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Abstract. We present a symbiotic hybrid intelligence system for auto-
mated pick and place in a warehouse logistics setting. This domain is
characterized by the need for systems to deal with long-tailed distribu-
tions of scenarios, consisting of a wide variety of relatively rare edge
cases. Handling of these cases has great impact on the reliability, robust-
ness, and commercial viability of these systems. Rather than attempt to
learn a sufficiently generalized method to handle any potential unknown
situation, our system focuses learning on the most common scenarios
and leverages human flexibility to generate responses to the rarer ones.
As more tail cases and their human-generated responses are seen, they
are learned, moved into the body, and new tail cases take their place.
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distribution.

Introduction

For a long time, successful automation has depended on the existence of highly
controlled and precisely repeatable scenarios. Automated machines could accu-
rately execute hard-coded programs to perform a variety of tasks such as those in
Figure 1, assuming that their was no uncertainty in their state space. Any vari-
ation in the environment had to be explicitly controlled for, or else the machine
might go through the motions, without actually performing the specified work.
With the advent of more advanced control paradigms and novel sensors, this
situation improved. Automated machines transformed into reactive robots, gain-
ing the capability to sense and respond to changes in their environment. Toler-
ances have been relaxed, with systems able to handle greater, potentially uncon-
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Figure 1. Examples of automated machines that require no uncertainty in their state space
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Figure 2. Examples of robots that can sense and respond to changes in their environments

trolled (but bounded) variations in their inputs, while still performing the desired
work to a high degree of quality, as in Figure 2.

Machine learning (ML) has been yet another nail in the coffin of the old
repetitive paradigm. Rather than requiring users to manually specify the accept-
able variance, ML techniques enable the system to both learn the relevant fea-
tures of and extract a model for its operating parameters from examples of the
situations it will be faced with. However, ML-based approaches are not without
their limitations and caveats. They are still GIGO (Garbage In - Garbage Out)
systems, requiring much care and attention as to what they are trained on, and
can suffer from issues of poor generalization (particularly extrapolation beyond
their training data), inscrutability, and unexpected behaviors [1].

In this paper we show how humans (who are, generally, understandable, good
at extrapolation, and behave as expected [at least in our domain]) can counteract
these failings of ML and create a hybrid system to continually adapt to new and
rare scenarios as they arrive.

1. Background

Our work applies to a subclass of warehouse automation problems. For our prob-
lem setting we use a serial manipulator for robotic pick and place applications
and deep learning for perception and machine vision [2].

Robotic pick and place applications are commonly seen in many industrial
settings such as assembly, CNC machining, and material handling (Fig.1). Recent
developments in sensing, machine vision, motion planning and optimal control
have enabled a diverse set of pick and place applications such as manipulation of
deformable objects [3], and academic competitions such as the Amazon Picking
Challenge [4]. For our problem domain, we define the pick and place problem as
moving packaged commercial items (e.g. most items you can see on shelves at a
grocery or a hardware store) and parcels (e.g. plastic and paper envelopes, boxes
and bubble-wrapped envelopes) with an industrial robot from a “pick” pose to a
“place” pose. Designing an object-agnostic " pick” pose generator requires solving
several problems such as object detection, classification, and pick-pose candidate
evaluation; there are various approaches for each set of problems [5] however for
the purposes of this paper we treat the object-agnostic “pick” pose generator as
a monolithic component that leverages modern deep learning methods.

Generating a viable pick pose from 2D and 3D perception data has attracted a
remarkable amount of effort in the research community recently [6,7,8]. Due to the



high variability of items we aim to handle for our problem setting, we assume that
it is not possible to have a fully defined set of items at the time of training a pick
pose generator but rather the set of items is always variable. Recent work [9,10]
has shown promise in using deep learning to generate machine learning models
that can predict object boundaries and classes after being trained with annotated
datasets. Approaches that are shown to work with promising accuracy employ
this standard process to generate predictive models: 1. Collect data representative
of the scenarios the system will have to handle 2. Annotate the data to establish
ground truth 3. Train a prediction model using the annotated data 4. Deploy the
model and monitor its performance in a test/real-world setting.

This standard process assumes that the data collected for training represents
the data that will be encountered in testing. Issues can arise then when this
assumption is violated such as when distributions of the test and training datasets
differ (covariate shift [11]), or if the training samples do not accurately capture
the entire distribution, which can occur if the true distribution is heavy-tailed
[12]. Additional steps are necessary to address these scenarios.

A naive approach is to continue the data collection, annotation, and training
cycle that was started pre-deployment, but doing so can come with a large over-
head cost. An alternate tactic is to use the running system to generate its own
data for continued training, for example through Reinforcement Learning [13].

In contrast with previous work, our domain imposes physical constraints
where every deployed system instance can have a different physical layout, which
limits what can be done in simulation or via data augmentation for continued
training[14]. Thus, our approach differs from previous work in that we employ
deployed systems in the continued training process itself.

To address the unique set of needs of our problem domain, we present a
human-in-the-loop machine learning framework Ouroboros, that approaches the
problems of covariate shift and heavy tails by bootstrapping the standard process
of training machine learning models using data from test cases.

2. Distributional View

At the root of our problem are the intertwined problems of data drift and long-
tailed distributions, illustrated in Figure 3. Data drift (or covariate shift) refers to
the scenario where the distribution of inputs presented to the system shifts over
time, resulting in a different distribution being used at test time (or in production)
than was used for training [15]. As an example, consider the scenario where a
vision system is trained only on outdoor images taken at 9am, but then deployed
and used throughout the whole day. As the sun and shadows move, the input
data will ‘drift’ away from that which the model learned on.

Tail cases, on the other hand, are scenarios that are drawn from the same
distribution as the training data, but are so different and rare as to either not
appear in the training data sample, or be ignored by the training system [12].
Due to their rarity, a learned system (even a well regularized and generalized
one), may behave unexpectedly when encountering a tail case. We note that as
deployed production systems run longer in continuous domains, the probability
of encountering a tail case approaches one.
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Figure 3. The two problems we seek to address. Graphs show the probability (vertical) of par-
ticular scenarios (horizontal) being encountered during operation. In data drift, the distribution
changes between training and deployment, and the system may be asked to respond to scenarios
it has never seen or anticipated. Similarly, in long-tailed distributions, there are many rare cases

that are either not seen, or extremely outnumbered, during training.

These two problems can compound each other. Namely, as a system runs
longer, more and more tail cases occur, in effect shifting the distribution of inputs,
and eventually leading to covariate shift and degrading system performance. To
combat this behavior, many systems incorporate ideas from Out-Of-Distribution
detection [16] to detect when input data falls outside of the training distribution,
and either reject the input and resort to a default policy, or trigger model updates

3. Ouroboros

Our approach, illustrated in Figure 4a, focuses on handling tail cases, and we
view data drift as an issue of tail accumulation (In the extreme, a total shift
of input distribution looks like a flood of tail cases). Our autonomous system
handles the bulk (body) of scenarios and we use local self-feedback from the
robot to detect when our system is not performing well (out of distribution).
Tail cases are handled by a human-in-the-loop oracle who provides immediate
corrective feedback, which doubles as the ground-truth annotation required for
learning. As tail cases repeat, iterative learning incorporates them into the body
of expertise and the distribution of able-to-be-handled-autonomously scenarios,
so the human’s input is no longer needed for them. Instead they will focus on
new, even rarer, tail cases as they arise.

This shift in distribution is illustrated in Figure 4a (lower left). In the ex-
treme, our approach can start with an untrained autonomous system that thinks
everything is a tail case and requires the human to respond to every input. As
time progresses, the most common scenarios will be learned, while the rarer ones
will still require the human to be involved. Eventually, we believe the system will
settle into a steady-state, where the human’s input is required only sporadically,
at a rate determined by the true underlying distribution of inputs.
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Figure 4. Left: An illustration of our system. Samples from the long-tailed input distribution are
first processed by the learned autonomy, generating an autonomous response which is executed
by the robot. In the case of success, the process stops, but if a failure is encountered the stimulus
and autonomous response are passed to a human oracle. The human provides an appropriate
response, which is used to make incremental updates to the learned model. Samples from the
learned ‘body’ of the distribution tend to follow the success pathway (green), while those from
the unlearned ‘tail’ tend to follow the failure path (red). Continued learning results in the shift
of the dividing line between body and tail (blue). Right: Our test system, consisting of a 6DOF
arm and a RGBD camera. The task is to pick items, one at a time, from the blue tote and place
them into the cardboard box as quickly as possible.

3.1. Case Study

We implemented our system on the production system shown in Figure 4b. Start-
ing with a traditionally trained vision model the system ran for 15 weeks, during
which 23K out of 36k inputs were deemed to be tail cases (64%, speaking to the
heaviness of the tail of the input distribution) and were sent for human handling.
Analysis of the model performance on the tail case data is in Table 1, and shows
that the tail data is sufficiently different from the original training data to have
degraded performance. After re-training using the new data, our updated model
achieves similar performance on both the old and new data, illustrating that the
tail has become part of the body.

ModellD ‘ Body Performance ‘ Tail Performance
Original 0.9523 0.5793
Retrained | 0.9454 0.8153

Table 1. Average Precision scores before and after tail incorporation

4. Conclusion and Vision of the Future

We have presented a symbiotic hybrid intelligence system for automated pick and
place in a warehouse logistics setting. Such tasks are the epitome of the dirty,
dull, and dangerous jobs that we want robots to take over from humans, but there
are growing concerns of increased automation inducing an employment shortage,
despite the current inability of employers to staff all of their shifts. Additionally, it
is our belief that any attempt at a pure Al solution to this problem using current



technologies will fail, due to the ever-shifting nature of the items handled and
the infinite variety of possible situations the system has to handle. Instead, by
leveraging the skills of both humans (adaptability) and robots (repeatability) we
can enable robots and humans to work together, each doing what they do best.
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