
Solve the Mystery of
Successful End-of-Project

Retrospectives

February 2007 $9.95 www.StickyMinds.com

The Print Companion to

THE MAGIC NUMBER
Three techniques for

testing with databases

COMPLEX CODE?
Get back to basics

The Case of the
Missing

Fingerprint

16 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

BIG,COMPLEX,
AND TESTED?
JUST SAY “WHEN”

Software Development Using Presenter First

by David Crosby
and Carl Erickson

Atomic Object developers have hammered out a software

development method that bridges the language gap between

code and customers, opens wide the door to test-driven devel-

opment, works with many domains and languages, scales to

complex applications, and, once mastered, can be practiced

with almost mechanical repetition. We call the approach

Presenter First, and we think you can use it, too.

In Presenter First, we write a class called a presenter, and

we write it first. This means we select a user story and write it

into our code—preserving its spoken-word semantics—

programming by assumption against emerging interfaces.

We then fill in the blanks, adding supporting classes (often

models and views) until the customer accepts the feature as

complete. There usually are many presenters in an

application—as many or more than there are user stories.

We’ve built applications with hundreds of model/view/presenter

triads, and we’ve refined Presenter First over the course of time,

working with our customers in a variety of projects and domains

(see the StickyNotes for the Presenter First resource page).

Here’s an example. Our customer might say, “When I click

the mail icon, my inbox should appear.” From this we create

the InboxPresenter class, expressing its high-level functionali-

ty in terms of the not-yet-written class InboxView. Figure 1

shows an object composition diagram and corresponding

Ruby sample code for a presenter for this user story. Ruby

makes for tight, readable examples in an article, but we’ve ap-

plied Presenter First in many languages, including C#, Java,

C, ActionScript, and OpenLaszlo.

www.StickyMinds.com FEBRUARY 2007 BETTER SOFTWARE 17

class InboxPresenter

def initialize(inbox_view)

inbox_view.when :mail_icon_clicked do

inbox_view.display_message_list

end

end

end

Notice the usage of the word “when” in the code in figure
1. “When” is a big word in Presenter First, because it is such
a common word in user stories. “When I quit the program, I
want to be warned about unsaved changes,” the customer
says. Or she says, “The dock icons should bounce,” and we
have to ask, “When should they bounce?” Just about every-
thing in a desktop application happens as a response to user
action. At first, the use of “when” in method names in our
code felt awkward and unfamiliar, and we pondered this. We
realized that while code libraries are generally code-oriented—
linguistically biased toward writing code to accomplish feats
of programming—our code exists to define the user’s
intentions and expectations of system behavior. We stopped
being embarrassed about having code that looked different
from the rest of the world’s. For example, the line
inbox_view.when :mail_icon_clicked means
“subscribe to the mail_icon_clicked event on the InboxView”
in traditional code-speak, but in Presenter First, we’re trying
to represent customer concerns as clearly and directly as
possible. The customer says, “When I click,” not, “You
should write two objects that interact according to the
Observer pattern.”

At this point we have neither the InboxView nor code to
instantiate the InboxPresenter. But we now know that such
code is needed and what is required of these objects: The
InboxView has to notify us when the mail icon is clicked
(whatever the “mail icon” ends up being), and it must be able
to display the message list. We know where to go next
because we’ve encoded the wishes of the customer and are
now staring at a list of compiler errors telling us what we
need to do.

Let’s take a quick peek at the view, whose interface has
been defined by the needs of the InboxPresenter. It’s likely our
GUI library uses slightly different terminology, so we’ll have
to do some translation from our idealistic constructs to the
reality of the windowing API we’re using:

The particulars of the GUI toolkit (this sample is based
on FXRuby; see the StickyNotes for more information)
should not influence the external interface of our View
class. We write code internally according to the interface
of the toolkit and do the simplest thing we can to map the
demands of the presenter to the toolkit’s capabilities.

Looking back at the InboxPresenter, we notice that it
has no public methods aside from the constructor. All
communication into a presenter is done with events. Those
events cause the presenter to act outward on other objects.
A presenter depends on other objects, but no other objects
depend on it or ever hold a reference to it. In a sense, the
only real client of a presenter is the customer herself!

This first example illustrates only some of the basic
advantages of Presenter First—we knew where to begin and
how to drive the creation of the view. Next we will see how a
presenter can insulate a view from its underlying application
model and vice versa.

Suppose the customer wants a contact management tool
added to her application. She tells us, “I want to see a list of
the names of my contacts, and I want to be able to click on
one and edit it.” (She didn’t say “when,” but she could have.)
We decompose her statement into two different features: the
contact list and the contact editor. With the customer’s
permission, we’re able to associate two user stories with the
contact list: 1) “When a name is clicked, the associated
contact is made current for editing”; and 2) “When the list of
contact names changes, the names in the list are refreshed.”
We can encode this language, first in a unit test, then into the
presenter itself, as shown in figure 2.

We test our presenter in figure 2 first by constructing it
with two mock objects (see the StickyNotes for more on
mock objects), one each for the Contact List Model and
Contact List View, and then by triggering events from the
mocks and asserting that certain methods are called on the
opposing object. Because it lacks a public interface, the only
way to exercise the presenter’s behavior is by triggering the

Figure 1: At the top is a composition diagram of inbox objects.
InboxPresenter has an InboxView. Below the diagram is Ruby
sample code representing the presenter for the inbox story.

class InboxView < FXMainWindow
can_fire :mail_icon_clicked

def initialize(application)
super(application, "Email Inbox")
panel = FXHorizontalFrame.new(self, 0, 0,0,0,0, 5,5,5,5)

@mail_icon = FXButton.new(panel, "Inbox", load_icon("mailbox.jpg"))
@mail_icon.connect(SEL_COMMAND) do
fire :mail_icon_clicked

end

@message_list = FXList.new(panel, nil, 0,0,0,0, 100,0)
@message_list.hide

end

def display_message_list
@message_list.show

end
...

end

18 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

events it has subscribed to: “when contacts changed” (from
the model mock) and “when selection changed” (from the
view mock). When it comes down to it, all our presenters real-
ly do is react to change events in one object by extracting data
from it and passing it to the other. When the list changes, we
pull the latest list of names out of our application model and
push it into the view.

Unit testing and implementation of the model is straight-
forward, but as we develop its tests, we discover we’d like a
method to inject contact data into the model. The question
“Where is the data coming from?” has not been asked yet, but
the simplest answer at this point has to be “Someone will hand
it to us.” If we assume that much, we’ll avoid over-designing
parts of our system that we’re not concerned with at this moment,
keeping our focus on our customer’s story. The code below
shows the methods required by the presenter, as well as the
set_contactsmethod, which lets us test our model’s behavior
to our satisfaction. We leave the problems of when
set_contacts gets called in the deployed system—and
who calls it—for later.

The view is equally straightforward:

Notice that the model is completely separate from the view,
having no knowledge of its interface or even its existence. The
reverse is also true: The view knows nothing about the model.
Each may be implemented independently of the other. Also, by
making use of the Observer pattern, both objects may produce
information without having to know what other objects will
consume it. The presenter ensures that the consumers do not
know where their information comes from, leaving them simply
to operate on data as it is provided. All three classes—presenter,
model, and view—have simple, easy-to-understand behaviors.
This makes them easy to test.

Notice that our view is essentially a leaf node in the system;

Figure 2: Contact list objects and presenter class—the presenter is
constructed with model and view

class ContactListPresenter

...

def setup

@contact_list_model.when :contacts_changed do

@contact_list_view.set_names(

@contact_list_model.contact_names)

end

@contact_list_view.when :selection_changed do

@contact_list_model.select_by_index(

@contact_list_view.selected_index)

end

end

end

class ContactListModel

can_fire :contacts_changed

def initialize

@contacts = []

end

def names

@contacts.map { |c| c[:name] }

end

def set_contacts(contacts)

@contacts = contacts

fire :contacts_changed

end

def select_by_index(index)

Awaiting more user stories to this effect

end

end

class ContactListView < Fox::FXVerticalFrame

...

can_fire :selection_changed

def initialize(parent)

...

@list = FXList.new(self);

Adapt the FXRuby List widget SEL_CHANGED event

to our own selection_changed event

@list.connect(SEL_CHANGED) do |*ignored_args|

fire :selection_changed

end

end

def clear

@list.clearItems(true)

end

def set_contact_names(names)

names.each do |name|

@list.appendItem(name)

end

@list.selectItem(0,true) unless names.empty?

end

def selected_index

@list.currentItem

end

end

www.StickyMinds.com FEBRUARY 2007 BETTER SOFTWARE 19

it does not directly reference or utilize other objects in our
collaboration scheme. This eliminates the common pitfall of
coding too much smarts into the view by triggering complex
logic in direct response to UI events. By forcing the view to hand
off user events to our presenter, we keep it in a subordinate role,
and it will never get a chance to unduly influence the rest of
our design.

At this point we’ve taken our contact list as far as we can
without some resolution from the customer with regard to
the contact editor itself. At our next meeting, she shows us a
sketch of how she wants to edit the details of her contacts.
“When I select a contact from the list, I want the details for
that contact to appear in the form. And when I click ‘Save’ at
the bottom of the form, the updated contact info should be
saved to the database.”

At her mention of “the form,” we’re prompted to explore the
nature of editing contact info a little further, and we generate an
additional pair of finer-grained requirements: “When the user
selects a new contact in the contact list view, repopulate the
contact editor view” and “When the user saves an edited
contact, apply those changes to whatever contact is selected
in the contact list view.” These “whens” outline the process
of contact editing, which we can answer in the form of a new
ContactEditorPresenter, along with its model and view
(see figure 3).

Without going into too much detail, suffice it to say the
ContactEditorModel is not a contact data structure in and of
itself but rather a layer of indirection that we can use to interact
with the data of the currently selected contact.

We have two model/view/presenter triads that need to be
coordinated—one for the contact list and another for the
contact editor. For example, when an edited contact is to be

saved, the contact list model somehow has to get the changes
so that it can update its list to use them.

Also, when a new contact is selected in the list, its data
must appear in the contact editor view. One alternative is for
the contact list MVP triad to be in control. The contact list
model could shove the new contact into the contact editor model,
like this:

If we try this, we’ll run into two problems. First, we’ll be
unable to develop the two models independently. The symptom
of this will be an annoying amount of setup code in our unit
tests. While the presenter lets us develop the model and view
independently, that decoupling hasn’t carried over to any other
code. To accomplish select_by_index, ContactListModel
must know how to send contacts to the ContactEditorModel.
(Eventually the list model will also have to react to changes in
the editor model.)

Second, we’ve (perhaps unconsciously) decided to make
ContactListModel responsible for knowing about all consumers
of contact selection knowledge. We have to actively push the
selected contact into those consumers. Each new consumer
will require us to add code to the ContactListModel. Our
tests are starting to look unnaturally heavy.

Amidst our growing dread, we notice one more aspect of the
things we’re trying to accomplish inside the ContactListModel.
“When it’s time to save the contact . . . When the contact becomes
selected . . .” That’s presenter-speak! But instead of connecting
a model and a view, we’re essentially linking two triplets, as
in figure 4.

At the moment, we’re at a loss for the name of that mystery
object, but just by sketching it into our design we can start to
see what it will do for us. The list model no longer has a reference
to the editor model, so it doesn’t need to know how to listen
for save events or how to send the selected contact. Our new
object—a presenter—will take that off our hands.

We name our mystery object for what it’s going to do for us:
It will coordinate the transfer of selected contact data in and
out of our models, so it should be named CurrentContactCoor-

Figure 3: Contact editor objects in Presenter First triad

class ContactListModel
...
def select_by_index(index)
@current_index = index
@contact_editor_model.contact = @contacts[@current_index]

end
end

Figure 4: Integrating contact list and contact editor, and listing and
editing features, with looser coupling

class ContactEditorPresenter

...

def setup

@model.when :contact_info_changed do

@view.set_name @model.contact_name

@view.set_email @model.contact_email

end

@view.when :user_saved do

@model.contact_name = @view.get_name

@model.contact_email = @view.get_email

@model.save

end

end

end

20 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

dinator. (There’s no law that says a presenter has to be called
a presenter—such objects are best identified by their roles in
the composition of our system.)

With their reduced responsibilities, the model implementations
now look more like this:

This example demonstrates how we can extend the principle
of a presenter beyond mere model/view integration into the
realm of feature-level integration. Any time we find a grouping
of objects getting bogged down with too much knowledge of
each other, we can seek out the hidden “whens,” wrap them
up in a presenter, and give ourselves some breathing room to
write our tests. We’re empowered to keep our components
small and narrow-purposed, opening them up to extension
while leaving them mostly closed to change.

We’ve taken a few things for granted in the interest of
brevity. For instance, the time you spend with the customer
resolving user stories usually involves a lot of view prototyping,
scribbling, and gesturing while you say “when” at each other.
Depending on the customer it may be prudent to write some
views first, in order to provide a playground in which to

further define the stories, and then adapt their interfaces to
the subsequent presenters.

Similarly, coding the model side of your application isn’t
directly addressed by Presenter First. You still can spend days
deciphering legacy binary file formats, designing XML-pro-
cessing pipelines, or building authentication mechanisms. Pre-
senter First doesn’t tell you how to solve those problems; it
just helps you know when to solve them and where. By keep-
ing the focus on user stories you avoid the risk of building
more of this infrastructure than you need.

While the technical impact on our code is satisfying in and of
itself—smaller, testable, extensible, and de-coupled—
the real magic here is our ability to continue
responding to the voice of the customer. By under-
standing how to translate new and changing user
requirements into these atomic triplets and by
knowing how to loosely couple the triplets together,
we can grow the system indefinitely, one story at a
time, without first needing to establish an all-
encompassing architecture. Presenter First is a simple
technique that can be repeated as many times as
needed to get the job done. The “micro-architecture”
of Presenter First is like a carbohydrate chain in
organic chemistry—interesting functionality arises

from applying the same basic pattern of object composition.
The mechanisms and domain may vary, but the core principles
do not: When the customer says “when,” write it into a
presenter. If you can’t test something, refactor until you can.
Develop infrastructure (models and views) only as demanded
by presenters. {end}

David Crosby has been wrestling with fundamental questions
of design and testing since joining Atomic Object in 2001.
After graduating with a BS in computer science from Grand
Valley State University, he worked at Lockheed Martin. As
the first Atomic employee recognized as Software Craftsman,
David mentors and yells instructively about testability and
process. David can be reached at david@atomicobject.com.

Carl Erickson is the president of Atomic Object, which practices
software craftsmanship on contract for customers in automo-
tive testing, color measurement, materials handling, aerospace,
healthcare, financial services, and e-commerce. Having a PhD
in computer engineering and teaching a course on software
craftsmanship at Uppsala University in Uppsala, Sweden,
does not make Carl immune to Dave’s yelling.

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware.
! Presenter First
! FXRuby
! Mock objects

Figure 5: Improved contact list and editor integration. Feature
insulation is provided by CurrentContactCoordinator presenter object.

class CurrentContactCoordinator
...
def setup
@contact_list_model.when :selection_changed do
contact = @contact_list_model.selected_contact

end

@contact_editor_model.when :save_requested do
@contact_list_model.save_contact(@contact_editor_model.contact)

end
end

end

class ContactListModel
can_fire :selection_changed
...
def select_by_index(index)
@selected_index = index
fire :selection_changed

end
def selected_contact
@contacts[@selected_index]

end
def save_contact(contact)
@contacts[@current_index] = contact

end
end

