Periodic split method: learning more readable decision trees for human activities
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Abstract

Placing your trust in algorithms is a major issue in society
today. This article introduces a novel split method for de-
cision tree generation algorithms aimed at improving the
quality/readability ratio of generated decision trees. We
focus on human activities learning that allow the defini-
tion of new temporal features. By virtue of these features,
we present here the periodic split method, which produces
similar or superior quality trees with reduced tree depth.
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Résumé

La confiance dans les algorithmes est un probleme de so-
ciété majeur. Cet article introduit une nouvelle méthode
de calcul de split pour la génération d’arbres de décisions
permettant I’amelioration du rapport qualité/lisibilité des
arbres générés. En nous focalisant sur [’apprentissage
d’activité humaines, nous définissons des nouveaux at-
tributs temporels. Grdce a ces nouveaux attributs, nous
introduisons la méthode de split périodique qui permet de
réduire la profondeur des arbres pour des performances
similaires.
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1 Introduction

Trust in algorithms is a major question for societies to-
day. Crucially, the justification of the decision made by an
Al-based system regarding humans will become an essen-
tial requirement. When a system interacts with humans,
it should be transparent enough to check decision results
and detect illicit discrimination [3]. This topic has taken
on such importance, that a law' was passed on March 14th
in France; it states that “rules making decision concerning
individuals based on algorithms can be subject to explana-
tion on user request”
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User-centric applications such as home automation, coach-
ing or personal assistant services can take advantage of user
data to provide personalized and adaptive interactions. To
this end, applications must be able to continuously learn
from a user’s habits and preferences in order to predict their
needs, in particular when bearing in mind the time factor.
Machine learning algorithms are powerful tools that au-
tonomously find hidden rules or relations in data, and can
be used to classify, predict or decide based on what they
have learned. In this context, one of the difficulties is to
balance predicting power and explainability. For instance,
with sufficient data, deep-neural networks (DNNs) now
have a impressive power to predict. However, the neural
network on which decisions are being make can be consid-
ered as a "black box" where, even though it is possible to
read every weight of the DNN, is is almost impossible to
explain specific decisions.

Decision trees are a way to describe predictive models,
and up to a certain size they can be understood and ex-
plained, and even considered "white boxes". Algorithms
like CART [1] or C4.5 [8] generate predictive decision
trees from training data. Compared to "black box" learning
algorithms, such as neural networks, they can learn quickly
and perform well even when provided with a very limited
amount of data. However, decision trees tend to be less
accurate than the aforementioned

Decision tree learning algorithms are therefore very inter-
esting in the context of learning from human behavior to
enable automation, in the main because of their explain-
ability. Furthermore, one area of particular importance lies
in the repetitions and seasonality in the data. For instance,
if we want to learn the sleeping habits of a person, we may
want to learn when he/she falls asleep, when he/she wakes
up in the morning, and whether he/she changes his/her
sleeping habits during the weekend, etc. It is already pos-
sible to model time data such as the day of the week or
the time of day as continuous values to generate decision
trees with standard methods, tough this can lead to deci-
sion trees that are unnecessarily complex and difficult to
read, and does not accurately represent the periodic nature
of repetitive time data.

In this paper we introduce a new representation and associ-
ated decision tree splitting method for periodic time prop-
erties such as the time of day or day of the week. This new



method aims to improve the quality of predictive decision
trees in terms of explainability and simplicity, especially
when applied to data describing human activity. The pa-
per is organized as follows : section 2 presents the related
works, section 3 the formal definition of a split, and finally
we present the main contribution of the paper, the periodic
split, in section 4, experiments are shown in section 5.

2 Related works

Much research has been carried out in the field of decision
trees, in an effort to improve their quality/readability. We
would like to present here related works, but also to dis-
tinguish this work from previous approaches using similar
topics.

2.1 Spatial decision trees

In the initial C4.5 decision tree algorithms three types of
data are taken into account : continuous, discrete and cate-
gorical. Each type leads to a different split method. To im-
prove the quality of the split, it is possible to add new types.
For instance, many researchers have worked on learning
based on spatial data. In these cases, the classical splits
perform poorly, and the typing of certain features as "spa-
tial types" can improve results. For instance, in [5], the
authors use oblique splits for spatial data because they are
better suited to this type of data. In [7] the authors generate
predicate functions to create new features and then learn
the tree using both spatial and non spatial features.

2.2 Handling time in decision trees

This paper presents a new way of handling time in decision
trees and differs from previous work by not applying first
a transformation on the temporal information and then ap-
plying a classical decision tree algorithm, but instead, by
modifying the way the splits are computed on a temporal
feature

There are also various ways of representing temporal infor-
mation. For instance, decision tree algorithms have been
adapted to split on time series by introducing a similarity
measure between time series [10]. However this work, as
well as others interested in time series, does not focus on
human activities, which is where our prime interest lies.

3 Splits and multisplits algorithms

Split algorithms are a crucial part of decision tree genera-
tion. Multisplit is an extension of the classical split aimed
at improving the quality and readability of the resulting de-
cision tree. In this section we formally define both.

Let S be a training set. A sample s € S is a vector
§ = (sg,...8n,c), composed of ¢ features and a class c.
The value of the feature ¢ for sample s is noted as val;(s).
Classical kinds of feature value types are numerical (dis-
crete or continuous) and categorical.

A split function over S takes an feature ¢ and splits it into
k subsets S = U?:o S; according to the values of val;(s).

For instance, equation 1 represents a split on a continuous
feature according to a threshold value 7T'.

ey

Sing{s € Slval;(s) < T}
Ssupis € Slval;(s) > T}

To build decision trees, classical algorithms, like C4.5,
compute for every feature the maximum (possible) gain
if S is split into subsets according to every possible split
value. This gain is based on various measures, depending
on the algorithm : for instance C4.5 uses information gain
measures. Once every maximum gain has been computed,
the split feature ¢ is selected with its best split value 7" by
selecting the couple with the best gain. Following this, two
subsets are computed using Eq.1 and the algorithm pro-
ceeds recursively on the two created subsets.

However, as stated in [2], non-binary splits [4] on contin-
uous features make the trees easier to understand and also
seem to lead to more accurate trees in some domains. A
n-split on a continuous value is described by Eq.2.

So{s € Slval;(s) < To}

S1{s € S|val;(s) €]To, T1]}
.1 0,41 @

Sn—1{s € S|val;(s) > Tp_1}

Multisplit algorithms belong to two families depending on
how their arity is defined. The number of splits, or cut
points, can either be fixed in advance [4], or discovered au-
tomatically during the process [9]. We introduce a method
that belongs to the former to create a ternary split on peri-
odic data.

4 Split on periodic data

In this paper, we introduce a new split mechanism, namely
the periodic split operator. This operator, given two
bounds, will split data into two complementary subsets.
The decision tree algorithm remains unchanged, but the
possible splits are computed using Eq.3. The motivation
behind introducing this new operator is that many com-
mon data types do not fit into classical, or even non-binary,
splits. We will further discuss these types in section 4.1.
Sin{s € S|val;(s) € [Tmin, Tmaz]} 3)
Sout{s € S|UCLZL(8)) ¢ [Tmin7Tmaz]}

4.1 Relevant human periodic time types

The motivation behind introducing the periodic split is the
need for a proper way of handling temporal data that oc-
curs during day-to-day human activities. For instance, if
we need to learn the sleeping habits of a person, as shown
in Fig.2, he/she may fall asleep at 10pm, and wake up at
6am. In this use case the usual < and > operators don’t
make sense in terms of readability : 1am is after 10pm but 1
is not more than 22. The mathematical operators we use on



continuous values do not match how humans think about
time.

We propose 4 temporal types, namely "Time of day", "Day
of week", "Day of month" and "Month of year" for use
in the model definition. These types define a period after
which the feature value returns to its initial value. Periods
for each type are represented in Fig.1.

In order to clarify and unify operators in the tree we pro-
pose the following notation for periodic intervals, with a
and b between 0 and a period P , [a, b[=

{nP+r:neZreRr>anr <b} ifa<b

%] if a=b

({nP+r:neZreRjr>anr<P}U

{nP+r:neZreRr<bAr>0}) ifa>b

“)

A feature of type "Time of day" can be used to focus on
activities occurring on a daily basis, permitting the detec-
tion of any partitioning S;,,, Spu: Of the period |0, 24], as
follows :

Sin :]IOpm, 6am] (5)
Sout :}6(1771, 10pm}
This notation is a short for :
Sin =]10pm, 12am]U]12am, 6am) ©)
Sout =]6am, 10pm]

The other types are handled in the same way. Additionally,
we always consider that a "Day of month" is in [1; 31] even
if some months are shorter. This assumption has no impact
on the split quality.

24h Oh  Sun _ Mon

O

(a) Time of day

@ D(?jn

(¢) Day of month ~ (d) Month of year

(b) Day of week

Figure 1: Usual time periods
Once a decision tree has been learned, we simply use the

in operator to make a decision,

4.2 Algorithm

We provide a naive algorithm to compute splits on periodic
types. While it is straightforward to use non-binary split

time_of_day

[07:00;22:09:59( [22:09:59;07:00(

AWAKE ASLEEP

Figure 2: Example of periodic split

methods, for the sake of clarity, we stay focused on a sim-
pler binary split algorithm. The interested reader can refer
to [9] for further details on non-binary splits.

Since splits are a partition of the input dataset, one and only
one partition will contain the start/end point of the period
(an interval a, b] with a > b). We are only considering bi-
nary splits, hence we first find the non-looping split, while
the other is the complement of this interval over the period.
The algorithm to find the best gain for a periodic feature ¢
is:

1. Sort S in ascending order according to val;(s)
2. Foreacha € §'

(a) Foreachb € S' > a

(b) Compute the information gain when splitting in
la, b] and ]b, a]

(c) Save the gain and the splits if better that current
maximum

3. return best gain and intervals

5 Results

We use data from a connected watch (a Withings Ac-
tivity) to predict whether a person is sleeping or not at
a given moment in time. For clarity, we built a very
simple model where each observation is defined by s =
(time_of_day, day_of_week, state?), where state is ei-
ther "AWAKE’ or *ASLEEP’ depending on the sleeping
status of the person. The structure of the dataset is pre-
sented Table.1 : it is made of the status of a person, mea-
sured every 10 minutes. The overall activity for our two
users is presented 4. We then compare the results ob-
tained using classical splits against the periodic splits in-
troduced in this paper. Data for two different and inde-
pendent persons, c and s, are collected over a three month
period and used for classification, while a fourth month is
used for validation. We use the F'1 score (computed by

1%%) and show how it evolves with the max-
imum depth of the tree. The results are presented in Fig.5.
For a depth of 2, the two models using periodic intervals
perform far better than those using classical continuous
splits. This is because our method performs 2 successive
binary splits in one single step. We have to increase the
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Figure 3: Impact of periodic types in generated decision trees, dataset ¢

depth to 5 before the continuous splits attain the same qual-
ity as the periodic methods. Further increasing the depth
does not impact performance, both algorithms achieving
the same quality.

6 Conclusions

In this article, we present a new split method for decision
tree generation algorithms. We demonstrated it could be
applied to C4.5 to achieve a better performance/depth ra-
tio compared to the traditional continuous split method in
a classification use case. The same periodic split method
can be used in other decision tree generation algorithms
both for classifications, using other scoring method such as
the gini coefficient, or for regressions with the same advan-
tages.

The naive implementation we describe in section 4.2 has
a complexity of O(n?) which is fine for simple use cases
but leads to bad performances on large data sets. Now that
we have validated the gain of our approach, we are inves-

tigating different strategies to achieve a linear complexity
by reducing the search space of the two split points thanks
to simple precalculations.

We focused on the application of the periodic split method
on time, using basic time units as periods : the day, the
week, and the month. These periods have a high relevance
when it comes to modeling human activities. However, fur-
ther to this, other time periods can be significant, such as
fortnights, lunar cycles, quarters. Beyond human activi-
ties other phenomena follow different time periods. We are
investigating the usage of feature engineering techniques
detecting periods in data sets such as autocorrelation [6]
in conjunction with our algorithm. Other kinds of features
could also benefit from the same split method; for instance,
geodetic coordinates periodic splits could lead to a better
understanding of geographic features.

Decision trees have a very interesting property when it
comes to creating models that will interact with humans :
when kept under a certain size, they are explainable, re-
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Figure 4: 3 month of sleep data for users c and s

Datetime State Day of week | Time of day
2017-02-01 00:00:00 | ASLEEP 2.0 0.000000
2017-02-01 00:10:00 | ASLEEP 2.0 0.166667
2017-02-01 00:20:00 | ASLEEP 2.0 0.333333
2017-03-01 22:10:00 | AWAKE 2.0 22.166667

Table 1: Sample of the sleep dataset

maining "white boxes". We have proven that the periodic
split method we presented exhibits better results than the
traditional methods for a constrained tree size, hence a net
gain in explain ability. Furthermore, this new algorithm re-
sults in decision tree reasoning on time which is different
from time boundaries and ranges. This representation is
not only more compact but also more natural for humans
to read, thus fostering the collaboration between humans
and Al
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