Cross-Sectional Study of 57 Thousand
Elephant Learning Students

(Published July 4, 2022; Updated Oct 17, 2022) Dr. Aditya Nagrath PhD

Abstract

We examine the effectiveness of the Elephant Learning Platform for teaching mathematics.
From 2017-2022, Elephant Learning has had over 140,000 students come through their
proprietary math learning system. We analyzed the data within the database to get a large
sample of students to determine effectiveness.

The purpose of this study is to evaluate the Elephant Learning Guarantee of a student learning
1 year of mathematics over the course of 3 months using the system 30 minutes per week. In
this study, we examine all the student data from January 2017 to June 30 2022.

Methodologies

Students were provided with access to Elephant Learning’s mathematics system via their
parents. The students then used Elephant Learning naturally over different periods of time, for
varying time durations and length of trial. Trials were administered by the parent or were self
driven by the student. Coaching was provided for the parents to help students overcome any
struggles.

Coaching consists of teacher training videos and coaching around mathematics anxiety.
Teacher training videos are presented at a subject level based on the student’s Elephant Age™
and open subjects.

Students older than five years of age start within our placement exam to determine their initial
level of understanding. Students younger than five are placed based on age. Elephant
Learning’s system asks parents upon entry to confirm the placement exam for each student,
allowing the parent to adjust the given exam based on their knowledge of the student’s
understanding.

The default settings conduct a placement based on the student’s age and is intended to start
approximately 2 years behind the student’s current level in order to catch up and identify gaps.
Students are presented puzzles that show proficiency in common core and state standards for
conceptual mathematics via a number of subjects (for example: “Addition and Subtraction To
20"). If a student demonstrates understanding in the subject matter, more challenging subject
matter is presented also within examination mode. Otherwise, the subject matter is assigned to
the student.

Once all subjects are assigned, the system goes into learning mode. Elephant Learning’s
proprietary system presents puzzles in an optimal order for facilitating student conceptual
understanding. At that time, an initial Elephant Age ™ is assigned to the student and progress is
measured from there.

The Elephant Age™ represents, approximately, the average age that a student outside of the
system is doing the same mathematics as a student within our system. The Elephant Age™ is
the average of the ages assigned to five recently passed milestones with the largest ages
assigned to them. The milestones are associated with line items within the standards (common
core) and the ages assigned to the milestones were calculated based on those standards. As
students use the system and milestones are completed, the Elephant Age™ is updated live and
a graph is displayed for the student.

Data Collection Methodology

We are analyzing the history table in Elephant Learning. Upon answering a question within the
Elephant Learning system, a history record is created within the database. The history record
contains:

e exam: a flag indicating whether the history item was created during the placement exam

e event_type: an internal indicator of the type of the history item (pass/fail/milestone
pass/subject pass)

e clephant_age: the current elephant age of the student at the time of passing the
question. If passing a question increased the student’s Elephant Age™, it would not be
recognized until the next history item of the same type.
duration: The amount of time a student spent on a particular question in seconds
play_age: The number of weeks the student has been in the system at the time of this
history item.

We examined the history table in a mongo database that was a backup of the live data. There
were 69,097,889 records within the analysis. The following aggregate pipeline was determined
as optimal for this study.

// Pipeline

[
// Stage 1

{
$match: {
exam: false,
event type: {$in:[-1,1]},
elephant_age: {$gt: 0},
play_age: {$lte: 20},
}

b
// Stage 2

{
$group: {
_id: "$studentld"”,
time: { $sum: "$duration"},
minea: {$min: "$elephant_age"},
maxea: {$max: "$elephant_age'},
maxplayage: {$max: "$play _age"}
}
}
{
$match: {
time: {$gte: 3600},
maxplayage: {$gt: 5}
}
4

// Stage 4
{
$project: {
time: 1,
minea: 1,
maxea: 1,
maxplayage: 1,
avg_time: {$divide: [{§divide: ["$time", "$maxplayage"]}, 60]},
ea_age change: {§divide: [{$subtract: ["$maxea”, "$minea"[}, 12]}
}
}

// Stage 5
{
$group: {
_id: null,
st_count: {$sum: 1},
average_weeks: {$avg: "$maxplayage"},
average_time: {$avg: "$avg_time"},
average _ea_gain: {$avg: "$ea_age change'}
}
}
I

Stage 1: The match operator is a filter on the table.
e We filter the history table for items that are not calculated within exam mode.
e The Elephant Learning system calculates the Elephant Age™ live for each student as
they participate in the individual activities including during the placement exam. For this

query, we only wish to look at pass and fail activities so that we can get an accurate sum
of the time duration and so we only want event_ types of 1 and -1.

e Upon examining the data, there were data points we had noticed that were between the
placement exam exit and the starting elephant age where the student had not passed
any milestones during the placement exam. In this case, the elephant_age in the history
item was set to 0. We filter these records out so that we may calculate the minimum
elephant_age and maximum elephant_age for each student in upcoming pipeline items.

e play_age filter: We only want to look at the first 20 weeks of play. Many students stay
with Elephant Learning, and many students may leave and come back a year later,
skewing the average play_age up once calculated. The play_age is calculated based on
the creation timestamp of the student.

Stage 2: All of the data points from stage 1 are fed into a group by which groups by the
studentld, allowing us to now aggregate the data per student. We have the database calculate:
e time: a sum of all the durations for the surviving history records per student. This is the
total time played within the first 20 weeks.
minea: the minimum elephant_age value per student on the surviving history records.
maxea: the maximum elephant_age value per student on the surviving history records.
maxplayage: the maximum play_age of the surviving history records. This is roughly the
number of weeks of play.

Stage 3: Usage filter. We do not want to examine students that did not use the system for the
minimum usage requirements. In this match stage, we are looking for a total play of 1 hour, and
at least 5 weeks of play. This filters out students that have not played at least 5 weeks, and
have not put in at least 1 hour of play within that time.

Stage 4: This projection allows us to calculate the difference between the maxea and minea. It
also allows us to calculate the number of minutes (averaged over play_age weeks) the student
used the system per week.

Stage 5: Of the resulting records, and based on the previous projection we calculate the
number of students, the average play_age or number of weeks the students were in the system,
the average time duration students played per week, and the average difference in
elephant_age from start to finish.

Mongo passes the results from each stage to the next stage, transforming the data using the
operations provided above. The resulting data would be an analysis of the 67 million records
within the database.

At the end of Stage 4 in the above pipeline, we have a row for each student that has used the

system at least 1 hour (3600 seconds) in total and been within the system for at least 5 weeks.
Because week 1 is play_age 0, a student would have had to have played on the sixth week or
beyond to be included.

Stage 5 actually crunches the data to get the results, it goes over each row in Stage 4 (each
student) and averages the number of weeks, the weekly average usage duration, the average
improvement, and provides a count of the number of rows so that we understand how many
students made it through the initial filter.

Analysis Considerations

Beyond non-usage there are several known challenges that students may have faced within the
data. Prior to 2020, it was possible for a student to miss every question in a placement exam,
indicating that the starting point of the placement exam should have been lowered. The student
would be able to play, but generally does not progress as the initial setting was incorrect. We
have manually recovered students via customer success representatives, but because we are
only looking at the first 20 weeks of usage, their recovery would not be represented within the
data. After 2019, we added capabilities to notify the parent when we detected student struggle
in this manner so that they may manually take action. After 2020, our system was upgraded to
detect many of these scenarios and automatically place the student in an earlier placement
exam.

In 2017, our curriculum was mainly aimed at pre-k, kindergarten, and early elementary students.
In 2018, we added fractions, decimals and percentages and in 2019 we added Algebra. In
2020, we upgraded our Algebra curriculum and in 2021 we have begun adding on top of the
Algebra curriculum with courses such as personal finance. Because we are analyzing all the
data collected since 2017, the average age of the student versus earlier studies should have
increased. The incident of positive results also should also increase due to alterations to the
system making it more effective.

The Results

57170 students learned, on average, 1.67 years of mathematics. Average time in the system
was 13 weeks using the system just under 40 minutes per week. The average age of the
student was 9.37 years of age. The curriculum covers counting through Algebra and we have
accepted students of all ages.

localhost |7 [direct] ») ElProdBackup63022 ¢ > History

=B > 4+ O ol
Pipeline

Pipeline flow

Stage # |Operator |Specification I

> 1 $match {/f enter query here f[studentid: Objectid(*60d1973d9670f30004c53159"), exam: false, event_type: {$in:[-1,1]}, elephant_age: {$gt: 0}, play_age: {$te: 20} } Included in the pipeline

2 $group {_id: "$studentld", time: { $sum: "$duration"}, minea: {$min: "$elephant_age"}, maxea: {$max: "$elephant_age"}, maxplayage: {$max: "$play_age"}, student Included in the pipeline
$match {/f enter query here time: {$g 00}, maxplayage: {$gt: 5} } Included in the pipeline

$project {Jf specifications time: 1, minea: 1, maxea: 1, maxplayage: 1, studentstartage: 1, sage: {$divide: ["$studentstartage®, 12]), avg_time: {$divide: [{$divide: [*$ Included in the

$group {_id: null, f<field cumulater1>: <expression 1> }, f[... st_count: {$sum: 1}, average_age: {$avg: "$sage"}, average_weeks: {$avg: "$maxplayage"}, av Included in the pipeline

Pipeline output

[e] 50 Documents 1 to 1 Table View

Output > st_count

_id |st_count |average_age |average_weeks |average_time |average_ea_gain |

I 57170.0 ¥19,37263424873 11 13.3621129963 I 300770966451 I 1,6697981896()

1 document selected

[#) Count Documer B 00:04:32.097

We then decided to narrow down on the first 3 months of usage, so we changed the initial filter

to only look at the first 12 weeks of data, and asked for only students that played for at least 10
weeks.

[localhost |7 [direct] ¢ > (O ElProdBackup63022 & > B History
=B > - F Tl W8
Pipeline

Pipeline flow

Stage # |Operator ification |

> 1 Smatch { alse, event_type: {$in:[-1,1]}, elephant_age: {$gt: 0}, play_age: {$ite: 12} } Included in the pipeline

>2 $group {_id: "$studentid®, time: { $sum: “$duration"}, minea: {$min: "$elephant_age"}, maxea: {$max: “$elephant_age"}, maxplayage: {$max: "$play_age"}, student Included in the pipeline
$match { time: {$gte: 1800}, maxplayage: {$gte: 10} } Included in the pipeline

>4 $project { time: 1, minea: 1, maxea: 1, maxplayage: 1, studentstartage: 1, sage: {$ '$studentstartage", 12]}, avg_time: {$divids e", "Smaxplay Included in the pipeline

>5 $group {_id: null, st_count: {$sum: 1}, average_age: {$avg: "$sage"}, average_weeks: {$avg: "$maxplayage"}, average_time: {$avg: rage_ea_gain: Included in the pipeline

Pipeline output A Resuits may be out of date - please refresh to update.
5 Documents 1t0 1 R Table View
Output

|st_count |average_age I

|average_time |average_ea_gain I

id average_weeks o ge_e:
Cnull [@33077.0 [9.3312447722¢ [E111.401033951C .684149681€ (5168210712882

0 documents selected

As a result, we narrowed it to 33,077 students, the average age about the same at 9.3. Average
weeks in the system are as expected at 11 weeks. The average time using the system is
actually slightly higher at 43 minutes per week. The average gain was maintained at 1.68 years
of mathematics learned.

Breakdown by Age

An alteration to the above query at stage 5 would allow us to breakdown the data by the age of
the student.

Stage 5:

$group: {
_id: {$toint: "$sage"},
st_count: {$sum: 1},
average_age: {$avg: "$sage"},
average _weeks: {$avg: "$maxplayage"},
average_time: {$avg: "$avg_time"},
average_ea_gain: {$avg: "$ea_age change"}

The difference between this stage 5 and the previous stage 5 happens on the _id field, which
we ask it to group by the integer number of the starting age of the student (rounding down). So
if the student was 7.9 years old, that student would be grouped into the 7 year old category.

The resulting two charts break down usage by age, and then the average gain of the students
by age. We have truncated the ages by only those that contained more than 50 students. For
example, it appears that 5 students started at age O (likely erroneously), so we have chosen to
remove that data so that the displayed data only shows ages with more than 50 students. We
have inserted a table with teh values so that the reader can see the number of students per
each age level..

Usage by Age
B Avg weeks [Avg Play Per Week (minutes)

50.00
40.00
30.00

20.00

Average Gain

10.00

0.00

Age

Average Gain by Age (Years)

3.00
2.00
£
4]
O}
4]
[#)]
0]
g
< 1.00
0.00
Age
Student Avg Play Per Week Average Gain
Age Count Average Age Avg Weeks (minutes) (Years)
2 232 2.58 14.61 17.90 1.91
3 1139 3.53 13.93 18.20 2.36
4 2445 4.50 13.87 21.19 2.53
5 4126 5.45 13.51 27.56 1.97
6 5029 6.45 13.42 31.98 1.96
7 6244 7.44 13.28 39.12 2.02
8 6809 8.43 13.36 40.58 1.54
9 7051 9.43 13.26 44.72 1.50
10 6829 10.42 13.34 44 .11 1.39
11 5849 11.41 13.29 44.36 1.37
12 4342 12.41 13.26 47.76 1.45
13 3048 13.41 13.30 48.76 1.49
14 1948 14.37 13.19 47.61 1.51
15 1081 15.38 13.03 47.21 1.53
16 630 16.41 13.53 39.01 1.52

17 185 17.34 13.37 39.51 1.58
18 61 18.35 12.98 37.48 1.31

Conclusions

In 2017, analyzing our initial 50 students, we had determined that students had learned an
average of 1.5 years of mathematics over the course of 10 weeks (average), using the system
22.5 minutes per week. The average age of the student was 5 years of age and the curriculum
at the time covered through multiplication and division.

An older average student population gives us a larger attention span allowing for more usage
naturally. However, results have remained consistent in that the gain over approximately 3
months is over 1.5 years.

Elephant Learning was effective for students of all ages. Minimum gain was 1.31 years
(average) for 18 years of age. Younger students tended to gain more. Children at younger age
have less materials to master and avoid mathematics anxiety altogether. Oftentimes, young
students' Elephant Age is ahead of their age. In this scenario, the student likely is unaware that
the materials received are for older students.

Elephant Learning guarantees that students within the system will learn at least 1 year of
mathematics over the course of 3 months when they use the system 10 minutes per day, 3 days
per week. Given the above data and assuming a bell distribution, over 90% of students will
achieve those results naturally. With human intervention either in the classroom, by the parent,
or by one of our results counselors, we can drive success rates to 100% for students.

10

