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Abstract 

 

 

This paper proposes an alternative specification for the second stage of the Case- 

Shiller repeat sales method.   This specification is based on serial correlation in the 

deviations from the mean one-period returns on the underlying individual assets, whereas 

the original Case-Shiller method assumes that the deviations from mean returns by the 

underlying individual assets are i.i.d.  The methodology proposed in this paper is easy to 

implement and provides more accurate estimates of the standard errors of returns under 

serial correlation.  The repeat sales methodology is generally used to construct an index 

of prices or returns for unique, infrequently traded assets such as houses, art, and musical 

instruments, which are likely to be prone to exhibit serial correlation in returns.  We 

demonstrate our methodology on a dataset of art prices and on a dataset of real estate 

prices from the city of Amsterdam. 
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1.  Introduction 

 The repeat sales methodology has become an important technique to determine 

price trends and returns for idiosyncratic assets, including real estate, art, and antique 

musical instruments.  The basic principle is to improve upon hedonic regression 

techniques by using pairs of observations on the same asset.  In effect, this is using fixed 

effects estimation with the usual advantage of controlling for unobserved characteristics 

of individual assets. 

 Bailey, Muth, and Nourse [1963] were the first to propose a methodology for 

repeat sales regressions, simply using ordinary least squares.  Case and Shiller [1987] 

improved on this with a three-stage generalized least squares (GLS) methodology.  Under 

the assumption that deviations from the mean single-period returns by the underlying 

assets are independently and identically distributed, the variance of returns grows linearly 

when single-period returns are aggregated over the holding period of an asset.  Thus, the 

errors in the repeat sales regression are heteroskedastic.  In order to correct for this 

heteroskedasticity, one proceeds by first estimating OLS regressions using dummy 

variables for time periods between sales (or -1 and +1 indicators for first and second sale 

dates if one is estimating index levels).  Then, the squared residuals are regressed against 

the length of the holding period.
1
   The estimates from the second stage regression are 

then used to form weights for the third-stage GLS regressions.  While both the OLS and 

GLS regressions provide unbiased estimates of the return coefficients for each period, the 

                                                 
1
 The second stage regressions also include a constant.  Since the repeat sales approach 

purges estimates of ―house-specific‖ errors, the constant represents the variance of a  

―transaction-specific random error‖ which is independent of the holding period.  With 

this explanation, the constant must be positive.   
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GLS regressions will be more efficient.
2
  Our goal in this paper is to study the 

implications of non-i.i.d. errors on the specification of the second-stage regression.  We 

show that, in many cases, the i.i.d. hypothesis on the individual asset returns is rejected 

and that efficiency can be easily improved by a more general specification of the second 

stage.   We demonstrate our method using two different datasets:  art sold in Amsterdam 

between 1780 and 2007, and real estate sold along the Herengracht canal in Amsterdam 

between 1630 and 1972.   

There has been considerable research since Case and Shiller on repeat sales 

techniques.  It is well-known that the standard specification of logarithmic returns  

produces estimates of the geometric mean of property returns.  The estimate of the 

arithmetic mean in a period depends on the geometric mean return and the cross-sectional 

variance of the per-period return of the individual assets. Thus, any biases in estimates of 

the variance affect point estimates of the arithmetic mean return.  Goetzmann [1992] 

proposed using the second stage of the Case-Shiller method to estimate the cross-

sectional variance.   We show that under any assumptions other than i.i.d.,  the 

Goetzmann correction provides a biased estimate of the variance in per-period returns, 

and thus a biased estimate of the per period arithmetic return.   

A major criticism of repeat sales indexes is that the items that are frequently 

traded are not a random sample of all goods. Hence, with repeat sales indexes, sample 

selection biases can be serious.  A further criticism of repeat sales indexes is that 

improvements to assets can result in an increase in value -- the item that sold is not 

                                                 
2
 It is well-known that the last few periods in the sample have only a small fraction of 

transactions spanning them.  The estimated returns in these last periods may have large 

standard errors, making the GLS efficiency improvements particularly critical. 
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identical to the item that is purchased.  The analysis is this paper does not address these 

two criticisms; repeat sales indices, despite these shortcomings, are widely used in 

practice.  Furthermore, our modifications of the estimation procedure can augment 

corrections for sample selection and assets that have changed in quality over time.   

In Section 2, we explore work that has used the Case-Shiller method and some of 

their findings.  In Section 3 we detail the Case-Shiller methodology and look at its effects 

on our two applications.    Section 4 explores different assumptions regarding the asset 

return errors.    Section 5 proposes a non-parametric alternative to the standard Case-

Shiller method.  In Section 6 we discuss further applications and extensions and in 

Section 7 we conclude our analysis. 

2.  The Importance of Repeat Sales Indexes and the Case-Shiller Method 

 In the current economic environment and the resulting subprime crisis, 

economists are paying very close attention to estimates of house price movements.  

Efficient and consistent estimates are important for gauging the state of the economy.   

Both the Office of Federal Housing Enterprise Oversight (OFHEO) and the S&P/ 

Case-Shiller home price indexes use a variation of the Case-Shiller method to calculate 

their indexes.   While the Case-Shiller method proposes using a linear specification for 

the second-stage regressions, regressing the squared errors from the first stage on the time 

between sales (which theoretically results from the i.i.d. assumption on the individual 

asset returns), the OFHEO approach (see Calhoun [1996] for details) fits a quadratic 

equation—regressing the squared error on time between sales and the square of time 

between sales.  Abraham and Schauman [1991] discussed fitting a quadratic term in the 

holding period, but they did not discuss the theoretical implications.  Calhoun [1996] 
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states that, in practice, the constant term in the second-stage regression is often negative, 

which is inconsistent with the Case-Shiller explanation.  Calhoun suggests forcing the 

constant to zero and re-estimating, which is the approach taken by OFHEO in their 

regressions.   OFHEO presents the coefficients from their second stage regression so that 

users may go from the geometric to the arithmetic mean.     

Case and Shiller [Standard and Poor’s, 2006] directly estimate an arithmetic index 

but still use the standard Case-Shiller correction to correct for heteroskedasticity.  The 

addition of non-linear terms to the Case-Shiller correction, as discussed below, could 

possibly improve the efficiency of their estimates.    

   In the literature on estimating returns to art, Goetzmann [1993] and Mei and 

Moses [2002] use the second stage regression coefficients in the Case-Shiller estimation 

scheme to estimate the variance of the cross-sectional return and continue to make use of 

the i.i.d. assumption on the errors in the single-period returns.  These papers do not 

present the second-stage regressions, so readers obtain little evidence on the fit in this 

regression. 

 Quigley [1995] proposes estimation of a hybrid model using both repeat sales 

and hedonic estimates for properties sold once and fits the squared residuals to a 

quadratic function of elapsed time without a constant.  He refers to this as the implication 

of a random walk, with little further explanation.  In a subsequent paper, Hwang and 

Quigley [2004, p. 165] specify an error distribution ―to include mean reversion as well as 

a random walk‖ in which they model autoregression in the errors in price levels.  

Assuming serial independence in errors may be limiting and could have an effect 

on the efficiency of the index estimation. We therefore start by dropping the i.i.d. 
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assumption and deriving the statistical properties of the effect of the holding period on 

the variance of returns.  Unlike Hwang and Quigley, we consider violations of 

independence in the errors in returns, rather than errors in price levels.  It turns out to be 

relatively straightforward to model the effects of short-term violations of independence 

(such as first-order moving average processes) on the variances at different holding 

periods.  In most cases, it is not possible to identify the statistical properties of the error 

process on the individual asset returns from the pattern of residuals.   

As noted above, in a correctly specified equation OLS estimates, as well as the 

Case-Shiller method, are unbiased so the value of a more efficient GLS procedure will 

not reveal itself in changes in the estimated coefficients.  If there are significant 

nonlinearities in the second-stage regression, the Case-Shiller approach will lead to 

incorrectly estimated standard errors but unbiased coefficients in the third stage.   We 

discuss the importance of correctly estimated standard errors after we demonstrate 

differences in the Case-Shiller estimated errors and our estimates using a more flexible 

GLS procedure.    

3.  The Case-Shiller Method and Heteroskedasticity  

  Assume that there are N observations of repeat sales in a data set.  Each 

observation consists of the purchase (buy) date, bi, the purchase price, Bi, the sale date, si, 

and the sale price, Si.  The purchase and sales dates span the interval from t = 0 to t = T.
3
 .  

Define the length of the holding period as i i is b   .  .Let log i
i

i

S
y

B

 
  

 
 be the log of the 

                                                 
3
 Our presentation adopts some of the notation in Goetzmann and Peng [2002].  We use 

their notation as they work in returns, which is the approach that we have adopted.   

Case and Shiller originally worked in levels, and then differenced the levels, which 

resulted in an index being estimated, rather than returns.   
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compound return on property i.  We can write this as the sum of the returns to property i 

in each period between purchase and sale, or 
,

i

i

s

i i tt b
y r


  where 

,

,

, 1

log
i t

i t

i t

P
r

P 

 
   

 

, and 

,i tP  is the price of property i in period t (only observed for t = si and bi).     

3.1 The Basic Case-Shiller Model ( i.i.d. errors on individual  returns) 

 The standard assumption is that ,i t t itr    , where it is independent and 

identically normally distributed.  Then, 
i i

i i

s s

i t itt b t b
y

 
     .

4
 

 Case and Shiller [1987] assumed that , , ,log( )i t t i t i tP C H N    where tC is the 

value of the index in period t, ,i tH  is the value of a random walk process for property i at 

time t, and ,i tN is the ―sale-specific random error‖.  This is equivalent to writing the price 

of property i in period T as , , ,

1 1

exp
T T

i T t i t i i TP
 

      
 
   where , 0i T  only if a 

transaction occurs in period T and i  is a property-specific value. Taking logs and 

differencing prices from two different transactions, we obtain  

   , , , , ,ln ln
T T

i T i T k t i t i T i T k

T k T k

P P  

 

         .  Then let 
, , ,

T

i i t i T i T k

T k





       be the 

residual for property i in the first-stage regression.  Hence,  
2

2 2

,

1

2i i tE E




 
     

 
   

where 2

  is the expectation of  
2

,i t , under the assumption that the ,i t  are i.i.d.  Case 

and Shiller thus suggested first estimating an OLS repeat sales regression.  Then, the 

                                                 
4
 In this case, the variance of the error term grows linearly with the length of the holding 

period.  Under this assumption, one can skip the three-stage procedure and simply use 

 
1

2
i i

s b


   as the weights for GLS. 
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squared residuals are regressed against the length of the holding period and a constant in 

the second stage regression.  Estimates from the second stage provide weights for the 

third-stage GLS regressions. 

 

3.2 Applications 

 We start by looking at how well the Case-Shiller method corrects for 

heteroskedasticity empirically with two distinct repeat-sales datasets.  The first dataset we 

use comprises 1,468 observations of repeat sales of art sold in Amsterdam between the 

years 1780 and 2007 and was put together by Rachel Pownall using catalogues at the 

Rijksmuseum in Amsterdam (see Pownall & Kraeussl [2009]).   We will subsequently 

refer to this as the Amsterdam art dataset.  The second dataset consists of 3,577 repeat 

sales of houses that were sold along the Herengracht canal in Amsterdam between the 

years 1630 and 1972.  This dataset is analyzed in Eichholtz [1997].   

 During the Golden Age in the Netherlands, Amsterdam was a hub of trading 

activity in the markets for real estate and art. The Netherlands has a long history as a 

trading center, and records have been kept on both art and real-estate transactions since 

this period. Both these data sets are unique in nature and of particular interest in 

analyzing the effect of any dependence in the distribution of errors.  The cross-sectional 

quality of buildings and old master paintings included in the data sets could be considered 

to be held fairly constant over time.  

  The Herengracht represents the most fashionable and beautiful of all the canals in 

Amsterdam, and it is likely that there is much greater homogeneity in the transaction data 

than the art market data, which is influenced significantly by the popularity of the artist of 
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the day. Changes in quality (through restoration and provenance) as well as taste and 

fashion are likely to influence the repeat sales regressions to a greater extent than with the 

housing price data. The use of these 2 unique databases over such a long period provide 

us with an interesting case with which we are able to relax the assumption of 

independently distributed errors in the asset returns on these 2 markets.   

  We employ the Case-Shiller method as follows.  In the first stage regressions we 

regress the difference in the logs of the price change on dummy variables Xi,j.  When 

asset i is purchased in period bi and sold in period si, Xi,j take on the value 1for bi  < j ≤ si 

and zero otherwise.   In the second stage of the regressions, we regress the square of the 

residuals from the first stage on the holding period and a constant.  For the 3rd stage 

regressions, we construct a weighted least squares regression by dividing the regressand 

and the regressors from the first stage by the square root of the predicted values from the 

second stage.  For the Amsterdam art dataset, following Goetzmann [1993] we estimate 

the model using 10-year periods.  For the Herengracht dataset, following Eichholtz 

[1997] we estimate the model using 2-year periods.  

  We present summary results in Table 1 (Appendix Tables 1 and 2 present full 

results of the first and third stage regressions).  In Table 1 we also present the test results 

from the Koenker-Basset test for heteroskedasticity [Gujarati, 2003, p. 415].  In this test, 

the squared residuals from the regression model ( 2ˆ
iu ) are regressed on the squared 

estimated predicted values of the dependent variable (
2ˆ

iY ) and a constant: 

2 2

1 2
ˆˆ ( )i i iu Y v    .   The null hypothesis is that α2 = 0.  If this is rejected, then one has 

evidence of at least one form of heteroskedasticity, that is, with respect to the predicted 

value of the regressor.   
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 As shown in Table 1, the stage I R
2 

for the Amsterdam art dataset is about .68 and 

about .60 for the Herengracht dataset, which is typical of repeat sales datasets.  For the 

Amsterdam art dataset, we marginally cannot reject that there is no heteroskedasticity, 

but for the Herengracht dataset, we reject the hypothesis of no heteroskedasticity.  The 

coefficient on time between sales is significant in both datasets.  The Stage III R-squareds 

fall slightly relative to OLS.  Again we cannot reject that there is no heteroskedasticity in 

the art dataset, but we continue to reject the hypothesis of no heteroskedasticity in the 

Herengracht dataset.  Thus, the Case-Shiller GLS correction does not adjust for all the 

heteroskedasticity that is present. 

3.3  Evidence of Non-i.i.d. Errors 

 Table 2 and Table 3 present different specifications of the second stage of the 

Case-Shiller method.  The dependent variable is the squared residual from the first stage 

(OLS) regression and τ represents time between sales.  For the Amsterdam art dataset, the 

standard Case-Shiller specification (shown in column 1) is dominated using the adjusted 

R
2
 criterion and some other measures by all other specifications that include a constant.  

For the Herengracht dataset, the standard Case-Shiller specification does not appear to be 

unequivocally dominated.  Nonetheless, according to the Koenker-Basset test, the Case-

Shiller method fails to get rid of the heteroskedasticity, as shown in Table 1 above.
5
    

 Yet more evidence of non-i.i.d. errors is presented in Table 4.  If the errors are 

i.i.d., the variance of the return error for an individual property grows linearly with time.  

Hence, the coefficient on time between sales when estimating two year period returns 

                                                 
5
 Graddy and Hamilton [2010] find that the polynomial terms in the second stage 

regression are significant and the Case-Shiller specification is unequivocally dominated 

by polynomial specifications for a repeat sales data set on violins used in Graddy and 

Margolis [forthcoming].    
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should be twice the coefficient on time between sales when estimating one year period 

returns.  Likewise, the coefficient on time between sales when estimating 5 and 10 year 

periods should be respectively five and ten times the coefficient on the time between 

sales for one year periods.  Looking at the art dataset, this is clearly not the case.  Ten 

times the coefficient on time between sales when estimating yearly returns is statistically 

significantly less than the coefficient on the time between sales when estimating ten year 

returns.  In contrast, in the Herengracht dataset, ten times the coefficient on the time 

between sales for the one year return does not appear to be statistically significantly 

different than the coefficient on the time between sales for the ten year returns.   

4.  Individual Asset Errors that Are Serially Correlated Across Periods 

 A possible reason that the Case-Shiller correction may not be working as it should 

is that the return errors are not i.i.d.  We now drop the assumption that return errors are 

i.i.d.  For Goetzmann’s [1992] study of the behavior of repeat sales regressions using 

stock market data, the i.i.d. assumption seems appropriate.  Considerable evidence finds 

few deviations from market efficiency.  Market liquidity, low trading costs, and the 

ability to sell shares short all contribute to rapid transmission of new information into 

asset prices.  In contrast, for many of the asset classes studied in repeat sales regressions, 

these features are not present.
6
  Houses and individual works of art have idiosyncratic 

features, making simple observations of prices of other assets in the class only signals of 

                                                 
6
  Shiller [2007] discusses the serial dependence in housing price aggregates.  Even when 

repeat sales indexes incorporate a large number of properties, they usually combine data 

on diverse subgroups within the asset class (such as all single-family homes in a large 

metropolitan area).  Since these submarkets may be quite thin and prices across the 

submarkets may not be linked closely, serial dependence in the errors also seems quite 

likely. 
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the ―true price‖ of an asset.  Trading costs are also significant (5-6% commissions plus 

transactions taxes and other costs for houses in the U.S. and a 10%-20%  buyer’s 

commissions plus seller’s commissions for art sold at auction), and short sales are 

essentially impossible.  Price data are also only available with some lag for houses (the 

interval between contract date and closing date at a minimum).  These features could 

create serial dependence as well as idiosyncratic transaction errors.   

Note that the statistical issue is whether the error term on the individual asset 

returns is correlated between periods.  In repeat sales data, only the residuals on the 

aggregated time periods are observed.  We shall see that this prevents us from uncovering 

much of the fine structure of the time series processes of the error returns. The specific 

form of the covariance structure depends on the unknown model of serial dependence.  

We cannot easily identify the model of serial dependence from the data as only the 

summed residuals are observed.  We can, however, theoretically derive the effect under 

difference covariance structures.    

In what follows, we shall drop the subscript i for the individual property since all 

calculations are with respect to a single property.  Let the errors follow the general 

moving average process, 
0

k

t i t ii
   
 , where [1, )k  , t  is white noise and 0 1  .

7
  

Then 
1 0 1 0

k k

t i t i i it i t i

 

         
      is the sum of return errors over 

 periods, and  
2

E  =    
2

2

0 0
2

k k k

i i i j i ji i j i
E E       

  
   .  If the process is 

stationary, then 2

0

k

ii


 is finite.  Thus, the first sum equals 2 2

0

k

ii 
 .  Letting, 

                                                 
7
 Since AR and ARMA processes can be represented as infinite-order MA processes, the 

case where k =  includes them.   
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s j i  , the second sum equals  
1 2

0 1
2

k

i i si s
s



   


 
  , which is also finite for 

stationary processes.   
2

E  can be written as a term which is a constant times  and a 

term which is a nonlinear function of   and  .  For particular time series processes on 

the errors, we can be more specific. 

4.1 Specific Examples 

The MA Process 

 Suppose that in the above general process, 0 1  , 1  , and 0i   for i ≥ 2.  

The errors then follow a first-order moving average (MA(1)) process, 1t t t     , 

where 1 1   .  In this case by substitution, 

2

1

tE



 
 
 
 =  2 2 21 2( 1)         = 

 
2 2 21 2      .  Thus, regressing the square of the residual 

2

1

te
 

 
 
 on   and a 

constant yields 
2ˆ 2     and  

2 2ˆ 1     .  This provides a different explanation for 

the constant term than Case and Shiller [1987].  Here, ˆ 0   is not an anomaly, but arises 

whenever 0  (unlike first-order autoregressive processes, there is no presumption that 

 > 0).  Thus, a negative constant term may be evidence of a non-i.i.d. error process.  If 

we assume that the t  follow an MA(1) process without transaction errors, we can 

identify point estimates of   and 
2

  from ̂  and  ̂ .  If we allow for transaction error 

(as in Case and Shiller [1987]), we are unable to identify  because there are two error 

variances in the constant term. 

We can extend this approach to higher-order MA processes.  For the MA(2) 

process, 1 2t t t t        (or for the general process, 0 1  , 1  ,  2  and  
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0i   for i > 2),  so by substitution,  

2

1

tE



 
 
 
 = 

   2 2 2 21 2 2 2 2                   .  Similar calculations reveal that all 

MA(k) processes with k <   have an intercept term and a constant multiplying  , but no 

terms multiplying higher powers of  .  The slope term will be positive, but the sign of 

the intercept depends on the parameters of the process.  For k > 1, we cannot identify the 

parameters of the MA process since we observe only a slope and intercept. 

The AR Process 

 Suppose instead that , 1, ,t t    follows an AR(1) process, 1t t t     .  In the 

general MA process, this is equivalent to k = ∞ and i

i  for i = 0, k.  Using the fact that 

 
2

21

k

t t kE


  


 


, we find that 

2

1

tE
 

 
 



  

 

1
2 2

2

( 1)
2

1 1 1

      
      

       

  

 

      
   

  
.  See Appendix A for a derivation.   

As   grows, for 0  , this expression increases at an increasing rate and asymptotes to 

an increasing straight line.  For 0  , it increases at a decreasing rate.  Thus, only 

negative first-order serial correlation is consistent with a positive coefficient on time 

between sales and a negative coefficient on its square, which is a common finding.  Since 

negative autocorrelation is not common in economic data, it seems unlikely that an AR(1) 

error process explains the commonly observed pattern.  Higher-order AR processes also 

result in 

2

1

tE
 
 
 



  being a nonlinear function of the holding period. 

The ARMA Process 



 

 

15 

 An ARMA(p, q) process has p
th

-order autoregression and q
th

-order moving 

average.  For p = q = 1, we can write the process as 1 1t t t t       .  In the general 

MA process, this is equivalent to k = ∞, 0 1  , 1    , and 1i i

i      for i=2, k.  

In this case,    

2

1

t

t

E





 
 
 
 = 

2 2 2
2

2 2

1 2
2

1 1


      


 

        
    

     
 

2 2
2

2
2

1


    




   
  

 
  

  
 

2 2 2
2

2 2

( 1) 2
2

11





         




       
  

  
. 

See Appendix B for the derivation.  As with the MA process, there is an intercept (which 

is easily negative) and a constant coefficient on the time horizon.  As with the AR 

process, there is also a term which decays exponentially.   

 For 0   (the ―normal‖ case), the expectation of the square of the sum of the 

residuals increases with the holding period length.  For   , it increases as an 

increasing rate, while for 0    , it increases as at decreasing rate.  This last 

possibility is consistent with a positive coefficient on the linear term and a negative 

coefficient on the quadratic term.  It also seems to be the ―minimal‖ assumption on the 

return error process to generate such concavity.  As with AR processes, higher-order 

ARMA processes result in

2

1

t

t

E





 
 
 
 being a nonlinear function of the holding period. 

One could fit a nonlinear regression in   to 

2

1

tE
 
 
 



 .  As with the MA(1) 

process, one can only identify parameters of the stochastic process conditional on the 

assumption about the order of the ARMA process, but of course the order of the ARMA 
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process cannot be easily recovered because we do not observe the errors in the individual 

asset returns, but only the summed residuals.    

5.  Flexible GLS 

In order to correct for heteroskedacticity when the error term on the individual 

asset returns is correlated between periods, we propose a flexible approach in which third 

stage weights are constructed by regressing the squared residuals from the first stage 

regression on dummy variables representing the length of the holding period for each 

asset (duration).  Hence, in the second stage, we propose regressing 2ˆ
iu on a matrix which 

has a row of dummy variables for each asset in the sample. The dummy variable Zij takes 

on the value 1 if sj - bj equals j - i and zero otherwise.  As before, in the third stage we 

divide the regressors and the regressand by the square root of the predicted value from 

the second stage.  Table 5 presents the regression results from the new second and third 

stage regressions along with the Koenker-Basset test for heteroskedasticity in the third 

stage.  We also plot the coefficient estimates and the standard error estimates for each of 

the three regressions and for each dataset in Figures 1 through 4.    

Figures 1 through 4 plot the estimated coefficients and estimated standard errors 

using OLS, Case and Shiller, and our flexible GLS estimator for the Amsterdam art 

dataset and the Herengracht datasets.   The top panel of each figure plots the levels of the 

coefficients and errors, and the bottom panel plots the percentage difference in the Case 

and Shiller and the flexible GLS estimates, defined as (Case and Shiller estimates- 

flexible GLS estimates) /Case and Shiller estimates.  As shown in figure 1, for the 

Amsterdam art dataset, other than in the early years, the coefficients are similar to one 

another.  There are large differences, however, in the first part of the dataset, which is not 



 

 

17 

surprising given it is well-known that coefficients for the early time periods are 

imprecisely estimated (see Goetzmann 1992).  In Figure 3 in the Herengracht dataset, 

while differences occur more frequently in the early years, coefficient differences persist 

in the later years.  This could be due to either imprecision of the estimates or 

mispecification of the model, as it is well known that OLS, Case and Shiller, and flexible 

GLS coefficient estimates should be unbiased even in the presence of  heteroskedasticity, 

and coefficients that change under a GLS estimator can indicate misspecification.    

Figures 2 and 4 plot the estimated standard errors using OLS, Case and Shiller, 

and our flexible GLS estimator for the Amsterdam art dataset and the Herengracht 

datasets.    As is evident from Panel B in both figures, the Case and Shiller standard 

errors are consistently larger than the flexible GLS standard errors.  The difference is 

most pronounced in the earlier years of both datasets.    

 Our non-parametric approach is a significant improvement in size of estimated 

standard errors, both over OLS and over standard Case-Shiller.  On average, the non-

parametric approach has decreased the estimated standard errors on the coefficients by 

about 19% for the Amsterdam art dataset, and by about 7% for Herengracht dataset.    As 

shown in Table 5, the fit has also improved, going from an OLS R-squared of .68 to a 

Flexible GLS R-squared of .69 for the Amsterdam art dataset, and going from an OLS R-

squared of  .60 in the Herengracht dataset to a flexible GLS R-squared of .66.   

While researchers often do not focus on the standard errors of their point 

estimates of period returns, there are several reasons to examine them.  First, there is a 

general pattern that standard errors at the beginning and the end of the sample period will 

exceed those in the middle because of fewer datapoints in the beginning and end of a 
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repeat sales sample (see Goetzmann’s [1992] discussion of Webb’s unpublished work) .   

When a researcher is looking to see if returns change over time, it is important to be 

aware of the changes in the precision of estimates.  Second, the true standard errors 

should be a better indicator than inefficient estimated standard errors of the expected 

magnitudes of revision errors near the end of the sample period (when new data become 

available, repeat sales index estimates for previous periods will change).  One should also 

note that flexible GLS is not guaranteed to have smaller estimated standard errors than 

the Case-Shiller approach—they are different weighting systems and using ―more 

accurate‖ weights could lead to larger (but ―more precise‖)  standard errors for some 

coefficients, as is demonstrated for some years in our samples.   

For the Amsterdam art dataset, the mean nominal return calculated from the 

coefficients in Appendix Table 1 over the period 1780-2007 was 3.13%.  The mean 

nominal return calculated from the coefficients in Appendix Table 2 for the Herengracht 

data was just slightly over 1% over the period 1630 to 1972.   If we compare the two 

Dutch assets for the overlapping time period of 1780 to 1970, we find a 3.41% nominal 

return for art, and a 1.19% return for the Herengracht real estate, demonstrating that the 

returns to art sold in Amsterdam heartily outperformed the Herengracht canal real estate 

market during that time period!   

6.  Further Applications and Extensions    

6.1  Real Estate Indexes  

 Calhoun’s [1996] discussion of the second stage regression was part of a technical 

description of the Office of Federal Housing Enterprise Oversight’s (OFHEO) 

methodology in constructing price indexes, a methodology they are still currently using.  
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The OFHEO estimation restricts the constant term to be zero, but includes a quadratic 

term in the second stage.  Appendix Table 3 presents their published results for 3
rd

 

quarter 2007.  Although the significance levels are not published, the OFHEO report 

stated that for both terms, significance resulted in most regions and states.  The pattern of 

a positive coefficient on the linear term and a negative coefficient on the quadratic term is 

present throughout – but note our data also displayed that pattern when the constant was 

restricted to be zero (see column 7 of Tables 2 and 3).     

Our analysis suggests that not only should the constant be included in the 

regressions, but that a non-parametric second stage regression would improve their 

analysis.    If the constant term is negative, it is likely to be indicative of an ARMA 

process, given the quadratic term.   

The above analysis also suggests that a non-parametric second stage could 

sensibly be used in the construction of housing price indexes to allow for the possibility 

that the errors follow an AR process or ARMA process.  The non-parametric second 

stage could lead to more precise estimates of the index.
8
 

6.2 Art Indexes 

   Repeat sales regressions are used in numerous articles that estimate price 

indexes from art auctions including Pesando [1993], Goetzmann [1993], Mei and Moses 

[2002] and Pesando and Shum [2008].  Ashenfelter and Graddy [2003, 2006] provide a 

survey.  Most of the articles on art auctions do not provide the results from the second 

stage regressions and Pesando [1993] simply uses OLS.  As art is an infrequently traded 

asset with many of the same properties as musical instruments and housing, it is very 

                                                 
8
 Andrew Leventis [2007] has a nice discussion of the differences between the OFHEO 

and S&P/Case-Shiller House Price Indexes.  
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likely that many of these studies could benefit from the non-parametric specification in 

the second stage of the repeat sales regressions. 

6.3.  Implications of Serial Dependence   

It is well-known that the logarithmic specification of the dependent variable 

results in a geometric mean across assets for each time period of the index.    Goetzmann 

[1992] suggested a way to calculate the arithmetic mean, using the second stage of the 

Case-Shiller regressions.  He suggested that the coefficient on the time between sales 

should be used as an estimate of the cross section variance to give the following formula 

for the arithmetic mean: 

2

exp 1
2

a g 
 

 
   

 
 

where 
a  and 

g are the arithmetic and geometric means and 2 is the cross-section 

variance.  Goetzmann [1993] and Mei and Moses [2002] utilized this for art price 

indexes.   This correction becomes problematic in the case of non-i.i.d. errors.   

Without a specific assumption on the errors in the returns of the individual assets, 

the single period return variance in an asset cannot be identified from the second stage of 

the Case-Shiller regression results.
9
  Calhoun [1996] proposes using: 

 2 2

t At Bt    

(where A and B are the linear and quadratic coefficients from the second stage—with no 

constant) as the variance in the geometric to arithmetic correction formula (in index 

form).  There is a problem with this simple adaptation of the Goetzmann approach once 

                                                 
9
 The S&P/Case-Shiller

®
 Home price index directly estimate an arithmetic index in order 

to circumvent this problem. 
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the second stage includes more than a simple linear term:  the estimated variance for any 

property becomes a function of the holding period.  Even using the variance per period    

( A Bt ) depends on the holding period.  Any estimate of the arithmetic return must 

really depend on the planned holding period if the return errors are not i.i.d. 

The geometric index has a simpler specification, and is intuitively appealing to 

many in the finance literature because of the continuous compounding interpretation of 

the log returns.  Depending on the purpose of the regression, one can simply recognize 

that this is a geometric mean across assets, or a lower bound on the arithmetic mean.  

While this is an unintuitive interpretation, for many standard assets such as stocks, the 

geometric and the arithmetic mean can be directly computed.  Thus, one could compare a 

geometric index of a standard asset directly with the geometric index of the alternative 

asset.    

Some of the basic ideas in our paper have been utilized in other contexts.  For 

example, studying the effects of holding periods on return variances is one standard 

technique to identify mean reversion in asset returns.
10

  Furthermore, variance-ratio tests 

are commonly used to test for non-i.i.d. returns.  We are, in effect, using a form of the 

variance-ratio test to test for non-i.i.d. deviations from the mean one-period returns by the 

underlying assets.  As suggested in other contexts, nonlinearities with respect to the 

holding period in the second-stage regressions may diagnose longer-horizon violations of 

independence as well. 

                                                 
10

  See, for example, Poterba and Summers [1988] and Lo and MacKinlay [1988].    That 

approach generally uses a nonparametric framework with respect to the error process. 

     



 

 

22 

 Variance ratio tests calculate the variance of returns over different holding 

periods.  If returns are i.i.d., then the variance of annual returns should be 12 times the 

variance of monthly returns.  Likewise, if the deviations from mean returns for the 

underlying assets are i.i.d., than the variance in the deviations in annual returns should be 

12 times the monthly variance.  This would precisely match the Case-Shiller modeling of 

the second-stage regression on repeat sales without the ―house-specific error‖.  The fact 

that a polynomial specification is indicated in the Amsterdam art data (based on adjusted 

R-squared) reveals that deviations from mean returns for the individual assets violate 

serial independence.   Abraham and Schauman [1991] report that the variance in the 

errors in returns for a housing data set is maximized at a holding period of twenty to 

thirty years, so they find concavity in the relationship as well.  An essential difference 

between mean reversion and the processes modeled in Section 4 is that mean reversion 

can operate over a much longer time horizon than conventional AR and MA processes—

it is effectively a more general version of serial dependence.    

7.  Conclusions and Issues for Further Study 

 Nonlinearities with respect to the holding period in estimated variances of 

property returns may be indicative of a failure of the assumption that errors in property 

returns are statistically independent over time.  For assets where the usual conditions 

which induce market efficiency are not present, this should come as little surprise.  More 

efficient estimates can result if researchers take account of these nonlinearities in 

determining GLS weights for the final stage.  Researchers should also take account of the 

failure of independence in using the calculated index values to interpret market returns. 
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An alternative approach to repeat sales estimation would be to explicitly derive 

the likelihood function for the repeat sale model with non i.i.d. errors.  Kuo [1997] 

provides an example when the price levels follow an AR(1) process.  Francke [2010] 

extends this approach to take account of the covariance between successive pairs of 

repeat sales of the same property.  We focus on the three-stage GLS procedure because 

variants of it are used in a wide range of applications and it is easy to implement.   

 In further work, we plan to extend our exploration of the implications of serial 

dependence in the deviations from mean returns on the standard errors of the return 

coefficients. Through Monte Carlo simulation, we can estimate true standard errors under 

a known non-i.i.d. process and compare it to the estimates of returns using the 

conventional procedures and our non-parametric method.  We can also derive estimates 

of the revision changes for the returns in the last periods of the estimation.  Because the 

estimated coefficients for the last few periods depend on only a small number of 

transactions, any biases in computing standard errors may matter most here.   
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Appendix A:  Calculations for the AR Process 

Using the fact that  
2

21

k

t t kE
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  


 


., we find that  
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1 2
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1 2
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The first term in this expression equals 
1

 




 
 

 
, using  

 Z = 
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Calculations for the ARMA process 
 

For p = q = 1, an ARMA(1, 1) process can be written as: 

 1 1t t t t       , t = 1,  . 

The expected values of the variances and covariances of errors equal: 
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 for k  2. 

Then, we can write the expected value of the square of the sum of the residuals as: 
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    

 

  
  

     
      

     
   . 

Taking the expectations, we obtain: 
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t
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


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 
 
 
 =  

2 2 2
2 2

2
1

ˆ2 1 2
1

J

J

J




 

    
    








  
  


 . 

For the last term, let 2K    and 
1




 .  Then let  
1

K
J

J

Z J


 . 

Now 2 32 3 ... KZ K         and 2 3 12 ... KZ K        , so 

 2 3 1... K KZ Z K             . 

Let 2 3 ... KY         .  Then 2 3 1... KY        , so 1KY Y      , and  

1

1

K

Y
 







.  Substituting this into the earlier formula, 
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  1 21
1

1

1 1

K KK
K

K K
Z Z K

   
 

 

 


  
   

 
. 

Hence, 
 

 

1 2

2

1

1

K KK K
Z

  



   



 

Thus, we have 
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t
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 
 
 
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2 2
2 2 2

2
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

  

    
    



   
   

 
. 

Substituting, 
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 

       
    

    
 

 
  

 

2 2 2
2
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( 1) 2
2
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       
  

  
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

         

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2

2 2

1 2
2

1 1


      


 

        
    

     
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2

2
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1


    




   
  

 
  

  
 

2 2 2
2

2 2

( 1) 2
2
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       
  

  





         



. 



Amsterdam Art Dataset Herengracht Dataset

Number of Transaction Pairs 1468 3577

Stage I,  R2 0.684 0.604

Stage I, Koenker Basset α2 0.041 0.063

(1.80) (4.73)

Stage II, R2 0.007 0.004

Stage II, Constant 2.21 0.157

(7.34) (15.31)

Stage II, Coefficient 0.201 0.002

(3.36) (3.71)

Stage III, R2 0.641 0.597

Stage III, Koenker Basset α2 -0.019 0.065

-(0.59) (4.62)

T-statistics are noted in parentheses.

Table 1

OLS and Case and Shiller Results 

 

 



1 2 3 4 5 6 7

coef coef coef coef coeff coef coef

τ 0.2008 0.4885 0.9607 0.5242 0.9939

(3.36) (3.20) (2.59) (12.72) (11.99)

τ2 -0.0191 -0.0912 -0.0444

(0.01) (0.05) -(6.50)

τ3 0.0026

(1.40)

ln(τ) 1.05

(4.08)

Dummies 22

Cons 2.2060 1.6253 1.0075 1.9223 1.8723

(7.34) (3.93) (1.67) (5.94) (0.39)

F-Stat 11.26 7.74 5.81 16.65 1.81 161.74 104.28

Prob>F 0.000 0.001 0.001 0.000 0.014 0.000 0.000

Adj R2 0.007 0.009 0.010 0.011 0.011 * *

AIC 10197 10195 10195 10192 10210 10248 10208

BIC 10208 10211 10216 10202 10327 10243 10219

Obs 1468 1468 1468 1468 1468 1468 1468

Notes:  The dependent variable is the squared results from the first-stage (OLS) regression.  

τ = time between sales.  

t-statistics are in parentheses.

Table 2

Second Stage Regression Results: Amsterdam Art Dataset



1 2 3 4 5 6 7

coef coef coef coef coeff coef coef

τ 0.0015 0.0024 0.0029 0.0059 0.0115

(3.71) (2.41) (1.52) (19.71) (18.33)

τ2 -1.27E-05 -2.71E-05 -1.04E-04

-(0.98) -(0.53) -(10.07)

τ3 1.000E-08

(0.29)

ln(τ) 0.02442

(3.62)

Dummies 105

Cons 0.1565 0.1486 0.1459 0.1254 0.2740

(15.31) (11.41) (9.16) (7.15) (0.63)

F-Stat 13.75 7.36 4.93 13.09 1.33 388.42 250.34

Prob>F 0.0002 0.0006 0.0020 0.0003 0.0157 0.0000 0.0000

Adj R2 0.0036 0.0035 0.0033 0.0034 0.0095 * *

AIC 4197 4198 4200 4198 4279 4422 4325

BIC 4210 4217 4225 4210 4934 4429 4337

Obs 3577 3577 3577 3577 3577 3577 3577

Notes:  The dependent variable is the squared results from the first-stage (OLS) regression.  

τ = time between sales.  

t-statistics are in parentheses.

Table 3

Second Stage Regression Results: Herengracht Dataset
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10-year 5-year 2-year 1-year

τ 0.209 0.074 0.014 0.000

(3.435) (2.700) (1.356) (0.084)

Cons 2.182 2.236 2.265 2.290

(7.201) (8.208) (9.099) (9.865)

Obs 1463 1463 1463 1453

R2 0.008 0.005 0.001 0.000

10-year 5-year 2-year 1-year

τ 0.008 0.004 0.002 0.001

(3.508) (3.870) (3.694) (3.409)

Cons 0.183 0.163 0.152 0.144

(14.434) (13.389) (13.354) (14.041)

Obs 3199 3199 3199 3199

R2 0.209 0.074 0.014 0.000

T-statistics are noted in parentheses.  

Table 4

Second-Stage results with Varying Time Periods

Amsterdam Art Dataset

Herengracht Dataset



Amsterdam Art Herengracht

Number of Transaction Pairs 1468 3577

Stage I, R2 (OLS) 0.680 0.604

Stage I, Koenker Basset α2 0.041 0.063

(1.80) (4.73)

Stage II, R2 0.026 0.039

Stage II: F(21,1446); F(105,3471) 1.81 1.33

Stage III, R2  (Flexible GLS) 0.690 0.659

Stage III, Koenker Basset α2 -0.008 0.002

-(0.61) (0.57)

The F-statistic tests for joint significance of the 

dummy variables. T-statistics are noted in brackets.

Table 5

OLS and Flexible GLS Results
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period coef std t-stat coef std t-stat coef std t-stat

error error error

1780 0.752 0.882 0.85 0.375 0.949 0.40 0.927 0.662 1.4

1790 -0.069 0.676 -0.10 -0.255 0.735 -0.35 -0.140 0.525 -0.27

1800 0.381 0.703 0.54 0.024 0.771 0.03 -0.230 0.583 -0.39

1810 -0.655 0.792 -0.83 -0.223 0.880 -0.25 0.142 0.682 0.21

1820 0.724 0.922 0.79 1.135 1.061 1.07 1.010 0.766 1.32

1830 -0.051 0.791 -0.06 -0.296 0.835 -0.35 -0.443 0.639 -0.69

1840 -0.469 0.991 -0.47 -0.748 1.018 -0.74 -0.562 0.964 -0.58

1850 0.215 1.142 0.19 0.353 1.249 0.28 0.272 1.118 0.24

1860 1.286 1.057 1.22 1.231 1.276 0.96 0.470 0.829 0.57

1870 -1.201 0.888 -1.35 -1.122 1.084 -1.04 -0.201 0.678 -0.3

1880 1.329 0.587 2.26 1.297 0.668 1.94 1.055 0.494 2.13

1890 -1.111 0.485 -2.29 -1.008 0.523 -1.93 -0.825 0.480 -1.72

1900 1.218 0.421 2.89 1.090 0.461 2.37 1.014 0.463 2.19

1910 0.798 0.350 2.28 0.800 0.380 2.10 0.808 0.380 2.13

1920 0.005 0.243 0.02 0.016 0.258 0.06 0.004 0.256 0.02

1930 -0.679 0.242 -2.80 -0.662 0.253 -2.62 -0.647 0.253 -2.56

1940 1.461 0.259 5.64 1.455 0.265 5.50 1.514 0.270 5.61

1950 -0.460 0.245 -1.87 -0.452 0.244 -1.85 -0.475 0.253 -1.88

1960 1.431 0.215 6.66 1.457 0.209 6.96 1.453 0.219 6.64

1970 1.271 0.162 7.86 1.255 0.154 8.12 1.234 0.155 7.96

1980 0.462 0.099 4.66 0.446 0.092 4.82 0.424 0.086 4.91

1990 0.617 0.088 7.04 0.624 0.082 7.57 0.633 0.076 8.31

2000* -0.456 0.103 -4.45 -0.445 0.099 -4.49 -0.438 0.095 -4.59

Average 

  std error 0.537 0.589 0.475

R2 0.684 0.641 0.691

Obs 1468 1468 1468

*Estimate based on incomplete data for the decade.  

Appendix Table I

Estimated Coefficients and Errors for Amsterdam Art Dataset

OLS Case and Shiller Flexible GLS
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period coef std t-stat coef std t-stat coef std t-stat

error error error

1630 0.390 0.376 1.04 0.504 0.418 1.21 0.354 0.435 0.82

1632 0.457 0.328 1.39 0.509 0.344 1.48 0.683 0.277 2.47

1634 -0.573 0.366 -1.57 -0.620 0.389 -1.59 -0.777 0.316 -2.46

1636 -0.002 0.317 -0.01 0.045 0.340 0.13 0.167 0.310 0.54

1638 0.152 0.220 0.69 0.081 0.236 0.34 -0.049 0.218 -0.23

1640 0.309 0.190 1.62 0.359 0.201 1.78 0.351 0.158 2.22

1642 0.269 0.188 1.43 0.294 0.194 1.51 0.367 0.146 2.50

1644 -0.084 0.169 -0.50 -0.135 0.173 -0.78 -0.167 0.161 -1.04

1646 0.100 0.159 0.63 0.125 0.159 0.79 0.133 0.155 0.86

1648 -0.092 0.195 -0.47 -0.089 0.197 -0.45 -0.038 0.193 -0.20

1650 0.099 0.180 0.55 0.109 0.181 0.60 0.049 0.178 0.28

1652 -0.165 0.209 -0.79 -0.146 0.210 -0.70 -0.138 0.212 -0.65

1654 -0.030 0.224 -0.13 -0.036 0.226 -0.16 -0.038 0.225 -0.17

1656 0.268 0.185 1.45 0.264 0.191 1.38 0.211 0.185 1.14

1658 0.151 0.203 0.74 0.111 0.204 0.54 0.112 0.202 0.55

1660 0.102 0.176 0.58 0.104 0.176 0.59 0.165 0.165 1.00

1662 -0.168 0.154 -1.09 -0.154 0.166 -0.93 -0.209 0.133 -1.57

1664 0.007 0.337 0.02 0.058 0.380 0.15 -0.099 0.209 -0.47

1666 -0.360 0.372 -0.97 -0.345 0.413 -0.83 -0.268 0.260 -1.03

1668 0.110 0.242 0.46 0.060 0.252 0.24 0.186 0.233 0.80

1670 0.126 0.182 0.69 0.139 0.184 0.75 0.133 0.177 0.75

1672 -0.213 0.182 -1.17 -0.229 0.186 -1.24 -0.226 0.168 -1.35

1674 -0.149 0.176 -0.84 -0.158 0.182 -0.87 -0.124 0.152 -0.82

1676 -0.472 0.229 -2.06 -0.415 0.246 -1.68 -0.577 0.201 -2.87

1678 0.323 0.236 1.37 0.302 0.250 1.21 0.428 0.219 1.96

1680 0.347 0.159 2.18 0.316 0.161 1.96 0.286 0.155 1.85

1682 -0.422 0.137 -3.08 -0.381 0.141 -2.71 -0.371 0.133 -2.78

1684 0.053 0.128 0.41 0.048 0.131 0.37 0.124 0.122 1.01

1686 0.257 0.137 1.87 0.234 0.139 1.69 0.219 0.116 1.90

1688 -0.065 0.174 -0.37 -0.071 0.180 -0.39 -0.136 0.151 -0.90

1690 0.138 0.174 0.80 0.118 0.180 0.65 0.168 0.161 1.05

1692 -0.195 0.143 -1.36 -0.188 0.143 -1.31 -0.236 0.137 -1.72

1694 0.164 0.157 1.04 0.173 0.156 1.11 0.242 0.149 1.63

1696 -0.024 0.177 -0.14 -0.014 0.181 -0.08 -0.148 0.164 -0.90

1698 -0.027 0.164 -0.17 -0.027 0.171 -0.16 0.068 0.150 0.45

1700 0.111 0.130 0.85 0.121 0.134 0.90 0.098 0.122 0.80

1702 -0.064 0.121 -0.53 -0.060 0.124 -0.49 -0.013 0.117 -0.11

1704 0.022 0.139 0.16 0.011 0.143 0.08 -0.070 0.126 -0.55

1706 -0.107 0.154 -0.70 -0.104 0.159 -0.66 -0.087 0.149 -0.58

Appendix Table 2

Estimated Coefficients and Errors for Herengracht Dataset

OLS Case and Shiller Flexible GLS

 



 

 

36 

1708 0.034 0.139 0.24 0.030 0.143 0.21 0.026 0.143 0.18

1710 0.003 0.118 0.03 0.006 0.119 0.05 0.033 0.116 0.28

1712 0.110 0.114 0.97 0.103 0.114 0.90 0.130 0.102 1.28

1714 -0.078 0.110 -0.71 -0.083 0.113 -0.73 -0.133 0.080 -1.67

1716 0.097 0.099 0.98 0.107 0.100 1.07 0.091 0.077 1.17

1718 -0.098 0.107 -0.92 -0.097 0.108 -0.90 -0.105 0.082 -1.28

1720 0.242 0.117 2.07 0.225 0.119 1.90 0.293 0.095 3.08

1722 0.119 0.109 1.10 0.134 0.110 1.21 0.093 0.105 0.88

1724 0.188 0.105 1.79 0.200 0.108 1.85 0.249 0.099 2.52

1726 -0.054 0.109 -0.50 -0.058 0.112 -0.52 -0.076 0.103 -0.74

1728 -0.079 0.101 -0.78 -0.079 0.101 -0.77 -0.100 0.095 -1.05

1730 0.133 0.106 1.26 0.126 0.107 1.18 0.146 0.101 1.44

1732 0.045 0.114 0.40 0.043 0.113 0.38 0.069 0.111 0.62

1734 -0.013 0.111 -0.12 -0.012 0.110 -0.11 -0.081 0.106 -0.76

1736 0.095 0.126 0.75 0.082 0.126 0.65 0.124 0.116 1.06

1738 -0.180 0.137 -1.31 -0.157 0.140 -1.12 -0.163 0.133 -1.23

1740 0.135 0.116 1.16 0.128 0.120 1.06 0.120 0.116 1.03

1742 -0.536 0.148 -3.63 -0.556 0.147 -3.77 -0.543 0.143 -3.79

1744 0.193 0.148 1.30 0.213 0.148 1.44 0.213 0.143 1.49

1746 0.035 0.128 0.28 0.059 0.130 0.46 -0.004 0.123 -0.03

1748 0.016 0.138 0.12 -0.037 0.139 -0.27 0.001 0.130 0.01

1750 -0.132 0.111 -1.19 -0.108 0.111 -0.97 -0.113 0.104 -1.09

1752 0.303 0.119 2.54 0.282 0.122 2.32 0.288 0.116 2.48

1754 -0.080 0.120 -0.66 -0.042 0.123 -0.34 -0.039 0.119 -0.32

1756 -0.115 0.110 -1.05 -0.132 0.110 -1.20 -0.129 0.109 -1.18

1758 -0.042 0.105 -0.40 -0.038 0.105 -0.36 -0.026 0.102 -0.26

1760 0.001 0.104 0.01 -0.001 0.104 -0.01 -0.001 0.095 -0.01

1762 0.044 0.103 0.42 0.047 0.103 0.46 0.028 0.096 0.29

1764 0.132 0.090 1.46 0.131 0.091 1.44 0.067 0.072 0.92

1766 0.046 0.100 0.46 0.047 0.101 0.46 0.116 0.081 1.42

1768 0.071 0.095 0.75 0.079 0.095 0.83 0.070 0.089 0.78

1770 -0.015 0.095 -0.16 -0.019 0.096 -0.20 -0.006 0.092 -0.07

1772 -0.015 0.095 -0.16 -0.023 0.095 -0.24 -0.025 0.094 -0.27

1774 -0.119 0.106 -1.12 -0.111 0.107 -1.03 -0.131 0.100 -1.30

1776 0.067 0.101 0.67 0.066 0.102 0.64 0.092 0.093 1.00

1778 0.204 0.095 2.15 0.182 0.095 1.92 0.160 0.091 1.76

1780 -0.241 0.100 -2.40 -0.210 0.101 -2.09 -0.153 0.099 -1.55

1782 0.199 0.104 1.91 0.185 0.105 1.77 0.148 0.103 1.44

1784 0.024 0.099 0.24 0.020 0.100 0.20 -0.006 0.095 -0.06

1786 -0.101 0.100 -1.01 -0.093 0.100 -0.93 -0.095 0.095 -1.01

1788 -0.220 0.107 -2.05 -0.199 0.108 -1.84 -0.148 0.104 -1.43

1790 0.048 0.104 0.46 0.040 0.105 0.38 -0.011 0.105 -0.10

1792 0.065 0.099 0.66 0.047 0.101 0.46 0.079 0.099 0.80

1794 -0.045 0.096 -0.47 -0.046 0.098 -0.47 -0.074 0.094 -0.79

1796 -0.278 0.106 -2.62 -0.298 0.109 -2.74 -0.288 0.102 -2.83
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1798 -0.134 0.109 -1.23 -0.112 0.112 -0.99 -0.107 0.105 -1.03

1800 -0.106 0.098 -1.08 -0.094 0.100 -0.94 -0.115 0.095 -1.21

1802 0.118 0.083 1.41 0.105 0.083 1.26 0.108 0.082 1.32

1804 0.015 0.103 0.15 0.019 0.103 0.19 0.007 0.096 0.07

1806 -0.094 0.125 -0.75 -0.088 0.126 -0.70 -0.068 0.117 -0.59

1808 0.227 0.108 2.10 0.223 0.110 2.04 0.224 0.102 2.20

1810 -0.210 0.099 -2.13 -0.228 0.100 -2.27 -0.219 0.093 -2.36

1812 -0.356 0.182 -1.95 -0.339 0.175 -1.94 -0.340 0.166 -2.04

1814 -0.196 0.190 -1.03 -0.203 0.182 -1.11 -0.247 0.176 -1.41

1816 0.150 0.135 1.12 0.148 0.136 1.09 0.166 0.133 1.25

1818 0.065 0.133 0.49 0.074 0.133 0.55 0.072 0.125 0.58

1820 0.139 0.128 1.08 0.127 0.129 0.99 0.151 0.120 1.26

1822 -0.097 0.127 -0.77 -0.072 0.128 -0.56 -0.064 0.123 -0.52

1824 0.203 0.130 1.56 0.165 0.132 1.25 0.162 0.129 1.26

1826 -0.126 0.159 -0.79 -0.109 0.158 -0.69 -0.124 0.155 -0.80

1828 -0.192 0.153 -1.26 -0.182 0.151 -1.20 -0.197 0.148 -1.33

1830 0.002 0.136 0.02 -0.022 0.134 -0.16 0.016 0.129 0.12

1832 0.012 0.146 0.08 0.032 0.145 0.22 0.011 0.136 0.08

1834 -0.021 0.126 -0.17 -0.021 0.126 -0.17 0.002 0.121 0.02

1836 0.215 0.119 1.80 0.207 0.118 1.75 0.204 0.117 1.75

1838 0.128 0.105 1.22 0.129 0.105 1.23 0.126 0.103 1.22

1840 0.048 0.080 0.60 0.062 0.081 0.77 0.057 0.078 0.74

1842 -0.052 0.072 -0.72 -0.056 0.072 -0.77 -0.064 0.068 -0.94

1844 -0.031 0.074 -0.42 -0.032 0.074 -0.43 -0.046 0.070 -0.66

1846 0.012 0.080 0.15 0.006 0.079 0.08 0.050 0.076 0.66

1848 -0.019 0.083 -0.23 -0.027 0.082 -0.33 -0.048 0.078 -0.61

1850 -0.032 0.087 -0.37 -0.021 0.086 -0.24 -0.036 0.083 -0.44

1852 0.084 0.088 0.95 0.086 0.088 0.97 0.092 0.085 1.08

1854 0.174 0.078 2.22 0.176 0.078 2.25 0.177 0.073 2.41

1856 -0.048 0.075 -0.63 -0.061 0.075 -0.81 -0.062 0.069 -0.89

1858 -0.079 0.076 -1.04 -0.074 0.076 -0.97 -0.071 0.069 -1.03

1860 0.053 0.073 0.73 0.055 0.073 0.75 0.055 0.066 0.83

1862 0.185 0.071 2.59 0.188 0.071 2.65 0.178 0.068 2.63

1864 0.042 0.072 0.59 0.049 0.071 0.69 0.052 0.068 0.76

1866 0.042 0.072 0.59 0.037 0.071 0.52 0.030 0.067 0.45

1868 -0.011 0.073 -0.15 -0.004 0.073 -0.05 -0.005 0.070 -0.07

1870 0.000 0.069 0.00 -0.012 0.068 -0.17 0.004 0.067 0.06

1872 0.115 0.063 1.82 0.110 0.062 1.78 0.101 0.060 1.67

1874 0.209 0.061 3.45 0.211 0.059 3.56 0.218 0.055 3.99

1876 0.019 0.062 0.31 0.027 0.060 0.46 0.028 0.055 0.51

1878 0.075 0.062 1.22 0.074 0.060 1.24 0.073 0.058 1.27

1880 0.042 0.060 0.71 0.041 0.058 0.71 0.044 0.055 0.80

1882 0.017 0.065 0.26 0.023 0.064 0.36 0.016 0.063 0.25

1884 -0.128 0.070 -1.83 -0.132 0.069 -1.91 -0.111 0.068 -1.64

1886 0.001 0.076 0.01 0.001 0.075 0.02 -0.009 0.073 -0.12

1888 -0.088 0.078 -1.13 -0.096 0.076 -1.26 -0.106 0.074 -1.44  
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1890 -0.057 0.074 -0.77 -0.053 0.071 -0.74 -0.072 0.069 -1.05

1892 0.090 0.086 1.04 0.088 0.084 1.05 0.101 0.081 1.26

1894 -0.156 0.084 -1.87 -0.156 0.081 -1.92 -0.156 0.079 -1.98

1896 -0.028 0.069 -0.40 -0.025 0.067 -0.38 -0.009 0.060 -0.14

1898 0.094 0.071 1.31 0.101 0.070 1.45 0.100 0.064 1.57

1900 0.064 0.068 0.94 0.058 0.066 0.87 0.052 0.065 0.80

1902 0.063 0.063 1.00 0.058 0.061 0.94 0.054 0.060 0.91

1904 -0.073 0.066 -1.12 -0.066 0.064 -1.04 -0.063 0.063 -1.01

1906 -0.050 0.072 -0.70 -0.050 0.070 -0.72 -0.069 0.068 -1.01

1908 -0.012 0.074 -0.16 -0.008 0.072 -0.11 0.004 0.070 0.06

1910 -0.012 0.077 -0.15 -0.020 0.075 -0.27 -0.043 0.070 -0.61

1912 0.129 0.080 1.62 0.142 0.077 1.83 0.156 0.073 2.14

1914 -0.054 0.080 -0.68 -0.068 0.077 -0.88 -0.064 0.075 -0.85

1916 0.253 0.073 3.45 0.251 0.070 3.56 0.243 0.069 3.52

1918 0.283 0.053 5.32 0.294 0.052 5.71 0.304 0.051 6.00

1920 0.363 0.052 7.03 0.361 0.050 7.24 0.359 0.046 7.74

1922 -0.356 0.063 -5.66 -0.361 0.061 -5.96 -0.366 0.057 -6.45

1924 0.068 0.072 0.94 0.075 0.069 1.08 0.050 0.068 0.73

1926 -0.253 0.072 -3.50 -0.250 0.070 -3.59 -0.214 0.068 -3.13

1928 0.081 0.077 1.04 0.082 0.074 1.11 0.072 0.071 1.01

1930 -0.015 0.089 -0.17 -0.020 0.086 -0.23 -0.016 0.082 -0.20

1932 -0.242 0.106 -2.28 -0.240 0.103 -2.33 -0.256 0.100 -2.56

1934 -0.038 0.111 -0.34 -0.053 0.108 -0.49 -0.080 0.105 -0.76

1936 -0.132 0.099 -1.33 -0.146 0.096 -1.51 -0.162 0.094 -1.72

1938 -0.092 0.108 -0.85 -0.069 0.104 -0.66 -0.016 0.102 -0.16

1940 0.201 0.104 1.94 0.204 0.099 2.05 0.208 0.097 2.15

1942 0.119 0.076 1.56 0.122 0.073 1.68 0.129 0.071 1.81

1944 0.084 0.108 0.78 0.089 0.105 0.85 0.051 0.100 0.52

1946 0.117 0.125 0.93 0.111 0.121 0.91 0.126 0.115 1.09

1948 0.213 0.105 2.02 0.218 0.101 2.15 0.231 0.098 2.37

1950 0.037 0.095 0.39 0.045 0.091 0.49 0.048 0.087 0.55

1952 0.027 0.099 0.27 0.036 0.096 0.37 0.005 0.092 0.05

1954 0.134 0.093 1.45 0.108 0.090 1.20 0.152 0.087 1.76

1956 0.285 0.086 3.32 0.296 0.083 3.59 0.262 0.079 3.30

1958 0.112 0.094 1.20 0.123 0.090 1.36 0.133 0.086 1.54

1960 0.374 0.094 3.99 0.365 0.090 4.06 0.361 0.087 4.15

1962 0.033 0.091 0.37 0.004 0.089 0.04 -0.021 0.086 -0.25

1964 0.397 0.094 4.22 0.415 0.092 4.51 0.424 0.089 4.75

1966 -0.366 0.103 -3.56 -0.364 0.100 -3.63 -0.334 0.098 -3.41

1968 0.107 0.105 1.03 0.119 0.102 1.16 0.083 0.097 0.85

1970 0.056 0.098 0.57 0.049 0.096 0.51 0.061 0.091 0.67

1972 0.185 0.098 1.88 0.206 0.096 2.16 0.255 0.094 2.71

Average 

  std error 0.122 0.123 0.114

R2 0.604 0.597 0.659

Obs 3577 3577 3577  
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Linear term Quadratic Term Linear term Quadratic Term

East North Central 0.001680477 -0.00000299 Maine 0.002206272 -0.00001042

East South Central 0.001413392 -0.0000018 Michigan 0.001802758 -0.00000883

Middle Atlantic 0.002074802 -0.00000055 Minnesota 0.001778828 -0.00000748

Mountain 0.002409786 -0.00001399 Missouri 0.001510312 -0.00000427

New England 0.002154035 -0.00001018 Mississippi 0.001711552 -0.00000806

Pacific 0.002429178 -0.0000141 Montana 0.001928588 -0.00000922

South Atlantic 0.002187866 -0.00000785 North Carolina 0.001565033 -0.00000252

West North Central 0.00177686 -0.00000562 North Dakota 0.001039276 -0.00000135

West South Central 0.001778648 -0.00000617 Nebraska 0.001253644 -0.00000316

Alaska 0.001670519 -0.00001364 New Hampshire 0.002027072 -0.0000166

Alabama 0.001518371 -0.00000204 New Jersey 0.002004723 -0.00001082

Arkansas 0.001386812 -0.00000118 New Mexico 0.00149599 -0.00000543

Arizona 0.001633332 -0.00000734 Nevada 0.001229675 -0.00000624

California 0.001746513 -0.0000077 New York 0.002274004 0.00000173

Colorado 0.001809468 -0.00000946 Ohio 0.001425313 -0.00000283

Connecticut 0.001763343 -0.00000839 Oklahoma 0.001735064 -0.00001022

District of Columbia 0.002680667 -0.00001472 Oregon 0.0018648 -0.00000801

Delaware 0.001384419 -0.00000705 Pennsylvania 0.001574089 0.00000112

Florida 0.001908697 -0.00000436 Rhode Island 0.001733826 -0.00001077

Georgia 0.00148583 0.00000037 South Carolina 0.001729218 -0.000002

Hawaii 0.002267208 -0.00001294 South Dakota 0.001414512 -0.00000234

Iowa 0.001448536 -0.00000564 Tennessee 0.001334526 -0.00000102

Idaho 0.001885403 -0.00001133 Texas 0.001765041 -0.00000488

Illinois 0.001269782 0.00000665 Utah 0.001433671 -0.00000553

Indiana 0.001651597 -0.00000569 Virginia 0.001594024 -0.00000623

Kansas 0.001308308 -0.00000343 Vermont 0.001695607 -0.0000107

Kentucky 0.001301519 -0.00000324 Washington 0.001739829 -0.00000457

Louisiana 0.00161069 -0.00000721 Wisconsin 0.001578844 -0.0000063

Massachusetts 0.001960005 -0.00001126 West Virginia 0.00218767 -0.00001027

Maryland 0.001480009 -0.00000671 Wyoming 0.001830342 -0.00000946

Appendix Table 3

(Constant is Restricted to be Zero)

OFHEO Second Stage Regression Statistics for their QUARTERLY Housing Index : 3rd Quarter 2007
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Panel A:  OLS, Case and Shiller and Flexible GLS coefficients 

 

Panel B:  % Difference in Case and Shiller and Flexible GLS coefficients 

% Difference = (Case and Shiller - Flexible GLS)/Case and Shiller 

 

Figure 1: Amsterdam Art Estimated Cofficients 
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Panel A:  OLS, Case and Shiller and Flexible GLS Standard Errors 

 

Panel B:  % Difference in Case and Shiller and Flexible GLS Errors 

% Difference = (Case and Shiller - Flexible GLS)/Case and Shiller 

 

Figure 2: Amsterdam Art Estimated Standard Errors 
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Panel A:  OLS, Case and Shiller and Flexible GLS coefficients 

 

Panel B:  % Difference in Case and Shiller and Flexible GLS coefficients 

% Difference = (Case and Shiller - Flexible GLS)/Case and Shiller 

 

Figure 3: Herengracht Estimated Cofficients 
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Panel A:  OLS, Case and Shiller and Flexible GLS Estimated Standard Errors 

 

Panel B:  % Difference in Case-Shiller and Flexible GLS Standard Errors 

% Difference = (Case and Shiller - Flexible GLS)/Case and Shiller 

 

Figure 4: Herengracht Estimated Standard Errors 

 


