Markforged Onyx ESD Supplemental Datasheet #### Overview Onyx ESD is an ESD-safe micro carbon fiber filled nylon composite base material with similar mechanical properties and surface finish to Markforged Onyx. It is static-dissipative and reinforceable with continuous fibers to achieve up to 10x strength compared to existing ESD-safe plastics. This datasheet covers surface resistance data and test methods. Please refer to the Markforged Composites Datasheet for more detailed mechanical data. #### **Specifications** | Material Property | Value | Test Standard | |---|---|-------------------| | Surface Resistance | 10 ⁵ - 10 ⁷ Ohms (optimal ESD-safe settings ¹)
10 ⁵ - 10 ⁹ Ohms (default Eiger settings) | ANSI/ESD STM11.11 | | Tensile Stress at Yield | 52 MPa | ASTM D638 | | Tensile Modulus | 4.2 GPa | ASTM D638 | | Available layer heights | 0.100mm
0.125mm | | | Available Continuous Fiber Reinforcements | Carbon Fiber, Kevlar, HSHT Fiberglass, Fiberglass | | | Compatible Printers | Markforged Industrial Series (X7, X5, X3) | | ### Surface Resistance Testing / Definitions We developed this material to be static-dissipative, as tested under ANSI/ESD STM11.11. This results in an ESD-safe rating under most other testing standards, including ASTM D257, MIL-STD-1686C, MIL-HDBK-263B. Samples were prepared using recommended settings to optimize for uniformity of surface resistance. Results may vary based on print settings, test environment, and geometry. ### Classification of Materials by Surface Resistance (Q) | Conductive <10 ⁴ ohms | Static Dissipative 10 ⁴ - 10 ¹¹ ohms | Insulative >10 ¹¹ ohms | |---|--|---| | Electrons flow easily across surface | Controlled flow of electrons across surface | Limits flow of electrons across surface | | Can allow static charge to pass through, potentially damaging sensitive electronics | Restricts or eliminates charge passthrough | Charge can persist for later discharge, potentially | | | Requires fine process control to achieve target range, | damaging sensitive electronics | | Achievable by a wide range of materials including metals, machinable polymers with conductive additives, and 3D printer filaments with conductive additives | most commonly found in large batch polymer production i.e. injection molding, extrusion, rolling | Includes most polymers and 3D-printer filaments | | | 10 ⁴ | 10 ¹¹ | | ◀ | Onyx ESD | | | | Ollyk 200 | | ¹ Print settings for sample preparation. Bolded settings denote differences between Eiger default and Optimal ESD settings. Layer Height (mm) - 0.100, **Use Supports - Yes, Supports Angle - 45, Raise Part - Yes, Use Brim - Yes,** Fill Pattern - Triangular Fill, Fill Density - 37%, Roof & Floor Layers - 4, Wall Layers - 2 #### **Test Description** Surface resistance testing of printed Onyx ESD platens (76mm x 127mm x 5mm) was performed according to ANSI/ESD STM11.11. Three distinct print orientations were tested, representing six distinct surface types commonly encountered in 3D printing. To ensure repeatable and statistically significant results, six samples for each orientation were tested internally and verified by a third party lab. The graph to the right plots the geometric mean and standard error of measured surface resistance values. Conditioning of specimens before measurement is necessary, where specimens must be placed in a conditioning chamber at 12% +/-3% RH and 23°C +/- 2°C ### Instrumentation required: - 1. Resistance meter - 2. 5lb concentric ring surface resistance probe - 3. Test plates Flat #### **Detailed Results** #### **Notes on Print Orientation** Below are visual representations of the different print orientations used to complete surface resistance testing. The Raised Part feature prints the part above a thin layer of supports. Turn on for the most consistent surface resistance. ### Upright Sidewall values were measured individually, and averaged for simplicity. ## Angled (45°) The unsupported side faces up, while the supported side faces down. ### **Optimal ESD Print Settings** Below are print settings that should be used to optimize surface resistance and result in every surface of your part meeting the narrowest range of 10⁵-10⁷ ohms. To learn more about specific testing conditions or to request test parts for internal testing, contact a Markforged representative. All customer parts should be tested in accordance to customer's specifications. This representative data were tested, measured, or calculated using standard methods and are subject to change without notice. Markforged makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement; and assumes no liability in connection with the use of this information. The data listed here should not be used to establish design, quality control, or specification limits, and are not intended to substitute for your own testing to determine suitability for your particular application. Nothing in this sheet is to be construed as a license to operate under or a recommendation to infringe upon any intellectual property right.