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Abstract. In the Internet of Things (IoT) domain, being able to propose
a contextualized and personalized user experience is a major issue. The
explosion of connected objects makes it possible to gather more and
more information about users and therefore create new, more innovative
services that are truly adapted to users. To attain these goals, and meet
the user expectations, applications must learn from user behavior and
continuously adapt this learning accordingly. To achieve this, we propose
a solution that provides a simple way to inject this kind of behavior into
IoT applications by pairing a learning algorithm (C4.5) with Behavior
Trees. In this context, this paper presents new forgetting methods for
the C4.5 algorithm in order to continuously adapt the learning.
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1 Introduction

In the Internet of Things (IoT) domain, services must be more intelligent, to the
extent that proposing a personalized service to the user has become one of the
principal challenges; or to put it another way, ensuring that applications give
the user an impression of uniqueness, by learning his/her behavior and acting in
consequence, has become a primary objective. Moreover, as an end user never
has the same behavior over the course of a year, a service that learns a specific
characteristic of his/her behavior must be capable of adapting. In this domain,
smart devices must quickly provide the service they claim to provide, otherwise
they will have no utility in the eyes of their user, which reinforces the idea that
the learning method offered within a service must rapidly satisfy end user needs.

This paper proposes an adaptive learning method for developers with a White
Box approach. The White Box learning notion is a fully controllable, predictable,
powerful and understandable learning algorithm, that does not just deliver an
output depending on an input but also visually displays how this output was
found. In contrast, Black Box algorithms remain very powerful, but are harder
to explain. For instance, in Deep Learning algorithms, understanding how the
weight of an artificial neuron will impact the output can be tricky. For the
White Box approach, we choose the Behavior Trees (BTs) [4] mechanism widely
used for Artificial Intelligence in video games [10] which are well suited to the
characteristics of the White Boz (Table 1) [8]. Introducing learning in BT's should



not break this White Box approach. For instance, Q-Learning algorithms can be
integrated in BTs[7, 6] but this integration is too Black Box by nature and has
a very slow convergence. Learning algorithms that are quite capable of such
characteristics are classifiers and more precisely algorithms inducing Decision
Trees because they provide an easy way to read the rules generated. We chose
the famous C4.5 classifier algorithm [13] to introduce learning in BTs while
maintaining a White Box approach. Figure 1 shows the integration of learning
in an Al designed by a Behavior Tree. All the learning capacity is concentrated
in a limited part of the BT and as we use a classifier inducing a Decision Tree,
this part also provides a graphical view.
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Fig. 1. Integration of learning in a Behavior Tree

This paper is organized as follows: Section 2 explains the choice of the C4.5
algorithm among other classifiers and adds some details on the algorithm itself;
3 proposes new forgetting methods to add adaptability to C4.5; and 4 presents
an evaluation of each of these methods and their performance.
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Table 1. Comparison of decision-making techniques.

2 Related Work

As previously mentioned, our research into a White Box learning led us to choose
the classification algorithm C4.5. This algorithm induces a Decision Tree from
a training set and is based on the information gain concept. It was identified as
one of the top 10 algorithms in Data Mining [15] and other work led by Gracia
and Herrera [9] used statistical tests over 30 database to show that the C4.5
algorithm is the best classifier, when compared to CN2, Naive Bayes, 1-Nearest
Neighbors and a Kernel classifier.

Let D be the training set composed of samples x; for the C4.5 algorithm
such that:

D ={x1,29,...,2n} (1)

The samples are themselves composed of a set of predictive variables A named
attributes and a predicted variable Y, that can have multiple values named
classes. For example with T" attributes as the input, the first sample is defined
by:

Tr, = Al U {yl} with A1 = {a171,a172, ey C(,LT}

In the above a; ; is the value of the jtP attribute of the i*" sample and y; the
predicted output value of the it sample.

To choose the right algorithm, which would form the foundation of our learn-
ing algorithm, we had three main criteria. The learning algorithm must have the
following attributes: the White Box property, by inducing decision trees (2.1);
the ability to handle multiple attribute values and continuous attributes (2.2);
the ability to deal with dynamic training sets (2.3).



2.1 A White Box Learning

Since BTs are White Bozx, adding learning to them must keep this character-
istic and therefore, the rules induced by the learning algorithm must be un-
derstandable. The first methods we considered were the Case Based Reasoning
algorithms. Case Based Reasoning [11] is a process that aims to solve new prob-
lems using a database of solutions. Another option we considered was Boosting
Algorithms, which are based on the creation of highly accurate prediction rules
thanks to the combination of weak and inaccurate rules. One of the most famous
and the most used is the AdaBoost algorithm introduced by Freund and Schapire
in 1995[14]. Yet, neither Case based Reasoning nor Boosting algorithms provide
simple visual output, something that Decision Trees do very well indeed.

2.2 Multiple attribute values and continuous attributes

A few years before the creation of the C4.5 algorithm, CART [3] was published.
This algorithm handles both numerical and categorical variables and induces
both a Decision Tree and a Regression Tree. Therefore, CART can propose con-
tinuous outputs thanks to this Regression Tree. However, CART is not adapted
to attributes with multiple values because it creates binary trees, whereas C4.5
is well adapted for this. Indeed, if an attribute has more than two possible values
the tree induced by C4.5 will have a branch for each possible value.

The predecessor of C4.5, ID3 (Iterative Dichotomiser 3) [12] induces also a
Decision Tree from a training set but it was very hard to use on continuous
data because searching for the best split was time consuming. The handling of
continuous attributes by C4.5 was one of the numerous improvements on ID3.

2.3 Data Streams

C4.5 is used for the creation of Decision Trees from a static database. However,
in our application the training set changes every time a new sample from the
end users behavior arrives, which is a situation that is similar to Data Stream
Mining [2]. A Data Stream consists of a sequence of data items arriving at high
frequency, generated by a process that is subject to unknown changes. One of the
major priorities of Data Stream Mining is its ability to adapt to these changes by
predicting the goal or setting up forgetting methods on the incoming data. As in
our application of learning there is a constant follow-up of the end user, and the
use of C4.5 algorithm must be equivalent to a Data Stream Mining by applying
forgetting methods without this data rate constraint, but with the problem of
constant adaptation to the incoming information.

3 Forgetting Methods

As the end user behavior is variable, the learning must be able to adapt effi-
ciently. However, the C4.5 algorithm is not suited to fast adaptation because, in



order to counterbalance previous training samples, the algorithm needs as many
new cases as previously encountered. For instance, if the training set is composed
of 50 days of constant behavior no behavior variation during 50 days and if
the user decides suddenly to change all his previous decisions, then it will take
another 50 days for C4.5 to induce a tree with the new user behavior. Indeed the
samples from the first 50 days give more information about the user behavior
than the new ones because they are more numerous. And as C4.5 is based on in-
formation gain measurement, the first behavior is still induced by the algorithm.
Therefore, in this section several methods are proposed to adapt the learning
to variations. This paper proposes two new methods for forgetting, namely the
Random Forgetting(3.2) method and the Leaf Forgetting(3.3) method.

3.1 Sliding Window

This method is based on the current algorithms used in the application of Clus-
tering Algorithms on Data Stream [5] which consists in applying a Sliding Win-
dow to the incoming stream. This method makes it possible to remember all the
recent events that occurred inside this window.

For the Sliding Window method, a maximum length IV for the training set
is chosen and if this upper limit is reached, every time a new sample is added
the oldest (x1) is deleted. Let z be a new sample, if Card(D) = N

D= (D\ {a1}) U{z} (2)

3.2 Random Forgetting

For the newly introduced Random Forgetting method we define a maximum size
N for the training set and once this ceiling is reached, every new case added to
the data set leads to the random deletion of a stored case. Given the function
rand(N) picking randomly an integer between 0 and N — 1 and a new sample
z, if Card(D) = N:

D= (D \ {xrand(N)}) U {Z} (3)

The approach with this method is, compared with the Sliding Window, to
introduce an unpredictable deletion in the training set in order not to forget
necessary the oldest samples, which could be significantly important for the
learning. It allows to remember important events relatively spaced in time.

3.3 Leaf Forgetting

The second method introduced in this paper is termed Leaf Forgetting. Here,
each sample in the training set has at its disposal a weight, named w.

Once the tree is induced, the training set can be partitioned in accordance
with the leaves of this tree. Let L; be the set of training samples reaching the
i-th leaf and k the total number of leaves, then D can be defined as follows:



k
D=JL (4)
i=1

When a new sample is joined to the training set, it checks in which leaf of
the previous tree this sample is arriving. All the data stored in this specific leaf
of the tree have their weights increased by an update function f. Then if the
weight of a case is higher than a maximum w4, it is deleted from the training
set, which can be defined by:

Let y be a new sample for the data set:

y € Li=Vr € L, wy = f(wy) (5)

Let O be the set in which are the samples that must be deleted from the
training set defined by:

0= {Z7wz > wmam} (6)
Then the new training set is defined by:

D =D\O (7)

For a fast adaptation, it is important that no cluster be strongly preponder-
ant on others and this is where this method has an advantage over others because
increasing weights in each leaf favors over time a balance between learned be-
haviors.

4 Results

During this experiment, agents designed with BTs control the temperature in
each room of an inhabited house and learn the temperature the user desires. For
this simulation we focus on one room.

The available data are the outdoor temperature (OutTemp), the user presence
(Presence), the time (Time)and whether or not the user is working on this day
(Working). The temperature (Temp) in a room has 3 values: ”"Low”, ”Medium”
and "High”. Each time the user decides to change the temperature, the state of
each sensor plus the desired action can be added to the training set:

A = {OutTemp, Presence, Time, Working}
and
Y = {Temp}

Furthermore, every 10 minutes the agent learns the current situation but also
computes the tree previously induced and applies its decision for the temperature
in the room. If the end user is not satisfied with this decision and changes the
temperature to a preferred level, then the agent does not make any further
decisions until its decision is the same as the users. These user interactions are



recorded for the experiment. Then, when the day is over, we apply a forgetting
algorithm and C4.5 is computed on the current training set.

The metric used to measure the efficiency of our smart agent is the number of
user actions that occur during the simulation. This measure shows the number
of actions an end user has to perform in order that the agent acts on his/her
behalf. Indeed, the fewer interactions the user has to perform, the more efficient
the learning adaptation.

4.1 Adaptation speed

As a user can rapidly change his/her behavior, the learning algorithm must be
able to adapt quickly to match the new behavior. The speed of adaptation is
a strong criteria for forgetting because it is necessary to limit the number of
human actions with the device that are required for it to suit his preferences.
Performance in terms of speed for each forgetting method is evaluated in the
following simulation:

This simulation (Figure 2) lasts 100 days during which the user has a constant
behavior for 50 days and then inverses completely his previous actions if the user
preferred a ”High” level, he switches to "Low” and vice versa. The simulated
user behavior is the following: the user is working from Monday to Friday and
is not working at the weekend. His/her behavior changes, depending on whether
the current day is a working day, or at the weekend. The user likes to sleep in a
warm room and turn off the heating when he/she goes to work. At the weekend,
when the user is at home, he/she likes to set the temperature at a medium level.
For this first experiment the input of the classification algorithm is limited to:

A = {Presence, Time, Working}
and
Y = {Temp}

During this experiment five simulations are launched:

— Without any forgetting method

— Using a Sliding Window with N = 720 (~ 5 days)

— Using Random Forgetting with N = 720 (~ 5 days)

— Using Random Forgetting with a length of 20 days N = 2900 (~ 20 days)
— Using Leaf Forgetting with f(w) = w + 1 and w,q, = 100

Results As we can see in the Figure 2, without a forgetting algorithm, the
number of human actions is not only high but it also takes a long time to learn
new behavior. The explanation for this very long adaptation is that the training
set has accumulated a lot of samples about the user behavior during the 50 first
days, which produces a decision tree that is difficult to modify. Indeed, as the
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Fig. 2. Total number of user actions over a period of 100 days with a behavior change
at the 50th day (the lower the better).

algorithm keeps all samples, it needs as many new samples about the inverse
behavior as the samples accumulated during 50 days.

The Sliding Window is strongly dependent of its length: if it is small, its adap-
tation is fast but it forgets past actions like the behaviors during the weekends.
Indeed, as we can see in Figure 2, every 7 days the user changes the temperature.
This is due to the Sliding Window length that is less than five days, then at the
end of the working interval, the weekend behavior is totally forgotten and must
be learned again. With a larger size the Sliding Window would have remembered
older events but would have had slower adaptation.

Random Forgetting is also dependent on N, indeed as we can see, the smaller
N , the faster it becomes. This is explained by the fact that the smaller N is
the higher the probability deletion of an old undesirable behavior becomes, and
consequently it takes less time to learn a new behavior. For Random Forgetting
with N = 2900 (~ 20 days), as N is high, the number of samples representing
the old behavior takes time to decrease and therefore a lot of user actions are
necessary to delete this previous behavior.

Leaf Forgetting has the best performance in this experiment and therefore has
the fastest adaptation of all methods. Increasing weights only in the leaves of the
current behavior leads to explicitly forgetting targeted behavior and therefore
makes it possible to rapidly counter the previous behaviors the user had. Through
this forgetting method it is possible to balance the number of samples in each
leaf induced by C4.5 and thus, it ensures that few leaves are preponderant over
others.



4.2 Memorization capacity

The device continuously learning the user behavior must not only have fast
adaptation, but must also keep in memory events likely to occur a long time
after they first occur. For example, in summer there are no low temperature
levels equivalent to those likely to occur in winter, and therefore, even if the
learning has to be adapted to the current season, it must not forget what it has
learned during the previous season when adapting to the current one. Perfor-
mance concerning the memorization of each forgetting methods is evaluated in
the following simulation:

This simulation (Figure 3) lasts 2 years during which the user adapts the
inside temperature in accordance with the outdoor temperature [1]. For this
experiment, the outdoor temperature is added in the input:

A = {OutTemp, Presence, Time, Working}
and
Y = {Temp}

During this experiment, three simulations are launched:

— Using Random Forgetting with N = 720 (~ 5 days)
— Using Random Forgetting with a length of 20 days N = 2900 (~ 20 days)
— Using Leaf Forgetting with f(w) = w4+ 1 and wp,q, = 100
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Fig. 3. Total number of user actions over a two years period considering outdoor tem-
perature (the lower the better).



Results As previously mentioned, the Random Forgetting method is strongly
dependent on its length and this simulation highlights this constraint. In addi-
tion, as we can see,during the first year the Leaf Forgetting is faster in learning
the user behavior than the Random Forgetting. This is related to the results
concerning the first experiment and the fast adaptation of Leaf Forgetting.

What is interesting in this simulation is to see that Leaf Forgetting has a
strong control of the house from the end of the first year to the middle of the
second year, a domain where the Random Forgetting flunks. But on the 545"
day, it has forgotten the previous year. This can be explained by the deletion of
the leaves corresponding to the behavior on the 180" day. Indeed, the number of
samples in the corresponding leaves is not high enough to be relevant compared
to all the new samples accumulated during the following year and these leaves
are no longer induced.

4.3 Noise resistance

Sometimes the user can have a different behavior for a few moments, or some
disturbances can occur, such as the interaction with someone unfamiliar with
the house. These kinds of events are isolated and must not have an impact on
the future, unless they are definitive. Performance considering these noisy events
for each forgetting method is evaluated in the following simulation:

This third simulation (Figure 4) has the same inputs as the first but adds
noise on some days. The simulated user also has the same behavior but it is pos-
sible that for one or two days the user will completely change his/her behavior.
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Fig. 4. Number of total user actions over 100 days with random behavior changes (the
lower the better).



Results Without any forgetting method, the learning is strongly resistant to
noise because it accumulated enough samples to reinforce the learned behavior.

Concerning the forgetting methods, the Random Forgetting and the Sliding
Window with short lengths are not resistant to noise because they do not have
enough samples in their training set. Indeed, we can see that with a higher N
Random Forgetting has a resistance to noise that is far better.

Of all methods tested, Leaf Forgetting is the method the most resistant to
noise. The user interacted on a single occasion during the 100 day period, once
the behavior had been learned. This is explained by the constant reinforcement
of behaviors previously learned and the balance created between each leaf.

5 Conclusion and Future Works

In this paper we have presented several forgetting methods for the C4.5 al-
gorithm and analyzed their performance. In the Internet of Things, proposing
personalized and contextualized applications leads to the use of algorithms ca-
pable of adapting with forgetting methods. Forgetting is necessary in the IoT
domain because of the user behavior inconsistency and the necessity to offer the
user an impression of uniqueness. The methods implemented to propose such
a learning must have a White Box namely a controllable and understandable
learning. In this paper, three new methods are proposed, Sliding Window, Ran-
dom Forgetting and Leaf Forgetting. As we can see from the results of a series
of experiments, the Leaf Forgetting method has the best performance and meets
the expectations of a learning that can be quickly adapted to the user.

In the future, an improvement for Leaf Forgetting would be to integrate
the weight of every leaf directly into the computation of the C4.5 algorithm,
like Data Stream Mining algorithms do with incremental classifiers [5]. This
approach should improve the performance in terms of memorization and the
balance between each leaf by normalizing the information of the leaves.

Another perspective to this work is to apply the White Box learning ap-
proach to new domains. We would now like to apply it to Data Streams. This
will bring two new challenges: the larger number and size of samples and their
incoming rate. The application of Leaf Forgetting to Data Streams will highlight
its strengths and weaknesses with this type of data and will lead to improvement
perspective.
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