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An Introduction to Viral 
Vector Manufacturing

Viral vector manufacturing is a crucial step in  
developing gene therapies, as it involves producing 
a large number of viral particles that will be used to 
deliver a therapeutic gene to a patient. However, this 
process has its challenges.  Failures in gene therapy 
manufacturing can occur for various reasons,  
including incomplete transgene replication and 
packaging into the viral shell, colloquially referred to 
as ‘truncations.’  Here, the viral genome packaged into 
the AAV capsid is a truncated form of the intended 
complete genome. 

Analysis of these truncated viral genomes reveal 
key sequence locations where replication fails. DNA 
inverted repeats, or hairpins, are a specific secondary 
structure related to these manufacturing failures as 
shown in Xie at al.1 This research indicated that replica-
tion failures leading to truncation can occur at the site 
of the secondary structure.  Current theoretical models 
suggest that a strand or template switching phenome-
na is driving these failures. 

Despite the documented impact of hairpins on viral 
vector production, their effect on manufacturing 
success can vary greatly across transgene designs. In 
some cases, hairpins may be present but not lead to 
any replication failures, while in other contexts, they 

MODEL INTERPRETABILITY METHODS provide an understanding of complex model decisions and verify 
that a meaningful difference in the data has been identified. We have applied model interpretability meth-
ods to our predictive model of genome truncation within adeno-associated virus (AAV) manufacturing and 
revealed that the model uses a set of DNA secondary structures predictive of truncation.  These secondary 
structures provide a simple mechanism for understanding AAV truncations and a strong basis for inde-
pendently validating our model’s predictions.  Moreover, these structures have been well studied and are 
shown to be related to DNA replication errors; however, only one of these structures (i.e., hairpins) has been 
previously implicated in AAV manufacturing failures. Future research will concentrate on additional contribu-
tors to our truncation model to gain a deeper understanding of AAV manufacturing failures more generally.
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can cause a significant number of truncations.  
Conversely, in the absence of hairpins, there can still be a 
high likelihood of viral genome truncation. Our data shows 
variation in truncation rates from 5 to 45% of samples 
exhibiting incomplete AAV genomes across transgene 
designs, yet all of these designs have hairpins present to 
some degree. This variability makes it difficult to pre-
dict which vectors will be successful and which will not, 
ultimately leading to delays in manufacturing and slower 
time-to-market for new therapies.

To address this problem, we’ve interrogated our convo-
lutional neural network designed for AAV truncation pre-
diction using popular model interpretability techniques for 
deep learning models.2 By understanding the model and 
what it has learned, we will be able to confidently apply 
our model more broadly and further the understanding of 
AAV manufacturing failures to drive better solutions. 

Data and Truncation Prediction 
Model Used

Our data is derived from long-read sequencing of viral 
products from a total of ten manufacturing runs spread 
over four unique AAV transgene designs. All sequences 
are self-complementary AAV-9 designs with reverse 
followed by forward strands as the intended order in the 
target genome.

Briefly, the version of our truncation prediction model 
used is a neural network composed of 2 convolutional 
layers (50 then 100 filters, respectively) followed by two 
linear layers (100 then 50 units, respectively), as shown 
in Figure 1A.  Each convolution layer is followed by ReLU 
activations, max-pooling operations, and a drop-out rate 
of 0.35.  Input features are 100 nucleotide long sequences 
of one-hot encoded DNA concatenated with a reverse/
forward-strand categorical variable of the same length. 
The corresponding output labels for each input are the 
log of the average truncation propensity for that 100 
nucleotide window. Truncation propensity is calculated for 
each nucleotide as the percentage of reads terminating at 
that nucleotide divided by the total number of untermina-
ted reads remaining. For a 100 nucleotide input window, 

truncation propensity is averaged over the middle 50 
nucleotides to provide a single learning target. 

Data were split in a 3 train to 1 test ratio, using a grouped 
and stratified method to ensure equal  
distribution between train and test sets. Grouping  
was across positional index within a given AAV transgene 
design. Stratification was over three quantiles of trun-
cation propensity – low, medium, and high – with each 
having an equal number of samples. Trained model per-
formance is shown in Figure 1B for a specific transgene 
design. Performance across all data was assessed using 
the Pearson correlation between the predicted and true 
log truncation propensity, with train data yielding 0.89 and 
test data yielding 0.86 r-values.

FIGURE 1. Our truncation prediction model A) Sketch of network architecture.  
B) Example model performance for a given transgene design. The log of trunca-
tion propensity is plotted as a function of the sequence index, with true truncation 
propensity shown with the red dashed line and trained model predictions for train 
and test data points shown in blue and orange dots, respectively. 
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FIGURE 2. Two example motifs are associated with increased truncation propensity. Motif importance scores are shown on top, 
and the normalized importance scaled by information content is shown above.  A) This motif shows a repeating pattern of ‘CCG’ 
within the center of the motif, most visible when scaled by the information content. B) This motif shows a repeating pattern of ‘AGC-
GA’ within the center of the motif, again most visible when scaled by the information content. 

Truncation Prediction Model 
Interpretation

One validated approach for interpreting convolution mod-
els of DNA sequences is to derive motifs, or representa-
tive sub-sequences, that co-occur with high or low output 
values.  Once identified, these motifs can be analyzed for 
unique properties within the problem domain. A good 
example of this is illustrated in BPNet, a transcription fac-
tor binding model that reveals motifs of binding locations, 
which can then be matched against known transcription 
factors for validation.3 Our intention was similar in that we 
sought to find motifs for subsequent analysis of second-
ary structures (or other features) that lead to truncation. 

The analysis path we used to achieve this is as follows: 
Derive importance scores as a contrast between the 
gradients of our input patterns and their corresponding 
null patterns using Integrated Gradients, and then extract 
and cluster sub-sequences that co-occur with high and 
low truncation propensity using TF-MoDisco.4,5 

The analysis to derive importance scores was done using 
Integrated Gradients as implemented in Captum.6  Here, 
each input pattern from our dataset was paired with a ‘null’ 
pattern derived from ten different dinucleotide shufflings 
of the given input pattern. The contrast of the gradients 
in each pair is averaged together to arrive at a single im-
portance value for each nucleotide in each input pattern. 
Positive values indicate that the nucleotide contributes to 

higher levels of truncation and negative values indicate 
that a nucleotide contributes to lower levels of truncation. 

Once importance scores were calculated, motifs were 
discovered through sophisticated filtering and cluster 
techniques within the TF-MoDisco methods. One some-
what subjective component in this process is providing 
hypothetical/counterfactual importance scores to con-
trast with the true importance scores. For our hypothetical 
inputs, we calculated importance scores for all permuta-
tions of each nucleotides in each input pattern in a similar 
manner above (i.e., each permutation compared with 10 
dinucleotide shufflings). Otherwise, default values were 
used throughout the motif discovery process.

Truncation Motifs Are Associated 
with the Formation of DNA Secondary 
Structures

Examples of two motifs related to increased truncations 
and their information content are shown in Figure 2. 
Information content was calculated as the KL-Divergence 
between the probability distribution for each nucleotide 
in the motif importance scores normalized within each 
nucleotide and the probability distribution of each nucleo-
tide normalized across all input patterns. 

Post-hoc inspection and literature review of the discov-
ered motifs revealed a class of DNA folding patterns, or 
secondary structures, that have been implicated in various
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studies of replication-related mutagenesis and human 
diseases.7,8 For example, the motif shown in Figure 2A 
illustrates a repeating pattern of ‘CCG,’ which can form 
a secondary structure involved in Huntington’s disease, 
myotonic dystrophy type 1, and Fragile XE syndrome.9 
Similarly, Figure 2B shows a motif with repeating ‘AGCGA’ 
patterns, which forms secondary structures linked to vari-
ous neurodevelopment and neurological disorders .10

This family of secondary structures, as illustrated in Figure 
3A, is generally referred to as non-B or non-canonical 
DNA (we will use these terms interchangeably through-
out this document). Non-B DNA can be considered any 
confirmation of DNA outside the standard Watson-Crick 
double helix pattern which often rely on nucleotide bind-
ings outside the canonical A-T and G-C pairings.  These 
anomalous structures are not new, and in fact have a long 
history in genomic research.  Recently, non-B DNA has 
been studied in the context of replication errors leading 
to increased mutation rates.7,8 As shown in Figure 3B, the 
proposed mechanism suggests that during DNA replica-
tion,  polymerase speed slows when it encounters these 
problematic folding patterns, leading to increased errors in 
the replication process.   

This mechanism provides a compelling basis for under-
standing why truncations occur in AAV manufacturing; 
however, no existing literature supports this connection. Is 
our model truly using these secondary structures to 
predict truncations? 

Truncation Propensity is Highest When 
Motifs and Non-Canonical Secondary 
Structures are Present

Based on the results from the motif analysis, we sought to 
validate the presence of the secondary structures impli-
cated by the discovered motifs. We intended to answer 
this key question: Are non-canonical secondary structures 
related to truncations? And if so, is the model solely using 
them to predict truncation propensity? 

To achieve this, we developed an analysis framework 
based on existing work to identify the set of secondary 
structures, independent of the motifs themselves, and 
indicate their presence within our dataset.12  Similarly, we 
marked input patterns that contain discovered motifs 
using existing methods from TF-MoDisco. Once input pat-
terns are categorized, we then quantified their relationship 
to truncation propensity, which can be seen in Figure 4.  
Here, input patterns fall into 1 of 4 categories: Inputs with 
motifs and secondary structures (motif hits: True, non-ca-
nonical: True), inputs with motifs and no secondary struc-
tures (motif hits: True, non-canonical: False), inputs with no 
motifs that do have secondary structures (motif hits: False, 
non-canonical: True), and finally inputs with no motifs and 
no secondary structures (motif hits: False, non-canonical: 
False). An example of a given input pattern with both a 
motif and secondary structure is shown in Figure 4C. 

Each input pattern has a corresponding truncation pro-
pensity, and the interaction plot in Figure 4A shows the 
average truncation propensity for the four categories with 
error bars showing 95% confidence intervals.  
This plot shows that the average truncation propensity is 
highest when both motifs and non-canonical secondary 
structures are present in the input. This shows that, the 
model is in fact using motifs to identify secondary struc-
tures that lead to truncations. 

FIGURE 3. Set of secondary structures A) Examples of non-B 
DNA secondary structures and their characteristic sequences11 
B) Proposed model for the relationship between non-B DNA and 
replication errors.  Image credit to Guiblet et al.8 The polymerase 
slows when it encounters non-canonical DNA folding during 
replication, leading to an increased error rate in the copied DNA.  
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This plot also shows that other features, beyond just sec-
ondary structure, are being used to predict truncations: 
Input patterns with a motif, but no secondary structure 
present, have a higher truncation propensity than input 
patterns with no motif present (compare left-most orange 
data point to left-most blue data point in Figure 4A). Al-
though these inputs show a reduced truncation propen-
sity compared to those with non-canonical secondary 
structure, they also account for a significant portion of the 
truncation variance. 

Conclusions

The implications of these findings are still being ex-
plored; however, a few summary points can be made 
from the results shown thus far.  

First, we find evidence from our motif analysis that our 
model identifies a set of repeating patterns (i.e., motifs) 
that are predictive of failure points (i.e., truncations) in 
AAV manufacturing (Figure 2). Previous publications 
have explored these patterns surrounding non-B, or 
non-canonical, DNA folding (Figure 3).  
Second, as shown in Figure 4, our secondary structure 

analysis revealed that these repeating patterns are relat-
ed to truncation propensity independent of the model’s 
learned representations. More specifically, the truncation 
propensity increases in the presence of non-canonical 
secondary structures. However, a significant proportion 
of predicted truncation propensity does not co-occur 
with the presence of non-canonical secondary struc-
tures, demonstrating that our current understanding of 
non-canonical secondary structure alone is insufficient 
for understanding AAV manufacturing failures.

In a subsequent white paper, we will explore this data fur-
ther to understand the relationship between truncations 
and non-canonical secondary structures more precisely.  
Specifically, how much of this variation in truncations can 
be attributed to hairpins vs other types of non-canonical 
structures?  Similarly, we want to understand how our co-
don optimization process (reported in a previous white 
paper) interacts with these secondary structures to 
achieve a lower predicted truncation propensity.2 Finally, 
we will distill our findings into new research directions 
that advance the efficiency of viral vector manufacturing.

Get Your Demo Today https://formbio.com/Interested in optimizing 
your gene therapy 
manufacturing process?

FIGURE 4. A) Average truncation propensity as an interaction between the presence of discovered motifs and non-canonical secondary structures. 
Error bars show 95% confidence intervals. B) Example input pattern showing the presence of a motif and a secondary structure. The top panel shows 
the one-hot encoded input pattern with motif match highlighted in black. The middle panel shows the presence and type of non-canonical secondary 
structure as a binary indicator. The bottom panel shows the matching motif scaled by its information content. 
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