
22/09/22

Security Audit

SimpleDEFI
Asfalia Audit on Oct 15th, 2022
Updated on 20/02/2023

Asfalia SimpleDefi Security Audit

Table of Contents
Summary
Overview
 Project Summary
 Scope
 Project Overview
 Audit Summary
 Vulnerability Summary
 Project Overview

Findings
Appendix
Disclaimer
About

Asfalia SimpleDefi Security Audit

Summary
This report has been prepared for SimpleDEFI to discover issues and vulnerabilities in the
source code of the SimpleDEFI project as well as any contract dependencies that were not part of
an officially recognized library. A comprehensive examination has been performed, utilising Static
Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

 • Testing the smart contracts against both common and uncommon attack vectors.
 • Assessing the codebase to ensure compliance with current best practices and industry
 standards.
 • Ensuring contract logic meets the specifications and intentions of the client.
 • Cross referencing contract structure and implementation against similar smart contracts
 produced by industry leaders.
 • Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from Medium to informational.
We recommend addressing these findings to ensure a high level of security standards and indus-
try practices. We suggest recommendations that could better serve the project from the security
perspective:

 • Enhance general coding practices for better structures of source codes;
 • Add enough unit tests to cover the possible use cases;
 • Provide more comments per each function for readability, especially contracts that are
 verified in
 • public;
 • Provide more transparency on privileged activities once the protocol is live.

Asfalia SimpleDefi Security Audit

Project Summary

Overview

Project Name

Platform

Chain

Language

Codebase

Commit

Audit Summary
Delivery Date

Audit Methodology

SimpleDEFI

EVM

Binance Smart Chain

Solidity

Files provided

SimpleDefiDiamond: ec7aa3fe9e85d220118fd947ce26e1324d442bcc
SimpleDefiSolo: 3ded73e49269825aae522c3a558c6b70362940a9
SimpleDefiBeacon: a082f36f2bf1ac202c7d4cd30009f37e2d1a8333
SimpleDefiToken: ac462850a5c10c5b9aeec89cbecdf323bb2b4dc5
SimpleDefiEasy: 0x5953f0729fBF901846AF5a91C222DB15634d90E1

Static Analysis, Manual Review

15/10/2022

Total

ResolvedPartially ResolvedPending Acknowledged Unresolved

0 11 0 0 2638

Security Scoring: 85 / 100 Good

Vulnerability Summary

Critical High Medium Low Informational Optimization

1 5 9 15 80

Asfalia SimpleDefi Security Audit

Scope

Repository:

Technical Documentation:

Contracts:

N/A

N/A

Project Architecture & Fee Models

N/A

Contract Dependencies

N/A

Privileged Roles
owner
adminUsers
godUsers

Project Overview
At SimpleDEFI help Retail & Institutions automate and manage yield strategies anywhere on chain
on a single UI. And SimpleDefi help Web3 projects attract liquidity and enable more utility for their
tokens.

Diamond.sol
DiamondFactory.sol
DiamondCutFacet.sol
DiamondLoupeFacet.sol
LibDiamond.sol
OwnershipFacet.sol
sdData.sol
sdDepositFunds.sol
sdInitialize.sol
sdMigration.sol
sdSystem.sol
sdPoolUtil.sol
slots.sol
combine_beacon.sol
combine_proxy.sol
CombineApp.sol
Interfaces.sol
Storage.sol
SimpleDefiToken.sol
SimpleDefiEasy.sol

Asfalia SimpleDefi Security Audit

Title Categories Severity Status

Function Default
Visibility

Code With No Effects

Function Default
Visibility

Typographical Error

Integer Overflow and
Underflow

Volatile Code

Gas Optimization

Coding Style

Gas Optimization

Coding style

Volatile Code

Block Timestap
Manipulation

Gas Optimization

Volatile Code

Gas Optimization

Coding Style

Medium

Optimization

Informational

Optimization

Informational

Low

Medium

Optimization

Low

Optimization

Informational

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Acknowledged

Resolved

Acknowledged

Resolved

Resolved

Code With No Effect Volatile Code Informational Acknowledged

Findings

Type

SWC-129

SWC-100

SWC-135

SWC-100

SWC-135

SWC-101

Total Issues:
37

SWC-135

ID

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

SWC-115Authorization through
tx.origin

Code With No Effects

Authorization through
tx.origin

SWC-115

Function Default
Visibility

SWC-100

Authorization through
tx.origin

SWC-115

Function Default
Visibility

SWC-100

Critical High Medium Low Informational Optimization

1 5 9 15 80

Code With No effects

Code With No Effects

Floating Pragma

Coding Style

Coding Style

Coding Style

Informational

Informational

Low

Resolved

Resolved

Resolved

Floating Pragma Coding Style Low Resolved

SWC-103

SWC-135

SWC-103

SWC-135

#G01

#G02

#G03

#G04

https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-103

Coding Style Informational Resolved

Coding Style Informational Resolved

#13

#14

Unchecked Call Return
Value

SWC-104

Code With No Effects SWC-135

Asfalia SimpleDefi Security Audit

Assembly Usage

Function Default
Visibility

ETH Locked

Uninitialized Storage
Pointer

Code With No Effects

Coding Style

Centralization /
Privilege

Gas Optimization

Coding Style

Gas Optimization

Coding Style

Gas Optimization

Coding Style

Volatile Code

Coding Style

Coding Style

Informational

Low

Optimization

Low

Optimization

Informational

Optimization

High

Low

Informational

Low

Resolved

Acknowledged

Resolved

Acknowledged

Acknowledged

Acknowledged

Resolved

Acknowledged

Resolved

Resolved

Acknowledged

Centralization Related
Risk

Volatile Code Medium Acknowledged

Coding Style Medium Resolved

Coding Style Informational Resolved

SWC-109

Custom

Centralization
/ Privilege

Custom

Custom

SWC-135

SWC-100

#17

#18

#19

#20

#23

#24

#25

#26

#27

#28

#29

#30

#31

#32

CustomBoolean Equality

Assembly Usage

Function Default
Visibility SWC-100

Sandwich Attack Custom

Typographical Error SWC-129

Message call with
hardcoded gas amount

SWC-134

Code With No Effects SWC-135

Code With No Effects SWC-135

Block Timestamp
Manipulation

Medium Acknowledged

Coding Style Informational Resolved

#15

#16

Authorization through
tx.origin

SWC-115

Code With No Effects SWC-135

Gas Optimization Optimization Resolved#33 Function Default
Visibility

SWC-100

Code With No Effects Coding Style

Coding Style

Informational

Informational

Resolved

Resolved

SWC-135

SWC-135

#21

#22 Code With No Effects

https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-109
http://Custom
http://Custom
http://Custom
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-100
http://Custom
https://swcregistry.io/docs/SWC-100
http://Custom
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-135

Asfalia SimpleDefi Security Audit

General findings
Description

ID : G01
Lines 2
Type: SWC-103
Category: Coding Style
Sev: Low

Descript: Floating pragmas are used in the contracts within this repo.
Recom: Solidity version specified in pragma should be defined explicitly to avoid any
potential errors when compiling.

ID : G02
Lines 2
Type: SWC-103
Category: Coding Style
Sev: Low

Descript: Pragma is not consistent between smart contracts.
Recom: Specify the same Solidity version for all smart contracts in order to avoid any
inconsistencies between versions which may lead to unforeseen issues in contract
interactions. Recommend use of Sol 0.8.7 as stable 0.8.X version.

ID : G03
Lines 3
Type: SWC-135
Category: Coding Style
Sev: Informational

Descript: Multiple contracts specify to use ABIEncoderV2, including: DiamondCutFac-
et.sol, DiamondLoupeFacet.sol, DiamondBeacon.sol, Diamond.sol, LibDiamond, com-
bineApp.sol, combine_beacon.sol, IERC165.sol, IDiamondLoupe.sol & IDiamondCut.
sol.
Recom: As of Sol 0.8.0, `experimental ABIEncoderV2` is deprecated as ABI Coder V2
is activated by default.

See https://docs.soliditylang.org/en/v0.8.15/080-breaking-changes.html.

https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-135
https://docs.soliditylang.org/en/v0.8.15/080-breaking-changes.html.

Asfalia SimpleDefi Security Audit

ID : G04
Lines
Type: SWC-135
Category: Coding Style
Sev: Informational

Descript: Multiple contracts contain functions with ‘override’ despite not overriding
from a virtual function.
Recom: Remove code with no effects.

Asfalia SimpleDefi Security Audit

Category

Volatile Code

#1 SWC-129 Typographical Error

Description

Recommendation

Alleviation

In Solidity multiplication should come before division to avoid rounding errors.

Restructure the mathematical operation.

Refactored calculation

Severity Location Status

Low Line 80 Resolved

CombineBeacon.sol

https://swcregistry.io/docs/SWC-129

Asfalia SimpleDefi Security Audit

Category

Volatile Code

#2 SWC-135 Code With No Effects

Description

Recommendation

Alleviation

Declared state variable bitFlip is declared but not used.

Remove code with no effects.

bitFlip is used in the debugging and is a placeholder to eliminate storage issue.

Severity Location Status

Informational Line 47 Acknowledged

Category

Gas Optimization

#3 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

Fixed Visibility

Severity Location Status

Optimization Line 131, 217,
250, 258 Resolved

https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-100

Asfalia SimpleDefi Security Audit

DiamondCutFacet.sol
No vulnerabilities detected

Category

Coding Style

#4 SWC-135 Code With No Effects

Description

Recommendation

Alleviation

Lines contain commented code.

Remove code with no effects.

Severity

Informational

DiamondLoupeFacet.sol

Location Status

Line 20 - 23 Resolved

OwnershipFacet.sol
No vulnerabilities detected

N/A

https://swcregistry.io/docs/SWC-135

Asfalia SimpleDefi Security Audit

Category

Gas Optimization

#5 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

 Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

Severity

Optimization

sdData.sol

Location

Line 39, 44, 51, 54,
61, 65, 69, 75, 176

Status

Resolved

Category

Coding Style

#6 SWC-135 Code With No Effects

Description

Recommendation

Alleviation

 tokenBalance() function appears to not be used within the repository.

Remove code with no effects.

Severity

Informational

Location

Line 98 -100

Status

Resolved

N/A

N/A

https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-135

Asfalia SimpleDefi Security Audit

Category

Volatile Code

#7 SWC-129 Typographical Error

Description

Recommendation

Alleviation

If adminUser, godUser is not transferred before status is set to false, the role will become unusable
and could risk a new contract deployment required.

Ensure a new adminUser, godUser is set before the original godUser status is able to set to false.

Severity

Medium

Location

Line 157, 169

Status

Resolved

N/A

Category

Block Timestamp
Manipulation

#8 SWC-129 Typographical Error

Description

Recommendation

Alleviation

block.timestamp can be manipulated by miners with the following constraints
 • It cannot be stamped with an earlier time than its parent
 • It cannot be too far in the future

Don’t use block.timestamp for a source and use block.number instead.

Severity

Medium

Location

Line 126, 129, 130

Status

Acknowledged

N/A

sdDepositFunds.sol

https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-129

Asfalia SimpleDefi Security Audit

Category

Gas Optimization

#9 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public. (Also declared as exter-
nal in their interface on DiamondFactory.sol()

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

Severity

Optimization

Location

Line 28, 91

Status

Resolved

N/A

sdDepositFunds.sol

Category

Volatile Code

#10 SWC-115 Authorization through tx.origin

Description

Recommendation

Alleviation

Use of tx.origin to verify caller is a godUser

Using “tx.origin” as a security control can lead to authorization bypass vulnerabilities. Consider using
“msg.sender” instead.

Severity

Low

Location

Line 28, 91

Status

Acknowledged

N/A

sdMigration.sol

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-115

Asfalia SimpleDefi Security Audit

Category

Gas Optimization

#11 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

Severity

Optimization

Location

Line 55, 72, 99, 115,
121, 136

Status

Resolved

N/A

Category

Divide Before Multiply

#12 SWC-101 integer Overflow and Underflow

Description

Recommendation

Alleviation

Performing integer division before multiplication truncates the low bits, losing the precision of calcu-
lation.

We recommend applying multiplication before division to avoid loss of precision.

Severity

Informational

Location

Line 166, 167, 172,
273, 280

Status

Resolved

N/A

sdSystem.sol

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101

Asfalia SimpleDefi Security Audit

Category

Coding Style

#13 SWC-104 Unchecked Call Return Value

Description

Recommendation

Alleviation

The return value of an external transfer/transferFrom call is not checked.

Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Severity

Informational

Location

Line 235

Status

Resolved

N/A

Category

Coding Style

#14 SWC-135 Code With No Effect

Description

Recommendation

Alleviation

L109 contains commented code.

Remove code with no effects.

Severity

Informational

Location

Line 109

Status

Resolved

N/A

LibDiamond.sol

https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-135

Asfalia SimpleDefi Security Audit

Category

Block Timestamp Manipulation

#15 SWC-129 Typographical Error

Description

Recommendation

Alleviation

block.timestamp can be manipulated by miners with the following constraints
 • It cannot be stamped with an earlier time than its parent
 • It cannot be too far in the future

Avoid using block.timestamp for a source and use block.number instead. or add additional time-
based equations.

Severity

Medium

Location

Line 126, 129

Status

Acknowledged

N/A

sdPoolUtil.sol

Category

Coding Style

#16 SWC-135 Code With No Effect

Description

Recommendation

Alleviation

Line contains commented code.

Remove code with no effects.

Severity

Informational

Location

Line 219, 250, 294,
311, 326-328

Status

Resolved

N/A

https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-115

Asfalia SimpleDefi Security Audit

Category

Coding Style

#17 SWC-109 Uninitialized Storage Pointer

Description

Recommendation

Alleviation

Uninitialized storage variables can point to unexpected storage locations.

Initialize variable “ds” or set the storage attribute “memory”.

As part of the EIP2535 diamond pattern, the storage is initialized in the assembly block
immediately following the declaration in lines 50 - 53

Severity Location Status

Informational Line 48 Acknowledged

Diamond.sol

Category

Centralization / Privilege

#18 Custom Centralization Related Risk

Description
Refer to General notes - Centralization Risk.

Severity Location Status

Medium # Acknowledged

DiamondFactory.sol

Alleviation
• God User account is being setup as a GNOSIS safe account requiring at least 3 of 5
founder/management signatures to execute.

• Admin User is required for automated processes and keys are stored in secured
infastructure

• Use of assembly is required to clone contract, no possible fixes.

• Fixed visilbility

https://swcregistry.io/docs/SWC-109

Asfalia SimpleDefi Security Audit

Category

Centralization / Privilege

#19 Custom Assembly Usage

Description

Recommendation

Alleviation

N/A

Use “require” for invariants modifying the state.
DiamondFactory._clone(address,uint256) (src/DiamondFactory.sol#223-233) uses assembly
 - INLINE ASM (src/DiamondFactory.sol#225-231)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

N/A

Severity Location Status

Low Line 223-233 Acknowledged

Category

Gas Optimization

#20 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

N/A

Severity Location Status

Optimization
Line 67, 74, 83, 93,
105, 124, 187, 203,
209, 213, 238, 244

Resolved

https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
https://swcregistry.io/docs/SWC-100

Asfalia SimpleDefi Security Audit

Category

Coding Style

#21 SWC-135 Code With No Effects

Description

Recommendation

Alleviation

_slotID does not equal MAX_SLOT+1 check unrequired.

Remove or change if unintended functionality

N/A

Severity Location Status

Informational Line 46 Resolved

slots.sol

Category

Coding Style

#22 SWC-135 Code With No Effects

Description

Recommendation

Alleviation

InactivePool reversion error message.

Remove or change if unintended functionality

N/A

Severity Location Status

Informational Line 64 Resolved

CombineBeacon.sol
Alleviation
Removed ABIEncoderV2

https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-135

Asfalia SimpleDefi Security Audit

Category

ETH Locked

#23 Custom ETH Locked

Description
Contract locking ether found:
 Contract combine_proxy (src/combine_proxy.sol#14-89) has payable functions:
 - combine_proxy.receive() (src/combine_proxy.sol#23)
 - combine_proxy.initialize(string,address,address,uint256) (src/combine_proxy.sol#32-49)
 - combine_proxy.fallback() (src/combine_proxy.sol#69-88)
 But does not have a function to withdraw the ether
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether

Severity Location Status

Low Line 14 - 89 Acknowledged

CombineProxy.sol

Category

Gas Optimization

#24 Custom Assembly Usage

Description

Recommendation

Alleviation

combine_proxy.fallback() (src/combine_proxy.sol#69-88) uses assembly
 - INLINE ASM (src/combine_proxy.sol#74-83)
proxyFactory.deploy(uint256,uint256) (src/combine_proxy.sol#202-220) uses assembly
 - INLINE ASM (src/combine_proxy.sol#208-219)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

N/A

Assembly use required in proxy pattern.

Severity Location Status

Optimization Line 223 - 233 Acknowledged

Alleviation
• BNB/ETH is not directly stored in the contract, all funds are kept in liquidity pools
• Value is withdrawn through the liquidate function
• Line 190 value is transferred back to the owner of the contract

https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

Asfalia SimpleDefi Security Audit

Category

Coding Style

#25 Custom Boolean Equality

Description

Recommendation

Alleviation

Booleans can be checked directly, do not require a comparison to false or true.

Remove the equality to the boolean constant.

Fixed Boolean Equality.

Severity Location Status

Informational Line 32 Resolved

Category

Gas Optimization

#26 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

Fixed Visibility.

Severity Location Status

Optimization Line 32, 64, 112, 119,
129, 141, 171, 187,
193

Resolved

https://swcregistry.io/docs/SWC-100

Asfalia SimpleDefi Security Audit

Category

Volatile Code

#27 Custom Sandwich Attacks

Description

Recommendation

Alleviation

 Potential Sandwich Attacks
 A sandwich attack might happen when an attacker observes a transaction removing liquidity with-
out setting restrictions on slippage or minimum output amount. The attacker can manipulate the
exchange rate by frontrunning (before the transaction being attacked) a transaction to purchase one
of the assets and make profits by back running (after the transaction being attacked) a transaction
to sell the asset.

The following functions are called without setting restrictions on slippage or minimum output
amount, so transactions triggering these functions are vulnerable to sandwich attacks, especially
when the input amount is large,

 We advise the client to use Oracle to get an estimation of prices and setting minimum amounts
based on the prices when calling the aforementioned functions.

Sandwich Attacks

• This will need some investigation and we acknowledge the risk.
• This may require major restructuring of code as we are nearing limits imposed by
the blockchain in regards to size of code.

Severity Location Status

High Line 395 Acknowleged

CombineApp.sol

Asfalia SimpleDefi Security Audit

Category

Volatile Code

#28 SWC-129 Typographical Error

Description

Recommendation

Alleviation

In Solidity multiplication should come before division to avoid rounding errors.

Restructure the mathematical operation.

261 - multiplication is done before division
262, 370 - fixed

Severity Location Status

Low Line 261, 262, 370 Resolved

Category

Coding Style

#29 SWC-134 Message call with hardcoded gas amount

Description

Recommendation

Alleviation

Booleans can be checked directly, do not require a comparison to false or true.

Remove the equality to the boolean constant.

Fixed boolean checks.

Severity Location Status

Informational Line 45, 29 Resolved

https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-134

Asfalia SimpleDefi Security Audit

Category

Coding Style

#30 Custom Low Level Call

Description

Low level call in combineApp.pendingReward(slotsLib.sSlots) (src/combineApp.sol#168-175):
 - (data) = _slot.chefContract.staticcall(abi.encodeWithSignature(_slot.pendingCall,_slot.
poolId,address(this))) (src/combineApp.sol#169)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

Severity Location Status

Low Line 168 - 175 Acknowledged

Category

Coding Style

#31 Custom Automated Re-entrancy Detection

Recommendation

Apply check effects pattern to all states altered

Reentrancy in combineApp.harvest(uint64,string) (src/combineApp.sol#212-222):
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities

Reentrancy in combineApp.addFunds(slotsLib.sSlots,uint256,bool) (src/combineApp.sol#244-267):
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

Reentrancy in combineApp.addFunds(slotsLib.sSlots,uint256,bool) (src/combineApp.sol#244-267):
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4

Severity Location Status

Medium Line 212 - 222 Resolved

Alleviation
Due to differences in the pending reward function between dex’s we need to make
this call dynamic
• Pancakeswap uses: pendingCake
• Biswap Uses: pendingBSW

Alleviation
• Function header includes a “lockFunction” modifier that reverts if the _locked state variable
is true, and “allowAdmin” which restricts access to this function.
• When modifier is called, _locked is set to true, and when function is done, set to false
• Only an admin user or owner may call this function which further restricts access
• Any funds are then sent back to the contract owner.
• NOTE: all funds in this contract belong to the contract owner.

https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4

Asfalia SimpleDefi Security Audit

Category

Coding Style

#32 SWC-108 State Variable Default Visibility

Description

Recommendation

Alleviation

It is best practice to set the visibility of state variables explicitly. The default visibility for state vari-
ables is internal.

Define state variable visibility as public, internal or private.

Fixed Visibility.

Severity Location Status

Informational Line 15, 20, 28 Resolved

Storage.sol

https://swcregistry.io/docs/SWC-108

Asfalia SimpleDefi Security Audit

Category

Gas Optimization

#33 SWC-100 Function Default Visibility

Description

Recommendation

Alleviation

Functions that are not used internally in the function are declared as public.

Function visibility modifier should be changed to external for functions. This will save on gas when
calling these functions as external functions do not need to save parameters to memory, unlike pub-
lic functions which do.

N/A

Severity Location Status

Optimization Line 29 Resolved

SimpleToken.sol
SimpleDefiToken

https://swcregistry.io/docs/SWC-100

Category

Code Addition

#34 Custom addRelease new function added

Description
A new function was added to add the ability to distribute tokens without allowing somebody to
prematurely deploy an LP.

Severity Location Status

Low Line 11 - 88 Resolved

Asfalia SimpleDefi Security Audit

Recommendation
N/A

The SimpleDefi code base was recractor to support Forge development. Appendix can be found
here: Forge

Test result: ok. 17 passed; 0 failed; finished in 4.08s

Asfalia SimpleDefi Security Audit

Category

Code Refractor

#35 Custom Forge Conversion

Severity Location Status

Low Line 13 - 61 Resolved

Description

Recommendation
N/A

https://1drv.ms/t/s!Aoc99PVL52OtgdB52yz4mPi3Bygg2w?e=0CKoKv

Asfalia SimpleDefi Security Audit

Finding Categories

Appendix

Centralization / Privilege

Gas Optimization

Mathematical Operations

Logical Issue

Volatile Code

Coding Style

Centralization / Privilege findings refer to either feature logic or implementation of components that
actagainst the nature of decentralization, such as explicit ownership or specialized access roles
incombination with a mechanism to relocate funds.

Gas Optimization findings do not affect the functionality of the code but generate different, more
optimalEVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incor-
rectoperations etc.

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on
howblock.timestamp works.

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that mayresult in a vulnerability.

Coding Style findings usually do not affect the generated byte-code but rather comment on how to
make the codebase more legible and, as a result, easily maintainable.

Block Timestamp

Forge

Be aware that the timestamp of the block can be manipulated by a miner.

Foundry is a blazing fast, portable and modular toolkit for Ethereum application development written
in Rust.
Foundry consists of:
Forge: Ethereum testing framework (like Truffle, Hardhat and DappTools).

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of ser-
vices, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or
the scope of services, and terms and conditions provided to you (“Customer” or the “Company”) in
connection with the Agreement. This report provided in connection with the Services set forth in the
Agreement shall be used by the Company only to the extent permitted under the terms and condi-
tions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any pur-
poses, nor may copies be delivered to any other person other than the Company, without Asfalia’s
prior written consent in each instance.This report is not, nor should be considered, an “endorse-
ment” or “disapproval” of any particular project or team. This report is not, nor should be considered,
an indication of the economics or value of any “product” or “asset” created by any team or project
that contracts Asfalia to perform a security assessment. This report does not provide any warranty
or guarantee regarding the absolute bug-freenature of the technology analyzed, nor do they provide
any indication of the technologies proprietors, business, business model or legal compliance. This
report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort.

This report represents an extensive assessing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology. Blockchain technology and cryptographic assets present a high level of
ongoing risk. Asfalia’s position is that each company and individual are responsible for their own due
diligence and continuous security. Asfalia’s goal is to help reduce the attack vectors and the high
level of variance associated with utilizing new and consistently changing technologies, and in no
way claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Asfalia is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryp-
tographic tokens are emergent technologies and carry with them high levels of technical risk and
uncertainty. The assessment reports could include false positives, false negatives, and other unpre-
dictable results. The services may access, and depend upon, multiple layers of third-parties.

Project is potentially vulnerable to 3rd party failures of service - namely in the form of APIs providing
the price for the currencies used by the project. Project could become at risk if these APIs provided
incorrect pricing.

Audit does not claim to address any off-chain functions utilized by the project.

Asfalia SimpleDefi Security Audit

The firm was started by a team with over ten years of network security experience to become a
global force. Our goal is to make the blockchain ecosystem as secure as possible for everyone.

With over 30 years of combined experience in the DeFi space, our team is highly dedicated to deliv-
ering a product that is as streamlined and secure as possible. Our mission is to set a new standard
for security in the auditing sector, while increasing accessibility to top tier audits for all projects in

the crypto space. Our dedication and passion to continuously improve the DeFi space is second to
none.

SimpleDEFI Security Audit

