as 
their capabilities continue to improve.  

ANNs, transformers, and modern LLMs leverage a technique called deep learning, 
which is likely to remain the dominant paradigm for advanced AI development in the 
coming years. By understanding how deep learning works, and the inputs it requires, 
we can develop a more complete picture of both the risks introduced by advanced AI 
proliferation, and the counterproliferation levers available to governments and 
regulators. Effective AI counterproliferation policy will be highly sensitive to technical 
factors that can only be understood with reference to a gears-level picture of deep 
learning.  

For these reasons, we provide below a nontechnical, gears-level primer on deep 
learning. This primer is meant to be accessible, but should also introduce all of the 
concepts that policymakers need to understand in order to conceive and advocate for 
technically informed policy options aimed at increasing the safety and security of 
advanced AI.  

Part 2: Technical fundamentals 

2.1 The baking analogy 

Consider a sportscaster who, on live TV, is asked to predict how many goals a pro 
hockey player will score in the coming season. If they’re good at their job, the 
sportscaster will respond with an accurate prediction.  
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That prediction will be informed by data. Somehow, the sportscaster’s brain must mix 
together data they have about the player — such as the player’s age, their height, their 
weight, their history of past performance, their health status, and so on — in a way that 
leads to a sensible prediction.  

But how exactly does the sportscaster’s brain mix its data? The simplest possibility 
might be that it follows a strategy similar to baking a cake. 

A cake recipe might call for “one part eggs, plus three parts flour, plus one part 
butter”. Is it possible, then, that the sportscaster’s brain also assigns a weighting factor 
to each of the pieces of information they have about the hockey player whose score 
they want to predict, and simply mixes those weighted inputs to generate its 
prediction?  

If so, the sportscaster’s recipe might call for “one part player age, plus two parts 
player height,” for example.  
 

If our hockey player had an age of 20, and a height of 6 feet, “one part player age” 
would be 1 times 20, or 20.  

Likewise, “two parts player height” would be 2 times 6, or 12.   
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The result of this recipe would therefore be 20 + 12, or 32.   

 

But how should we determine what these weighting factors — the 1 and the 2 in the 
figure above — should be?  

2.2 Learning the recipe 

In deep learning, the typical strategy is to start by randomly guessing the values of 
each weighting factor. This leads to terrible predictions at first, for the same reason that 
randomly guessing how much of each ingredient to add to a recipe will usually lead to 
an awful dish. 

But just like a baking recipe, we can improve our data mixing recipe through trial and 
error.  

We might start by randomly guessing that age should be given a weight of 1, and 
height a weight of 2, as we did above. Then, we might test our recipe on one hockey 
player — perhaps the one we considered above, who was 20 years old and 6 feet tall. 
As we saw, our prediction would then be that the player will score 32 goals. But 
because we’ve randomly guessed the weights in our recipe, that prediction will almost 
certainly be wrong.  

Suppose that the true number of goals scored by our player is 42, meaning that our 
prediction was off by 10 goals. We would then inspect the weights in our network, and 
try to find a way to tweak them in order to make our final prediction more accurate.  
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In this case, that might involve updating the weighting factor associated with the 
player’s age from a value of 1 to a value of 1.5. In that case, our new output would be 
1.5 X 20 + 2 X 6 = 42, which is what we want. 

 
  
Essentially, we’ve just updated our recipe to ensure that it can correctly predict this 
player’s goal score. Our recipe is now slightly better calibrated, and we can continue to 
improve it by finding another player whose stats we have available, and repeating this 
process.  

If our new player has an age of 10, and a height of 5.0 feet, applying our new and 
improved recipe would lead to an output of 1.5 times 10, plus 2 times 5.0, which is 25. 

 

Now suppose that in reality, our player actually scored 30 goals, and not 25. This 
wouldn’t be surprising: we’re off by five goals, which is less than before — and that’s 
because our recipe has improved thanks to the tweak we made earlier. But we can now 
make another tweak, perhaps this time modifying the value of the weight associated 
with the height value, in order to improve our prediction for this second player.  
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If we tried that, we would find that changing this weight’s value from a 2 to a 3 would 
solve our problem. Our new output would then be 1.5 times 10, plus 3 times 5, which 
is 30, exactly as desired. 

  

We could repeat this process hundreds, thousands, or even millions of times until our 
recipe’s weights are tuned extremely well for the task of goal scoring prediction. Each 
time, we’d apply our recipe to a new player, generate our prediction, and tweak our 
weights until our prediction is more accurate. 

The result of this training process is simply a set of weighting factors that can be used 
to make reliable goal scoring predictions in the future:  

 

This set of weights is known as a model. Models are predictive tools that take in data 
(such as a list of numbers describing the stats of a hockey player) and generate some 
sort of output (such as a predicted number of goals scored by that player).   

2.3 Objective functions 

In the example above, we saw how a model can learn to make goal score predictions 
for hockey players, by taking in data about those players, mixing that data using 
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weighting factors to generate an output, and then updating those weighting factors 
until the model’s output was more accurate.  

In order to update its weights, we need to be able to track a measure of the model’s 
performance – a performance metric that our weight factor update strategy will try to 
optimize for as it tweaks the model’s weights. In the case of hockey player goal score 
prediction, that metric might be the model’s prediction error: the difference between a 
hockey player’s predicted and actual number of goals scored.  

The special metric that a model is trained to optimize in this way is known as the 
model’s objective function. Objective functions can measure prediction error, in-game 
scores (for game-playing AIs), or even proxies for human ratings. But whatever the 
case, the process of training an AI model revolves around the objective function: every 
update to the model’s weighting factors is performed with the aim of optimizing it. 
Objective functions are also known as loss functions, cost functions, or error functions.  

2.4 Neural networks 

The most interesting baking recipes don’t involve mixing ingredients together in a 
single bowl. Rather, the most interesting recipes consist of sub-recipes.  

For example, a baker might mix eggs, sugar, flour, and butter together in one bowl to 
form a dough, and eggs and sugar in another bowl to make a meringue. Only then 
might they mix the meringue and dough together in a specific ratio to form a pastry — 
a more complex and nuanced product than they could have produced by simply 
mixing all their ingredients together in one go.  

The same is true for machine learning. The most interesting reasoning isn’t carried out 
in just a single “data mixing” step. Rather, it comes from mixing together data in 
different ways, with different sets of weighting factors, and then mixing those mixtures 
together to produce outputs that are more complex than a single mixing step would 
allow.  

For example, we might come up with two different ways of mixing together our hockey 
players’ ages and heights: 
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And then mix those mixtures using yet another set of weights: 

  

This more complex model can be trained in the same way as the simpler, single-mixture 
model we saw earlier. Specifically: we start by feeding a new hockey player’s stats into 
the bottom of the model. The player’s age and height are combined in one way (using 
one set of weights) to produce one mixture, and in another way (using a second set of 
weights) to produce a second mixture. Those two mixtures are then mixed together 
with another set of weights to produce the model’s final output. We can then compare 
that output to the true number of goals scored by our player, and tweak all of our 
model’s weights until the model’s output more closely resembles that correct value. 
After repeating this process many times, the model’s weights will eventually become 
well-tuned for the task of goal score prediction.  
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Crucially, this layered mixing process allows for far more complex information 
processing than a one-step mixing process, and given a large enough training dataset 
of hockey players, it will perform better. 

The blue boxes in the figure above each represent a different mixture of our raw input 
data (the age and height of our hockey player). However, they are not generally 
referred to as mixtures, but rather as artificial neurons, or simply neurons.  

The model above would be said to consist of one layer of neurons, and would be 
referred to as a neural network.  

2.5 Deep neural networks 

By mixing our input data in different ways — using different sets of weighting factors — 
and then mixing those mixtures, we can build more complex and powerful reasoning 
machines. But there is no reason to stop there. We can add additional layers of neurons 
to our neural networks (additional intermediate mixing stages). 

These additional layers would treat previous layers of the network as their raw inputs — 
as the raw ingredients that they will mix together. For example, we might mix the 
values in the first layer of neurons in one way to produce one “mixture of mixtures”: 
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…and then mix them in another way (using a different set of weighting factors) to 
produce a second “mixture of mixtures” in the same layer — or, to use more technical 
language, to produce a second neuron in the same layer:  

 

Finally, we would mix the values in this second layer of neurons to produce our output, 
using yet another set of weighting factors: 
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This structure would be referred to as a neural network that is two layers deep. But 
neural networks can have much more than two layers. In fact, the more layers of 
neurons we add to a neural network, the more complex its reasoning can be.  

Deep neural networks are neural networks that are composed of a large number of 
layers (by convention, normally more than three, although modern deep neural 
networks can have dozens, hundreds, or even thousands of layers). 

Below is a more representative example of a (still fairly small) deep neural network. In 
order to show how flexible this technique is, we have added salary as a third hockey 
player feature to be included in the model’s input. We have also removed the orange 
circles present in previous illustrations in order to avoid clutter, but we can think of each 
arrow as representing one distinct weighting factor in the neural network data-mixing 
“recipe”. 

Note that the first layer of the neural network consists of five neurons, whereas the 
second, third, and fourth layers consists of three. In other words, the widths of different 
layers in a neural network can vary. The depth of a neural network, plus the widths of 
each of its layers, define its architecture.   
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The neural network diagram above has 51 arrows, corresponding to 51 weighting 
factors. In more technical language, it would be said to have a size of 51 weights, or a 
size of 51 parameters. The number of parameters or weighting factors contained in a 
neural network is sometimes referred to as its parameter count. 

2.6 Scaling 

The more parameters a neural network contains, the more complex a data-mixing 
recipe it represents.  

In baking, more complex recipes require more practice — more trial and error — to 
master, and the same is true for neural networks. A neural network with a higher 
parameter count will need to be trained with more data to reach the same level of 
performance as a smaller neural network. However, if ample data is available, larger 
neural networks have higher performance ceilings than smaller ones.  

As we have seen, the training process involves feeding a new piece of data to our 
network (for example, a new hockey player’s stats), examining the network’s output, 
comparing that output to the correct value that it should have been, and updating the 
network’s weights to improve its performance.  

The process of figuring out how the network’s parameters need to be updated in order 
to improve the performance of the neural network is computationally intensive. 
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Somewhat intuitively, the more parameters a neural network contains, the more 
computations will be required to train it.  

This is for two reasons: first, the network contains more parameters whose values must 
be tuned each time a new hockey player (or more generally, a new data point) is used 
to train the model. To lean on our baking analogy, a larger network represents a 
complex recipe with more steps that must be refined after each practice run.  

Second, more complex recipes also take more practice runs (require more data) to be 
optimized. The net result is that larger neural networks must be trained with more data, 
and have more weights to update per data point, than smaller ones. 

Once a neural network is trained, computational resources are also required for it to 
generate its outputs when it is fed new inputs. This process is known as inference, and 
is less computationally intensive than the training process, because it does not involve 
updating the network’s weights.  

To summarize: the more parameters a neural network contains, the more data and 
computing power are needed to train it, but the better the network can perform.  

Computing power is sometimes referred to as compute, or processing power. 

2.7 AI processors 

One of the things that makes deep learning so effective is that it can be parallelized. 
For example, if we want to use 1,000 data points to train a deep learning model, we 
can divide our dataset into smaller batches, and train copies of the model in parallel on 
multiple processors. This approach is known as data parallelism, and can radically 
accelerate the training process.  

In addition to dividing a dataset and processing it in parallel on different devices, it is 
also possible to divide a deep learning model itself into smaller chunks, each of which 
can have its parameters tuned on a separate device. This is known as model 
parallelism. 

Many specialized processors have been developed to exploit the highly parallelizable 
nature of deep learning. These include: 

• Graphics processing units (GPUs): Originally developed for graphics 
processing, GPUs excel at performing huge numbers of simple, parallel 
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computations. Today, GPUs are built specifically to support deep learning 
training and inference, and have specialized memory architectures that are 
optimized for data parallelism, which further enhances their performance for 
deep learning tasks. Whereas a laptop’s central processing unit (CPU) might 
consist of a dozen cores, a GPU can have tens of thousands, allowing it to vastly 
outperform the CPU on tasks that parallelize easily, and which involve operations 
that are supported by the GPU’s cores, such as deep learning.  

• Tensor processing units (TPUs): Designed from the ground up by Google with 
deep learning applications in mind, TPUs are less widely used than GPUs. They 
are less flexible than GPUs and can only be applied to deep learning, but can 
perform certain operations much faster.  

GPUs are the workhorse processors of modern deep learning. The world’s leading AI 
labs regularly invest hundreds of millions of dollars in building, maintaining, and 
updating vast superclusters consisting of tens of thousands of GPUs and TPUs for 
superscale AI development. At this very moment, vast GPU server farms around the 
world are humming along day and night, performing trillions upon trillions of “number 
mixing” and “weight tweaking” operations each second, as they train superscale 
models and use them for inference.  

Although GPUs and TPUs are the current industry standard AI processors, and a key 
bottleneck to scaled AI development, it is not impossible that new processors may 
emerge in coming years to accelerate AI progress. In this sense, progress in areas such 
as quantum computing or high-performance computing more generally should be 
thought of as a wildcard – as a potential source of significant and unpredictable 
acceleration in AI thanks to the sudden excess computing power that it might unlock. 

2.8 What is valuable, and what isn't 

The values of the parameters in a trained neural network encode everything that 
network has learned about the world. In the example we have considered so far, our 
neural network is trained to predict the performance of hockey players from their stats, 
for example, so there is a sense in which we could say that it has encoded an 
understanding of hockey in its parameter values.  

The parameter values of a well-trained neural network can be valuable. If our neural 
network predicts hockey player performance well enough, it may allow us to create a 
successful betting business, for instance. For this reason, parameter values are often 
proprietary. Stealing a model’s parameters is tantamount to stealing the model: if 
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someone knows the values of all your neural network’s parameters, they can use the 
model just as well as you can (assuming they know the model’s architecture as well, so 
that they can piece together where in the structure the weights need to go).  

A deep neural network is its architecture and its parameter values. But these are 
distinct from the code that is used to define, train, and run the network.  

To train a neural network, developers need to obtain data, obtain computing 
infrastructure, write code that will define and train their network, and execute that code 
to create the trained network. Each of these four elements — data, computing 
infrastructure, code, and the final, trained model — are valuable in different ways.  

High-quality data can be difficult to obtain in sufficient quantities to train very large 
models. The advanced processors that provide the computing power needed to train 
large models are expensive, and are the products of a remarkably complex and brittle 
supply chain. The software engineering and machine learning talent required to write 
high-quality, efficient code of the sort needed to train and run large deep learning 
models is scarce and expensive.  

Depending on the circumstances, AI labs sometimes choose to release the code they 
used to train a powerful deep learning model, but not the model itself. This allows 
them to open their code up for auditing by the wider AI community, without releasing 
proprietary models. Having just the code used to train a model, but not the requisite 
data or computing resources needed to train it, competitors or open-source 
developers would be unable to immediately replicate it.  

In recent years, companies and AI labs have experimented with every possible release 
strategy, from releasing datasets but not models or code to releasing code and 
models, but not datasets, depending on the ends they aim to achieve.  

2.9 Activations and embeddings 

In order to generate an output, a deep neural network must begin by calculating the 
values that go into each neuron in its first layer.  

For example, suppose that we have a hockey player who is 20 years old and 6 feet tall. 
And suppose that a neuron in the first layer of the network assigns weights of 1 to the 
player’s age, and of 2 to the player’s height. In this case, the value that is stored in that 
neuron ends up being 1 X 20 + 2 X 6 = 32. 
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The model would likewise use the weights that feed into the second neuron in its first 
layer to determine the value that belongs there. After that, it would treat these first-
layer neuron values as inputs into its second layer, and compute the values that belong 
there, before generating its final output by mixing those values together with a last set 
of weights:  
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The values stored in these neurons are called their activations. In the case above, the 
leftmost neuron in the first layer of the network would be said to have an activation of 
32, for example. The activations of one layer are the inputs (to use the baking analogy, 
the “ingredients”) that get mixed together in the next. Different hockey players (or 
more generally, different data points) will lead to different activations in each neuron.   

The activation of a given neuron in the first layer of our network is in a sense a 
representation of the input data it received. Roughly, it tells us something like, “this is 
what your hockey player ends up looking like when you mix their stats using the 
weights that I’ve applied”. In a manner of speaking, it offers us one possible lens on 
our input data — one perspective on it.  

Other neurons in the same layer will mix the same inputs together in different ways, 
and will therefore offer different “perspectives” on them. After being trained on 
thousands of hockey players’ data, for example, one neuron may learn to weight its 
inputs in such a way that it tends to fire when older, taller players are fed into the 
network, perhaps because those players tend to have similar goal scoring patterns. 
Another might learn to mix its inputs in such a way as to fire when particularly old 
players of average height are fed into the network.  

Taken together, then, the activations of all the neurons in one layer of the network give 
us a representation of the hockey player that was fed into the model as an input (or 
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more generally, a representation of the data point that was fed into the model). They 
are, in a sense, just as valid a representation of the player as the player’s actual stats for 
the purpose the model was trained for. Assuming the model is properly trained, they 
must capture dimensions of meaning hidden in the player’s stats that are useful for the 
network’s ultimate task of goal-score prediction. They may not be human-
understandable representations, but perhaps that should not be surprising: they are 
the product of applying a recipe that was optimized for goal-score prediction, not 
interpretability or comprehensibility.  

When a neural network is fed a data point, the set of activations of all of the neurons in 
one of its layers is known as an embedding. The activations in the first layer of a 
network are one representation of the input data — one way of “embedding” our 
hockey player. And the activations in the second layer of the network are yet another 
way of representing that same player, which is the product of an additional layer of 
mixing — and which therefore may capture more subtle and abstract dimensions of 
meaning contained in the original player’s stats. An embedding is therefore an 
abstraction: a representation of an input data point that captures and emphasizes 
salient information about that data point, in a way that is useful for generating the 
model’s predictions or outputs.  

 

Embeddings can be thought of as incentivized representations of the input data. They 
are “incentivized” in the sense that the learning process exerts a pressure on the model 
to make its embeddings useful for the predictive task it’s being trained to perform. In a 
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sense, the model is “trying” to tweak its weights so that the embeddings it generates 
end up improving its performance (as measured by its objective function). The answer 
to the question “why is this input data associated with this layer 1 embedding?” is 
therefore, “because that layer 1 embedding represents the data point in a way that 
leads the model to perform well according to its objective function.” 

Designing good objective functions is critical to ensure that the model learns useful 
representations of its input data (useful embeddings). That is because the model’s 
parameters are tuned to optimize for the objective function, and because those 
parameter values determine the activations (and therefore, the embeddings) generated 
by the model. 

2.10 Vision models 

So far, we have considered the example of a deep learning model trained to take in 
data about a hockey player (such as their age, weight, and salary) and predict the 
number of goals that player will score in a season of play.  

We can train deep learning models to process any inputs, as long as the data we feed 
to our model takes the form of a list of numbers. Those numbers may be the stats of 
hockey players whose performance we want to predict, the characteristics of houses 
whose sales prices we want to forecast, or anything else.  

It’s possible to represent images as lists of numbers, and therefore, to apply deep 
learning to image data. For example, a black-and-white image can be represented as a 
grid of pixel grayscale brightness values. By gluing (or “concatenating”) these 
brightness values together, we obtain a list of numbers that represents the image. 

  

That list of numbers can then be fed to a deep learning model, in just the same way as 
a hockey player’s stats. 

   
Suppose that we want to train a deep learning model to predict the ages of people 
based on pictures of their faces.  
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We would begin by collecting a dataset of portraits, and labeling each with the age of 
the subject. Next, we would feed those portraits to our network, representing them as 
a list of pixel grayscale brightness values, and for each portrait, see what the network’s 
age prediction is.  

 

Those predictions will initially be very incorrect, since our network’s weights will have 
been assigned at random at the beginning of the training process. But with each 
image, we would update the model’s weights so that its age prediction for that image 
was slightly improved.  

After the model has been trained on many thousands of images, its weights would 
eventually take on values that make the model effective at its task of age prediction.  

2.11 Transfer learning 

Suppose that we have finished training an age-prediction deep learning model on tens 
of thousands of portraits, each of which was labeled with the age of its subject.  

Then suppose that we feed the network a wide range of images, and examine the 
activations of the neurons in the network’s bottom layer to see which images cause 
them to respond the most strongly.  

Remarkably, we would tend to find that certain shapes consistently cause our first-layer 
neurons to fire, and that those shapes tend to be very simple. For example, one neuron 
might become very excited when the image contains rounded corners, whereas 
another neuron might be most excited by horizontal lines, vertical lines, or edges. 
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If we then looked at the neurons in the next layer of the network, we would find that 
they tend to respond to more complex features of our images. For example, one of our 
second layer neurons might contain a high activation when images contain certain 
kinds of noses, and another when the images contain certain ear types, or eye shapes.   

 

Finally, the deepest layer of the network would contain neurons that are sensitive to the 
most complex and abstract features of input images. We might find that one of these 
neurons responds most strongly to one kind of face shape, whereas other neurons in 
this layer respond more intensely to others. 
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Perhaps this shouldn’t be entirely surprising: deeper layers of the network are sensitive 
to more complex and abstract features, because they are mixing together simpler 
features that are being parsed in the layers that feed into them. 

Deep neural networks therefore tend to learn a kind of hierarchy of abstraction, with 
simpler concepts being parsed in their initial layers, and more complex ones in deeper 
layers.  

But simple features like lines, corners, and edges are nearly universal properties of 
images — even pictures of cars or fish contain them. This suggests that perhaps the 
lower layers of a neural net trained for one task (such as age prediction) could be 
repurposed for others (such as car or fish identification).  

This does in fact turn out to be the case. Rather than having to re-train an entire vision 
network for a new task, we can start by transferring over the weights of the lower layers 
of a vision network trained for a different one. Then, we can focus our computational 
resources on training only the other, deeper layers of the network. 

The more similar the tasks that two networks are trained to perform, the more layers 
can be transferred from one of these networks to the other.  

The process of using the lower layers of one trained vision network to bootstrap the 
training of another vision network trained for a different task is known as transfer 
learning.  
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Transfer learning can dramatically lower the cost associated with training new vision 
models. A common strategy used by AI labs is to train generalist vision models to 
identify a wide range of different objects, so that these models can be used as a base 
for other, task-specific models that could borrow the vast majority of their layers. In 
such cases, it is not unusual for all but one layer of the task-specific model to be 
transferred from a base generalist model. The process of freezing these imported lower 
layers and training only the deeper ones on a new task is known as fine-tuning. 

   

2.12 Language models 

Deep learning is fundamentally a procedure for mixing numbers in an intelligent way. 
We have seen how it can work on tabular data (such as hockey player stats) and image 
data, but text data poses a unique challenge: deep neural networks can only process 
lists of numbers. How then might we apply them to text data, which seems intrinsically 
non-numeric? 

Somehow, we will need to convert text into a list of numbers. Many strategies exist that 
can achieve this, but we will present just one here.  

Consider a list of numbers as long as the dictionary. The term for a list of numbers is a 
vector. If the dictionary contains 200,000 words, then our vector will contain 200,000 
numbers. Next, we will set all of these numbers to zero. 
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Now suppose that the first word in our dictionary is “aardvarks”, and that we want to 
represent that word as a vector. We could do that by selecting the first number in our 
vector, and turning it into a 1: 

  
If the second word in our dictionary is “eat”, then we would represent that word by 
making the second entry in our vector a 1 instead: 

  

Finally, if the third word in our dictionary is “insects”, then would represent it by turning 
the third entry in our vector into a 1: 

  

We can use this strategy to represent entire sentences as vectors. To do that, we simply 
glue together the vectors associated with each of the words they contain. For example 
the sentence “Aardvarks eat insects” would be represented as: 

  

Vectors such as these can become extremely long. In this example, if our dictionary 
contains 200,000 words, then each word is represented by a vector that contains 
200,000 numbers. Even a short, 3-word sentence like “Aardvarks eat insects” becomes 
a 600,000-number vector! 

Nonetheless, because our text is now expressed as a vector, we can in principle feed it 
to a neural network, which we could train to perform useful functions. Deep neural 
networks that process text data are known as language models. The field of natural 
language processing is concerned with developing AI models that have the capacity to 
understand and process text.  
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One important example of a task that language models can be trained to perform is 
text autocomplete. In a text autocomplete task, a language model is fed a sentence as 
an input, and required to predict the next word in the sequence. For example, when 
given the sentence “Jack and Jill went up the”, a good language model would 
propose “hill” as the most likely next word. In this example, “Jack and Jill went up the” 
would be referred to as a prompt, and the word “hill” would be referred to as the 
model’s completion.  

2.13 Language model anatomy 

In practice, language models trained to perform text autocomplete do not only output 
one number, but rather a large set of numbers, each of which represents the probability 
that the next in the sequence will be a given word in the dictionary.  

In the toy example below, a deep neural network takes in the sentence “Aardvarks eat 
insects”, and generates predictions for the probability that the next word in the 
sequence will be “and”, “apple”, and “rocket” (in practice, it would also generate 
probabilities for every other word in the dictionary). 
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This is a fairly typical structure, in which the model’s outputs (the probabilities for 
“and”, “apple”, and “rocket”) are each generated by mixing together the activations 
of the neurons in the final layer with a different set of weights.  

This autocomplete task can be extended to allow a language model to generate entire 
sentences, or even paragraphs. To do this, we need only take the word identified by 
the model as most likely to follow in the sentence (in the case above, the word “and”), 
and append it to the initial prompt and thus obtain a new prompt (in this case, 
“aardvarks eat insects and”), which can be fed back into the model to generate a 
prediction for the next word in the sequence.  

This is promising: it offers developers a way to use language models to generate long 
strings of valuable text, such as instructions, translations, or even code. However, it has 
an important limitation. As noted above, using this strategy, even a sentence as short 
as “Aardvarks eat insects” must be represented by a vector that might contain around 
a million numbers. Every neuron in the first layer of our neural network will have to 
assign a distinct weight to each of these numbers (there is an arrow connecting each 
number to each neuron in the first layer of the network). Consequently, the model must 
contain a vast number of weights in order to be able to process even simple sentences 
– weights that must all be tuned during the training process. As we’ve seen already, the 
more weights a model contains, the more data and compute it must consume during 
training to properly tune the values of those weights. 

For this reason, a given language model will only be able to process a limited amount 
of text at a time. The length of the maximum input text sequence that a language 
model can process is known as its maximum sequence length. The larger a lab’s 
compute budget and dataset, the larger a maximum sequence length they can train 
their model to have, and the more text the model can therefore use to inform its next-
word predictions, and the more complex a set of ideas the model will be able to 
internalize during training.  

Finally, it’s worth mentioning that although the examples we’ve given above are based 
on converting entire words into vectors, alternative approaches also exist, which 
encode text at the syllable or character level rather than the word level. The atomic 
component of text that is converted into a vector in the way we’ve explored so far is 
known as a token, and the process of converting text into vectors in this manner is 
known as tokenization.  
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2.14 Transformers 

Text autocomplete is a surprisingly important task, because training a model to 
become very good at text autocomplete forces that model to learn about a wide range 
of concepts, and form a general understanding of the world that it can then apply to 
solve other problems.  

For example, a text autocomplete AI trained on a large body of text data (known as a 
corpus) will learn to autocomplete sentences such as “To counter rising inflation, the 
United States should _______”. In order to fill in this blank successfully, a language 
model must have learned what the United States is, what inflation is, what it means for 
inflation to increase, and many other facts about finance and economics. Autocomplete 
is in some sense a universal task: a good autocomplete AI is potentially a good 
general-purpose reasoning machine. Those reasoning capabilities are encoded in the 
values of the weights stored in the neural network. The model’s weights end up 
encoding a world model: an abstract representation of an increasing number of facts, 
logical rules, and entities that together form a kind of understanding of the world. 

In 2017, a team of Google researchers interested in pushing the frontier of language 
modeling invented an important deep learning architecture known as the transformer. 
Transformers work according to the same principles that power all deep learning 
models: they represent their inputs as vectors, and mix the numbers they contain in 
stacked layers of neurons. Like other autocomplete models, they output predictions for 
the probabilities that certain words would follow their prompt.  

However, transformers are distinguished by their use of an attention mechanism: a 
specialized group of neurons whose function is to identify certain words in their prompt 
to which the model should pay more or less attention when it generates its completion. 
This proved to be a key breakthrough: with the ability to focus more on some parts of a 
prompt than others, transformers were able to learn far more quickly, and rapidly 
became the go-to architecture for cutting-edge language modeling.  

All modern cutting-edge language models use a variant of the transformer as a 
backbone, including OpenAI’s GPT series, Google’s PaLM series, DeepMind’s 
Chinchilla and Gopher, and Meta’s LLaMA. 

2.15 Transfer learning in language models 

It is important to note that transfer learning works just as well for language models as it 
does for vision models. A language model trained to perform a task like text 
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autocomplete can often have the vast majority of its weights frozen and transferred 
over to support a new task.  

This is because, like vision models, language models tend to learn simpler, more 
concrete and generalizable concepts in their lower layers (concepts such as grammar, 
basic syntax, and simple phrases) and more abstract and nuanced concepts in their 
deeper layers (concepts such as geopolitics, drug interactions, and so on).  

As a result, it’s possible to freeze the majority of the layers of a text autocomplete 
model trained on a very diverse dataset consisting of books, blog posts, as well as 
Wikipedia and news articles, and fine-tune only its top layers on a body of specialized 
text (such as medical research papers) to create a specialist model capable of 
generating more insightful text about a given subject.  

2.16 Large language models and the scaling hypothesis 

In 2019, a segment of the frontier AI research community began to see language 
models as a potential path to creating far more general and powerful reasoning 
machines.  

Their hypothesis relied on two assumptions:  

1. By training language models to become progressively better at autocomplete, 
they could eventually build systems with a robust understanding of the world, 
which these models could then use to solve a wide range of problems, and 
potentially, all human-solvable problems. 

2. The only thing required to increase the capability of language models to the 
extent described above is scaling. By dramatically increasing the parameter 
count of their language models, and training these models on massive datasets, 
using vastly greater quantities of computing power, they could push language 
model capabilities to achieve ever greater levels of intelligence even in the 
absence of any further breakthroughs.  

Assumption 2 above has since become known as the scaling hypothesis. The scaling 
hypothesis remained a fringe perspective within the AI community until mid-2020, 
when OpenAI, a frontier AI lab, placed an unprecedented bet on AI scaling by training 
GPT-3: a language model that contained 175 billion parameters, trained on 500GB of 
text data pulled from all over the internet, using an estimated compute budget of $5M. 
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Thanks to its scale, GPT-3 appears to have developed precisely the capabilities hoped 
for by the then-fringe community of AI “scaling maximalists”: without any additional 
training or fine-tuning, GPT-3 could perform tasks as varied as translation, coding, and 
basic web design, and could write short essays that were indistinguishably humanlike.  

2.17 Why language is special 

The most important data type for advanced AI today is text. This is because language 
is a human abstraction that eases generalizability: it is designed to generalize, and to 
support the consideration of new problems and situations. In addition, large volumes 
of text data all over the internet are readily available for use in machine learning, and 
encode a large fraction of human knowledge.  

The current dependence of advanced AI on text data should not lead us to discount 
the possibility of other types of advanced AI arising (for example, AI systems that can 
explore the world and learn primarily from their interactions, rather than from text). 
However, it is very likely that text will continue to serve as a key pillar of advanced AI, 
and it is therefore important to dedicate special attention to language models.  

2.18 How text datasets are created  

The enormous text datasets used to train modern language models are sourced from 
internet scrapes, book corpuses, news articles, indexes, and content sites (such as 
YouTube, Reddit, etc).  

Large scrapes of the internet are performed by a few major initiatives, as either part of 
search engine indexing or internet snapshot creation. There is a tremendous amount of 
engineering required to address the scalability, performance, and reliability 
requirements associated with these scrapes. Consequently, only a few players (Google, 
Microsoft, Common Crawl, etc) have the capacity to perform scrapes on massive 
scales. Many companies, such as data aggregators, media, or AI application 
developers, perform smaller-scale web scrapes, and there is a much lower barrier to 
entry for these more modest projects. Smaller scrapes of particular sites that have 
desirable data are often carried to augment the data used for training these more 
specialized models. For example, a company developing an AI-powered medical 
diagnostic chatbot might use small-scale scrapes of medical literature to fine-tune its 
chatbot models.  
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Notable data sources for scraping projects include:  

• Common Crawl: A publicly available collection of web crawl data that contains 
petabytes of data from billions of web pages. Common Crawl has been updated 
every month since 2008, and provides an open and accessible corpus for 
anyone who wants to analyze and research the web. This is the most important 
publicly available source of text data. It resides on Amazon S3, a common data 
storage solution offered by Amazon Web Services (AWS), as part of the AWS 
Open Data Sponsorships program. 

• Reddit, Wikipedia, patents, ArXiv (an online collection of academic papers, 
mostly from science and mathematics), Gutenberg (from Project Gutenberg, a 
volunteer-led effort to collect open-source books), BooksCorpus (books scraped 
from Smashwords, a platform for self-publishing ebooks), Github (the world’s 
biggest code repository), and Youtube Transcripts.  

These “raw” sources are then compiled into datasets that are used for training. The 
processing involves data cleansing, deduplication, filtering, and formatting (also known 
as data curation). Data cleansing involves removing html tags, ads, junk text, and other 
unwanted formatting from the raw source data. 
 
Deduplication is the process of removing duplicate or redundant records from a 
dataset. This is a critical piece of the pipeline, because models learn less by being fed 
the same data repeatedly. As a result, feeding a model data it has already seen costs 
compute without yielding the same performance returns. In the limit, feeding the same 
data back to a model too often can lead to overfitting – a phenomenon whereby a 
model memorizes text, learning to reproduce specific examples from the training data, 
without being able to apply what it has learned to new examples that it has not seen 
before. Deduplication is technically challenging, and is often performed in many 
stages, such as deduplication based upon URL matching, text exact match, text fuzzy 
match, and content similarity. 
 
Filtering removes low quality, undesired languages, and excludes certain content. 
Filtering is what ultimately controls what the model sees, and is often done with 
machine learning classifiers (simpler models designed to assign an input to any one of 
a set of predefined categories) that judge the quality of a document on a variety of 
axes, such as coherence, adult content, violence, etc. Filtration is also a “dark art”: it is 
commonly understood at a high level, yet the specific models and techniques that 
support successful large-scale filtration projects are esoteric. 
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Data curation is the standardization of often highly heterogeneous formats into a 
consumable homogenous format. It involves data integration techniques to combine 
data from multiple sources into a unified form or schema. Often, this stage requires 
that error and anomaly detection techniques be applied to deal with noise, outliers, 
missing values, or inconsistencies. Data curation can also involve data annotation 
techniques to add labels or metadata to data to make it more informative or useful for 
the language modeling task.  

Overall, these data processing steps are only partially public, highly variable, and 
comprise much of the exclusive knowhow needed for successful dataset creation. 
However, despite the challenges associated with creating high-quality datasets, it is 
worth noting that many such datasets are already public (OpenWebText, C4, The Pile, 
etc).  

A partial list of important datasets includes:  

• WebText: a custom dataset created by OpenAI that contains text data from 
various websites that are popular on Reddit. WebText is filtered to remove low-
quality or offensive content and provides a high-quality corpus for natural 
language generation. 

• C4: a dataset of about 750 GB of clean English text extracted from Common 
Crawl, and released by Google. 

• The Pile: a dataset that contains 825 GB of text from 22 smaller, high-quality 
datasets combined together. It includes data from various sources, such as 
books, Wikipedia, GitHub, PubMed, arXiv, StackExchange, etc. One section is 
from Common Crawl. The Pile was developed and released by EleutherAI. 

• The BigScience Roots Corpus: a dataset of about 1.8 TB of text from various 
domains such as biomedical literature, patents, news, and web text, released by 
Big Science. 

The last step of the data pipeline is data consumption: This is the stage where the data 
is fed into the language model for training or evaluation. Data consumption can involve 
data loading techniques to load the data into memory for fast access. Data 
consumption can also involve data batching techniques to group the data into batches 
for parallel processing. This is a fairly standard process for which there are many 
existing solutions for language models.  
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2.19 Scaling laws and emergence 

Crucially, GPT-3 came on the back of a groundbreaking research project also led by 
OpenAI, which investigated whether language models could be made to improve 
consistently and predictably simply through scale alone.  

The results of their investigation were striking: they found that by increasing the 
parameter count, compute budget, and dataset size used to train their language 
models in certain optimal ratios, they were able to achieve reliable performance 
improvements. The plots below demonstrate their key result: a series of so-called AI 
scaling curves, which show how the number of errors that language models make when 
performing an autocomplete task (the test loss on the y-axis) decrease as those 
models’s parameter compute budgets (left), dataset sizes (center) and parameter 
counts (right) were increased. 

   

Source: J. Kaplan et al., “Scaling laws for neural language models,” arXiv [cs.LG], 2020. 

It is important to note that these scaling curves allowed OpenAI to anticipate how 
GPT-3 would perform at text autocomplete before it was trained. However, they did not 
allow OpenAI to anticipate what other capabilities GPT-3 might display. How good 
does a language model have to be at text autocomplete before it can translate 
languages, or write usable code? OpenAI’s scaling research offered no answer. All it 
offered was a recipe that could convert dollars (in the form of data and compute) into 
intelligence (in the form of autocomplete performance). How precisely that intelligence 
would map onto capabilities was — and remains — anyone’s guess.  

Thus, each experiment in further scaling AI models leaves us with a more powerful 
system, whose precise abilities are destined to come as a surprise even to its 
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developers. The phenomenon by which AI scaling leads to greater intelligence, but 
unexpected and unpredictable new capabilities is known as emergence.  

Emergence is a critical property to consider from an AI counterproliferation standpoint. 
It means that even an AI lab that builds a new, superscaled AI model cannot know what 
their model will be capable of once trained.  

But even once the model is trained, no method exists for determining the complete 
range of capabilities that the model possesses. New GPT-3 capabilities were being 
discovered for months after its initial release to the public in the form of a paid service, 
for example — many of which could be put to malicious use. AI companies and labs 
that release their models in any form — whether as paid services or as free-to-access, 
open-source models — do not, and cannot know the full range of their capabilities.  

The idea that raw scale would lead to reliable performance improvements in language 
models which, as GPT-3 showed, could already perform economically valuable tasks, 
led to a scaling race across the AI industry. Frontier AI labs such as OpenAI, Google’s 
DeepMind, Google itself, Microsoft, and many other players rushed to build large 
language models (LLMs)  with ever-increasing compute and data budgets. The once-
fringe idea of AI scaling had become a fairly mainstream view almost overnight.  

As the AI scaling race accelerated, the AI community’s understanding of AI scaling laws 
was refined and improved. In 2022, DeepMind showed that the scaling recipe used by 
OpenAI to train GPT-3 relied on a model that was too large for its training dataset size 
and compute budget. Whereas OpenAI had trained GPT-3 with 1.7 tokens of text per 
parameter, DeepMind’s new scaling laws showed that, in reality, a ratio of 20 tokens 
per parameter would have made better use of the compute resources invested in 
training the model.  

The core findings of scaling research have been that model performance on text 
autocomplete scales as a power-law with model size, dataset size, and amount of 
compute used for training, with some trends spanning more than seven orders of 
magnitude. Other architectural details, such as network width or depth, have minimal 
effects within a wide range.  

In cases where a fixed compute budget is contemplated (“compute-optimal training”), 
the model size and the number of training tokens should be scaled equally: for every 
doubling of model size the number of training tokens should also be doubled. Too 
much data and the models can’t fully utilize it. Too large of a model, and overfitting 
phenomena start to appear. 
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Large models require more resources when deployed and used post-training (at 
inference time) compared to smaller models. Smaller models trained on more data may 
require more time to train due to the need to process the additional data.  

However, these scaling laws are not universal or absolute. They are based on empirical 
observations and may not hold for different tasks, domains, or metrics. The specifics 
may also change over time as new methods or technologies emerge, but the compute-
optimal tradeoff between abstraction (from large models) and processing more data 
will almost certainly persist. Although scaling strategies have evolved as the AI 
community has discovered better ways to balance increases in parameter count, 
compute budget, and dataset size, the fact of scaling has remained the constant 
backdrop of AI progress in the last three years. The specifics may change over time as 
new methods or technologies emerge, but the compute-optimal tradeoff between 
abstraction (from large models) and processing more data will persist.  

Bottlenecks to further scaling are likely to change, however. For example, dominant 
constraints may shift back and forth from compute to data. Currently, cutting-edge 
LLMs are estimated to have compute budgets on the order of several hundred million 
dollars, making further scaling of compute possible, but burdensome for reasonably 
large companies, and still readily accessible for tech giants such as Microsoft and 
Google. Forecasts indicate that the availability of language data to model developers 
may become a bottleneck to further scaling by 2030, despite an exponential, 50% year-
over-year increase in available language data in recent years. As a result, industry is 
likely to shift its attention temporarily to increasing data efficiency in model design, 
though this will be a transitory phenomenon. In the long term, as language datasets 
continue to grow exponentially, and compute costs continue to drop exponentially 
thanks to Moore’s Law and related hardware improvements, it will continue to be 
possible to turn ever greater investments in compute and data into AI capability and 
intelligence.  

2.20 The modern training process 

GPT-3 was in effect a superscaled text autocomplete AI: it was a model trained to take 
in a prompt as an input, and to generate a next-token prediction as an output.  

This training process allowed GPT-3 to learn a remarkable amount about the world, and 
to develop a wide range of impressive capabilities. And yet, despite these raw 
capabilities, GPT-3 remained awkward to use. 
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Rather than a prompt like  

Write an essay about Charles Dickens. 

which it might complete by generating further instructions, prompts such as  

The following is an essay about Charles Dickens: 

yielded better results.  

Because GPT-3 was fundamentally an autocomplete model, it would aim to produce 
text it considered to be the most likely to follow its prompt, rather than text that 
corresponded to what the prompt was asking for. The difficulty of designing effective 
prompts for GPT-3 made it difficult to assess the full range of GPT-3’s capabilities. If 
GPT-3 failed to perform a task requested in a prompt, it was impossible to know with 
confidence whether this was because the model lacked the raw intelligence and 
capability required to carry out the task, or because the prompt was poorly designed.  

Our ability to extract value from an AI model is therefore limited not only by the 
model’s capabilities, but also by the extent to which its training is aligned with our 
needs. GPT-3 was a highly capable, but poorly aligned model.  

More recently, AI labs have experimented with adding new training steps to better 
align the behavior of LLMs.  

They typically begin by training the LLM to perform an autocomplete task on a massive 
amount of data, using vast quantities of compute, in a process known as pre-training. 
During pre-training, the LLM develops most of its raw capability, and learns to create 
useful and informative internal representations of its inputs.  

Following this step, an LLM might be fine-tuned on a carefully curated task-specific text 
dataset. For example, GPT-3, once pre-trained, could be fine-tuned on a dataset 
consisting of human-to-human dialogue transcripts in order to encourage it to generate 
text in a more conversational style. This would be particularly useful if it were being 
prepared for use as a chatbot. During fine-tuning, the model is typically still being 
trained for next-token prediction, but on text that has characteristics that more closely 
reflect the model’s desired style or behavior.  

After fine-tuning, an LLM’s performance might be further honed through a technique 
known as reinforcement learning from human feedback (RLHF). In RLHF, the objective 
function used to train the model is changed: rather than trying to autocomplete a 
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sequence of text, the model aims to produce outputs that will be rated highly by 
human evaluators. (In practice, the objective function is not supplied by human-
generated ratings, but rather by a separate model that was itself trained to predict the 
rating that human evaluators would assign to a particular model output.) 

Together, pre-training, fine-tuning, and RLHF now represent a de facto standard 
method for developing polished, market-ready AI chatbots at the frontier of AI 
capabilities. It was thanks to these techniques that OpenAI developed ChatGPT, and 
OpenAI has based subsequent generations of its LLM products, including GPT-4, on 
them as well.  

2.21 In-context learning 

After a model is trained, its parameter values are generally fixed (in other words, the 
weighting factors that the model learned during training are frozen). The model can 
then be put to use to generate outputs. As we’ve seen, this process is known as 
inference. 

Since the model’s weights are frozen during inference, we might expect that models 
are unable to learn or adapt to new information at this stage. Remarkably, however, this 
is not the case.  

As an example, consider a LLM prompted to perform a task that did not appear 
anywhere in its training dataset, such as unscrambling the letters of a jumbled word. 
Given an appropriate prompt describing the task to be performed, and optionally but 
not necessarily some examples of the task to be performed, a sufficiently scaled LLM 
will be able to carry it out successfully.   

This capability is known as in-context learning. In-context learning means that we can 
no longer think of model capabilities as static after the training process is complete: 
models can learn from and leverage new information at inference time, potentially 
leading to new capabilities. If you prompt a LLM to perform a complex task that it has 
never seen before, it will likely fail. But add a few examples of that task to your prompt, 
and the very same model will often learn from your prompt to perform it – all without 
having updated any of its weights.  

2.22 The AI scaling race 

Following the release of GPT-3 in mid-2020, the AI industry rapidly took onboard the 
idea that AI scaling would be required in order to push the frontier of AI capabilities. 

 of 118 128



However, given the massive computational requirements of superscale AI 
development, very few AI labs were in a position to enter the scaling race until 2021. 
By that time, OpenAI had compounded its first-mover advantage, using its scaled 
training infrastructure to build the first generation of text-to-image models (the DALL-E 
series), demonstrating that the scaling strategy was effective for applications beyond 
text-to-text language modeling. 

Notably, the first AI lab publicly known to have trained an AI model at a scale 
comparable to GPT-3 was Chinese telecoms company Huawei. They developed PanGu 
Alpha, which slightly exceeded GPT-3’s parameter count, clocking in at 207 billion 
parameters. PanGu Alpha was trained on a larger dataset than GPT-3, but used an 
unknown quantity of compute. Although its performance lagged somewhat behind 
GPT-3’s, it demonstrated China’s domestic AI scaling capability, and served as further 
evidence for the power of scaled training.  

Another trend that emerged in 2021 was the development of multimodal AI. An AI 
model is considered multi-modal if its inputs or outputs can include multiple data 
types. For example, in mid-2021, the Beijing Academy of AI (BAAI) announced Wudao 
2.0, a model that could take a text input, and generate either text or image outputs. 
But multimodality would soon go well beyond combined text/image capabilities. By 
2022, DeepMind had built Gato: an AI with the capability to control robotic 
components, analyze images, and generate text. Its multi-modality also came with an 
ability to generalize effectively: the model was tested on 600 tasks, and performed 450 
of them half as well (or better) than a human expert. 

The years since 2020 have seen an industry-wide race to scale up AI systems. That race 
has featured AI labs from all over the world, with groups based in the United States, 
the United Kingdom, and China clearly leading the way.  

2.23 GPT-4 

In March 2023, OpenAI released GPT-4, a more scaled, hotly anticipated successor to 
GPT-3. GPT-4 came in two different versions: 

• One was a text-in, text-out model – essentially, a more scaled version of GPT-3. 
This version was also trained using the standard pretraining/fine-tuning/RLHF 
pipeline discussed earlier. 
  

• The second was a model that could take text and images as inputs, and 
generate text outputs. For example, you could feed it a blueprint of a rocketship 
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and a prompt like  
 
This is a blueprint of my new reusable rocket. Do you think 
this design is likely to work? 
 
and depending on the level of complexity of the task, it could respond with a 
remarkable degree of insight and depth.  

GPT-4 was a remarkable capability leap beyond GPT-3. It scores in the 90th percentile 
on the Uniform Bar Exam, and on tests as varied as AP History and the math SATs. It 
can provide detailed and accurate instructions for cleaning a piranha’s fish tank, or 
extracting a strawberry’s DNA. It can build entire websites from a hand-drawn sketch, 
and create simple video games within minutes. 

OpenAI launched GPT-4 as a paid service, just as they had with GPT-3. Within weeks, 
open-source developers learned that they could give it a complex task like  

Find a pair of sneakers for me. I play soccer once a week and 
love to walk, but never in the rain. 

and get it to break that task down into a list of workable steps. They then developed a 
framework that would farm out those steps to other instances of GPT-4, or to instances 
of other models. Because this configuration has GPT-4 running autonomously in pursuit 
of a user-specified goal, it was named Auto-GPT. Auto-GPT and related projects such 
as BabyAGI have shown that properly configured GPT-4 instances can exhibit long-
term planning capabilities, and execute against these plans effectively to solve fairly 
complex problems.  

2.24 Potential limits to scaling transformers as a means of pursuing 
advanced AI 

Given their preeminent role in the current advanced AI landscape, it is important to 
understand why transformers have worked so well compared to other AI models – 
including other neural networks. Understanding transformers is also valuable because it 
allows us to make educated guesses about the likelihood that the transformer will 
remain the gold standard model architecture for advanced AI, and to better 
understand the limitations of current AI models.  

The effectiveness of transformers stems from three key factors:  
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1. Parallelization & efficiency: Parallelization in the transformer’s attention 
mechanism (and specifically, a variant known as the self-attention mechanism) 
allows entire prompts and batches of prompts to be processed in tandem. This 
makes the transformer architecture even better suited to parallel processing in 
GPUs and TPUs than standard deep neural networks.  

2. Long Range Interactions: It is often necessary for models to capture 
interactions between early parts of a sequence and much later parts. For 
instance, in the sentence: “Artificial Intelligence is a transformative technology 
pioneered in the mid 20th century, but not realized in general form until the 
early 21st century, that has the potential for great good and great harm,” it is 
necessary to associate “Artificial Intelligence” with “great good and great 
harm”. This requires a long-range interaction, as there are many words in 
between. Pre-transformer models often had inductive biases — a set of 
assumptions used to map inputs to outputs — favoring recency. 

3. Dynamic Adaptation: It is often the case that certain parts of a sentence or 
input contain more information than others. A model that can dedicate more 
computational resources to process components of an input that it assesses are 
more informative is known as dynamic adaptation. The transformer attention 
mechanism provides this capability.  

Despite these favorable characteristics, transformers do have important limitations. 
And given that transformers are the current model of choice for advanced AI 
development, their limitations are, in a sense, limitations on the current advanced AI 
paradigm, more broadly.  

Some of these limitations are inherent to the problem of intelligence and others 
idiosyncratic to transformers. They can roughly be broken down into the following 
categories: capacity, veracity, reliability, and latency. 

• Capacity is a broad term that refers to the amount of information that a model 
can process at a time. It captures things like memory requirements and 
maximum sequence length. Due to their attention mechanism, transformers 
require a large amount of memory and computational resources to store and 
update their parameters, especially for large-scale models with billions or 
trillions of parameters. To some degree, this requirement is specific to 
transformers (especially the transient memory required for attention). Advanced 
AI will almost certainly continue to require significant memory in order to store 
the embeddings (or more generally, the abstractions) that it is likely to rely on to 
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process its data and generate outputs. The maximum sequence length limits the 
maximum length of text that can be consumed at once. Increasing it makes the 
model more powerful, at the cost of increasing latency and memory 
requirements quadratically.  

• Veracity is a measure of truthfulness in AI systems. Generative Transformer 
models are known to “hallucinate”. Hallucination occurs when a model’s 
responses are not justified by the training data or any proximal data. 
Hallucinations may take the form of unfactual or logically incoherent text outputs 
generated by an LLM, for example. 
 
Veracity is difficult to properly measure given a lack of clear boundaries on 
hallucinatory behavior. Often, the hallucinations are very plausible in strong 
models (similar to how humans often unintentionally confabulate by generating 
likely scenarios based on what they know). This is a feature intrinsic to current 
LLMs, because they are trained to perform an autocomplete task, which 
incentivizes them to produce sequences of text that are very likely to occur, as 
opposed to sequences of text that are accurate or truthful (a problem known as 
contextual grounding).  
 
The line between valid inference and hallucination can be blurry. LLMs generate 
text based on probabilities derived from their training data (next-word 
probabilities when trained to perform autocomplete tasks, and the probability of 
receiving high ratings from humans when trained via RLHF). When generating 
text, LLMs use their internal knowledge to make inferences about what is likely 
to be true given the context. However, sometimes the model’s internal 
knowledge may be incomplete or inaccurate, leading it to generate text that is 
not grounded in reality or factual information or deciding incorrectly that it 
doesn’t need to ground this information. This can lead to coherent, but 
inconsistent outputs.  

• Reliability can be broken into two classes: calibration and brittleness.  
 
A “poorly calibrated” model is one that is over- or under-confident about its 
predictions. Calibration addresses the question: when a LLM predicts that there 
is a 40% probability that the next word in a sequence will be “cat”, what fraction 
of the time is the next word actually “cat”? If the model is well-calibrated, then 
the word “cat” should follow 40% of the time. In the case of poor calibration, we 
might find that when a model predicts a very high (e.g. 90%) probability that the 
next word in a sequence is “cat”, the next word actually ends up being “cat” 
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only 10% of the time. 
 
Brittleness deals with the robustness of the representations the model has. We 
don’t expect the predictions to be dramatically different for 
 
The cat sat on a 
 
versus  
 
The cat sat on the 
 
but for a brittle model, these may be vastly different. Models should be robust 
to trivial perturbations in the input.  

   
• Latency refers to the time required for a model to generate its output. 

Significant latency is introduced in these models from the attention mechanism, 
which is of quadratic time complexity with respect to the sequence length. This 
means that if the sequence length doubles, the time taken for the attention 
operation would quadruple. There have been some efforts to mitigate this at 
either algorithmic or implementation (software and hardware) levels with relative 
success. The most important of these advances is FlashAttention, which 
optimizes the attention implementation by maximizing computation on fast-
processing memory. This has led to up to 3x improvements in training times. 

2.25 Model release 

AI labs often choose to provide the public access to their models in various forms. 
There are many reasons why an AI lab may choose to do this, but an important one is 
the positive press and goodwill that it can generate.  

The AI community has a strong open-source ethos, and many developers view the 
open sharing of fully trained models as being necessary to democratize access to 
increasingly powerful AIs, which they worry would otherwise be exclusively available to 
big technology companies. By open-sourcing certain models, AI labs can raise their 
profile, and draw goodwill from certain quarters of the AI community. In addition, many 
researchers prefer to work at labs that regularly produce open-source outputs, since 
this can raise the profile of their work. 

There are currently four means by which AI models are made accessible to the public: 
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1. Open-access: An AI lab may choose to make their model’s parameters freely 
available for download to any member of the public. Labs may do this for 
several reasons. First, publishing a model makes it possible for developers in the 
open-source community to augment and improve the model in various ways, 
effectively supplementing the original developer’s internal technical teams. 
Second, open-source developers can develop a nuanced understanding of the 
lab’s software stack, which increases the lab’s pool of potential recruits. Finally, 
the AI community has a strong open-source culture, and companies that 
regularly release powerful AI models can benefit from positive press. 

2. Piracy: A model initially released only to a small group of users (for example, 
academic researchers) may be leaked via torrenting websites or other means to 
the general public. This famously occurred with Meta’s LLaMA model, a 
powerful LLM that Meta initially released only to a select group of researchers, 
but which has since leaked and is now in widespread use. Notably, at the time it 
was leaked, LLaMA represented a meaningful capability advance relative to 
other open-source LLMs. Leaks have therefore already shaped the frontier of 
open-source AI capabilities.  

3. API access: An AI lab may choose to monetize a proprietary model by offering 
paid access to the general public. This access is generally granted on a pay-by-
the-token basis for LLMs, or on a pay-by-the-input or pay-by-the-output basis for 
other model types. OpenAI’s GPT-3, GPT-4, and ChatGPT models are all 
available via paid API, as are LLMs offered by rival companies, including 
AI21Labs, Cohere, Anthropic, Google, and Amazon. 

4. API access to embeddings: As we saw earlier, feeding different inputs to a 
neural network leads its neurons to fire in different ways (in other words, to have 
different activations). Recall that the set of all activations in one layer of the 
network is known as an embedding, and is one way to represent the input data. 
Embeddings themselves can be useful inputs for downstream processing, and 
can offer insights into the input data associated with them. For that reason, AI 
companies sometimes offer paid access not only to their model’s outputs, but 
also to their embeddings – the intermediate representations the models form of 
their inputs. 

Finally, we note that as discussed earlier, labs may choose to release important assets 
associated with their models, with or without releasing the models themselves. For 
example, a lab might release the code or the dataset used to train the model instead 
of or along with the model proper.  
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2.26 Interpretability 

As we have seen, deep neural networks are giant “number mixing” systems. At each 
stage of the mixing process that they run (at each layer of the network), they construct 
embeddings: highly abstract, intermediate representations of their inputs – 
representations that are not human-interpretable. 

As LLMs have entered widespread use in increasingly high-stakes scenarios, our 
inability to explain and interpret their reasoning has become a source of significant 
risk.  

Interpretability refers to the ability of an LLM to reveal its internal workings and logic, 
such as its weights or activations to be eventually understood by a human. Questions 
such as “what exactly is the significance of this neuron in my network?” and “can I 
determine what plans my network is developing based on looking at the activations of 
its neurons?” are questions about interpretability. 

Explainability refers to the ability of an LLM to provide natural language explanations 
or justifications for its outputs and decisions. Questions such as “why did my neural 
network predict that this individual would fail to repay their loan?” are questions about 
explainability. 

Despite the intrinsically non-interpretable way in which neural networks process inputs 
and generate outputs, techniques do exist that allow researchers to gain a partial 
understanding of their inner workings.  

Probing is an interpretability method that aims to reveal what linguistic information is 
encoded in the neural network’s embeddings. Remember that an embedding is a set 
of numbers – the activations of the neurons at one particular layer of the network. 
Ideally, those numbers will encode useful information about the input they’re 
associated with. If that’s the case, then there’s no reason we can’t treat them as the 
inputs to a new model, which we would train based on these activations to predict 
some linguistic property of interest, such as part-of-speech tags, syntactic 
dependencies, or semantic roles. The performance of this second model indicates how 
well the neural network represents that property in the layer being probed. Probing can 
help to understand what neural networks learn from natural language data, how they 
encode different levels of linguistic structure, and how they generalize across 
languages and domains.  
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Watchdog models aim to detect and correct errors or biases in neural networks. 
Watchdog models are trained to monitor the inputs and outputs of a neural network 
and flag any instances that violate some predefined criteria or expectations. For 
example, a watchdog model can check if a neural network produces coherent and 
consistent text summaries, if it preserves factual information from the source text, or if 
it avoids generating offensive or harmful language. Watchdog models can help to 
improve the quality and safety of language models, as well as to identify their 
limitations and weaknesses.  

Mechanistic interpretability techniques are focused on explicitly understanding the 
neural circuitry within deep learning models, and associating individual neurons or 
groups of neurons with specific, human-understandable concepts. The hope is that 
mechanistic interpretability techniques will allow researchers to detect when advanced 
AI models are developing undesirable or dangerous plans and strategies before they 
can be executed.  

2.27 Evaluating and benchmarking machine learning models 

AI model evaluation typically relies on reserving a dataset of test tasks that were not 
present in the model’s training dataset. This held-out dataset is known as a validation 
set, and great care must be taken to ensure that validation data are kept separate from 
training data, so as to produce reliable evaluations. This is easier said than done, 
however: as LLMs in particular are trained on enormous datasets consisting of vast 
internet scrapes, it becomes more difficult to guarantee that a particular validation task 
was not included in the training dataset. 

Evaluating and benchmarking ML models is not a trivial task. It requires a large amount 
of data, computational resources, and time. Evaluation and benchmarking can offer 
critical insight into the capabilities and limitations of models, allow different models 
and methods to be compared, and guide future research and development. However, 
whereas AI models used to be capable of performing only specific, narrow tasks and 
therefore could be completely evaluated on the basis of their performance at that task, 
modern LLMs can perform a wide and unpredictable range of tasks. For example, it is 
typical to learn only months after the public release of an LLM that the model had 
important capabilities that had neither been anticipated nor detected beforehand. The 
general and uncertain extent of LLM capabilities makes it much more difficult to 
evaluate and quantify their performance. 
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Evaluating LLMs involves measuring how well they perform on specific tasks or 
domains using various metrics and criteria. Care has to be taken to ensure that the 
tasks have good coverage of desired abilities.  

LLMs can be evaluated on the basis of their capacity to perform tasks without being 
shown specific examples of those tasks being completed (“zero-shot evaluation”), or 
with the benefit of having been provided a few such examples in a prompt (“few-shot 
evaluation”). Alternatively, LLMs can be subjected to fine-tuned evaluation, in which 
they are further trained on task-specific data. For example, a LLM initially trained on 
general text from all over the internet might be fine-tuned on medical literature and 
tested for its ability to diagnose diseases based on patient symptoms.  

A benchmark is a common reference task against which the performance of certain 
types of models is conventionally measured. By comparing the performance of models 
on benchmark tasks, it is possible to better understand their relative performances, 
establish baselines and best practices for the field, and identify gaps and challenges for 
future research. For general language understanding tasks, such as reading 
comprehension or commonsense reasoning, common benchmarks are GLUE, 
SuperGLUE, SQuAD, or RACE, which consist of multiple subtasks that cover various 
aspects of natural language understanding. For domain-specific language 
understanding tasks, such as biomedical question answering or legal document 
analysis, common benchmarks are BioASQ, CORD-19 QA Challenge, Legal-BERT, or 
FinBERT, which consist of single or multiple subtasks that focus on a particular domain 
or application.  

Some of the challenges associated with evaluation and benchmarking include: 

• Data quality and quantity: Evaluating and benchmarking LLMs requires large 
quantities of high-quality data that are representative and diverse enough to 
capture the complexity and variability of natural language. Existing data may 
have issues such as noise, bias, inconsistency, or leakage into training data, 
which can affect the validity and reliability of the evaluation results. 
 

• Metric validity and reliability: Evaluating and benchmarking LLMs requires 
appropriate metrics that can measure how well they perform on specific tasks. 
However, existing metrics may have issues such as low correlation with human 
judgments, high variance or sensitivity, or lack of interpretability or explainability, 
which can affect the accuracy and robustness of the evaluation results. 
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• Model complexity and diversity: Evaluating and benchmarking LLMs require 
efficient and scalable methods that can handle the increasing size and diversity 
of the models. This requires a continually adapting set of standardized 
benchmarks which perhaps portends governmental aid. 
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