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Abstract: We bound the rectilinear local crossing number of the complete bipartite graph Km,n for every m and n, and
completely determine its value when min(m, n) ≤ 4.
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1. Introduction

In this work, we consider rectilinear drawings of the complete
bipartite graph Km,n, that is, drawings whose vertices are m red
and n blue points in the plane, and whose edges are straight line
segments joining all pairs of points with different colors. We also
assume that any two of these edges share at most one point.

In general, the local crossing number of a graph G was defined
by Ringel as follows (see Guy et al. [6], Kainen [7], and Schae-
fer [12]). The local crossing number of a drawing D of a graph G,
denoted lcr(D), is the largest number of crossings on any edge of
D. The local crossing number of G, denoted lcr(G), is the min-
imum of lcr(D) over all drawings D of G. This is also known
as the cross-index (Thomassen [15]). The analogous definition
for rectilinear drawings is the rectilinear local crossing number

of G, denoted lcr(G), which is the minimum of lcr(D) over all
rectilinear drawings D of G. Recently, Ábrego and Fernández-
Merchant [1] completely determined lcr(Kn) using a separation
lemma (See Lemma 2 in Ref. [1]).

The crossing number of a graph G, denoted by cr(G), is the
smallest number of crossings among all drawings of G. When
this minimum is restricted to rectilinear drawings, we obtain the
rectilinear crossing number of G, denoted by cr(G). Crossing
number problems originated in the 1940s with Turán (see Ref. [3]
for more on the history of the brick factory problem) and have
been widely studied since then [2], [5], [12]. Crossing num-
bers of complete graphs are of particular importance because
bounds on these numbers give bounds on the crossing number
of any graph by using random embeddings [4], [10], [13], [14].
Leighton [10] uses this to bound the VLSI layout area of a graph,
while Shahrokhi, Sýkora, Székely, and Vrťo [14] use it to find ap-
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proximation algorithms of crossing numbers for dense graphs.
The value of cr(G) can be used to bound lcr(G) (as done in

Ref. [6] for drawings of Kn on the torus). Namely, adding the
number of crossings of every edge over all edges of a graph G

counts precisely twice the number of crossings of G. It follows
that

lcr(Km,n) ≥ 2 cr(Km,n)
mn

.

The Zarankiewicz Conjecture (Paul Turán, 1944), states that
cr(Km,n) = cr(Km,n) = Z(m, n) :=

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
m
2

⌋ ⌊
m−1

2

⌋
, but this

has only been proved when min(m, n) ≤ 6 [8], and for m = 7 or
8 and n ≤ 10 [16]. The current best published lower bound on
cr(Km,n) is 0.86 Z(m, n) by de Klerk et al. [9] and recently, Norine
and Zwols [11] announced the lower bound 0.905 Z(m, n), but this
has not been published. This would yield

lcr(Km,n) ≥ 0.905
8

mn + o(mn) = 0.113125 mn + o(mn).

If the Zarankiewicz Conjecture were true, we would have

lcr(Km,n) ≥ 1
8

mn + o(mn).

Turan’s drawing of Km,n with Z(m, n) crossings (see Fig. 1) has
local crossing number

(⌈
m
2

⌉
− 1
) (⌈

n
2

⌉
− 1
)

showing that

lcr(Km,n) ≤ 1
4

mn + o(mn).

Clearly, lcr(K2,n)=0 as Turan’s construction for m = 2 (Fig. 1)
has no crossings. In Section 2, we determine lcr(Km,n) for m = 3
and 4. More precisely, for any integer n ≥ 2,

lcr(K3,n) =

⌈
n − 2

4

⌉
and lcr(K4,n) =

⌈
n − 2

2

⌉
.

In Section 3, we present constructions that improve the upper
bound to

lcr(Km,n) ≤ 3
14

(m − 1)(n − 1)

for any m ≥ 5 and n ≥ 5. Further improvements on this bound
are presented for small values of m and any n.
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2. Exact Results

We determine lcr(Km,n) for m = 3 and 4. The following obser-
vation will be useful for the presentation of our proofs. Let P be a
set of points. We say that �xyz is P-empty if the interior of �xyz

does not contain points in P.
Observation 1. For any segment xy and any set of points P, there

is a point z ∈ P such that �xyz is P-empty.

In fact, z could be a point in P closest to the line xy. We now
proceed to prove the two results of this section.
Theorem 2. For any integer n ≥ 3,

lcr(K3,n) =

⌈
n − 2

4

⌉
.

Proof. We first prove that lcr(K3,n) ≥ � n−2
4 �. Consider any draw-

ing D of K3,n. As usual, the two vertex-classes R and B are col-
ored red and blue. So R has 3 red points, which we label a, b,
and c; B has n blue points; and every red point is joined to every
blue point by a straight line-segment. We prove that D must have
an edge that is crossed at least � n−2

4 � times. We consider several
cases according to how the blue points are distributed among the

Fig. 1 Zarankiewicz drawing of Km,n with Z(m, n) crossings.

Fig. 2 (a) The red points a, b, and c are collinear. (b) The regions determined by the red points when they
are in general position. (c) The blue points in B1 are solid. The blue points in B2 are hollow. The
shaded region is empty.

Fig. 3 All shaded regions are B-empty.

regions determined by the red points. In each case, we identify 2
or 4 edges that must be crossed a combined total of at least n−2

2 or
n − 2 times, respectively.

Case 1. The points a, b, and c are collinear. Let l be the line
through a, b, and c and suppose that b is between a and c on l.
Consider a blue point on each side of l, say x and y, such that
�acx and �acy are B-empty (See Fig. 2 (a)). Then any edge of
the form zb, where z is a blue point, crosses one of the edges ax,
xc, ay, or yc. So one of these four edges must be crossed at least
� n−2

4 � times. If all blue points are on the same side of l, then the
� n−2

4 � can be improved to � n−1
2 �.

Case 2. The points a, b, and c are noncollinear. In this case,
a, b, and c are the vertices of a triangle. The lines ab, bc, and ca

divide the plane into 7 regions as shown in Fig. 2 (b). We partition
the set of blue points into two parts: The set B1 of blue points in
Ra ∪Rb ∪Rc, and the set B2 of all other blue points. Let n1 = |B1|
and n2 = |B2| so that n = n1 + n2.

We first look at the points in B1. If B1 is nonempty, consider
any point x ∈ B1, say in Ra, closest to �abc in the sense that no
other points in B1 are in the interior of the quadrilateral xbac (See
Fig. 2 (c)). Then for any blue point z ∈ B1, the edge za crosses
either xb or xc. Thus one of the edges xb or xc is crossed at least
� n1−1

2 � times.
Now look at the points in B2. If B2 is nonempty, we have three

subcases.
Case 2.1 At least two of the regions Rab, Rbc, and Rac, say Rab

and Rac, have blue points. Let x ∈ Rab be a blue point such that
there are no other blue points in the intersection of Rab and the
sector acx (See Fig. 3 (a)). Similarly, let y ∈ Rac be a blue point
such that there are no other blue points in the intersection of Rac

and the sector yba. Then any point z ∈ B2 \ {x, y} creates at least
one crossing with xc or yb. Namely, if z ∈ Rab then zc crosses yb;
if z ∈ Rac then zb crosses xc; and if z ∈ Rbc then za crosses both
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Fig. 4 An optimal construction for lcr(K3,n).

xc and yb. Also, xc and yb cross each other, adding one more
crossing to each xc and yb. Thus one of the edges xc or yb is
crossed at least � n2−2

2 � + 1 = � n2
2 � times.

Case 2.2 Exactly one of the regions Rab, Rbc, and Rac, say Rab,
has blue points but Rabc does not. Let x ∈ Rab be a blue point
such that �axb is B2-empty (See Fig. 3 (b)). Then for any point
z ∈ B2 \ {x}, the edge zc crosses xa or xb. Thus one of the edges
xa or xb is crossed at least � n2−1

2 � times.
Case 2.3 At most one of the regions Rab, Rbc, and Rac has blue

points and Rabc has blue points. Without loss of generality sup-
pose that Rbc, and Rac have no blue points. Let x ∈ Rabc be a blue
point such that there are no other blue points in the sector cbx

(See Fig. 3 (c)). Then for any point z ∈ B2 \ {x} the edge zc or zb

crosses xa or xb, which means that one of the edges xa or xb is
crossed at least � n2−1

2 � times.
All cases imply that there is an edge crossed at least

max
(⌈

n1−1
2

⌉
,
⌈

n2−1
2

⌉)
≥
⌈ �n/2�−1

2

⌉
=
⌈

n−2
4

⌉
, and therefore lcr(D) ≥

� n−2
4 � for any drawing D of K3,n. Hence, lcr(K3,n) ≥ � n−2

4 �.
We now prove that lcr(K3,n) ≤ � n−2

4 � by presenting a drawing of
K3,n with local crossing number � n−2

4 �, see Fig. 4. Let k = � n−2
4 �.

The red points are the vertices of an equilateral triangle and are
labeled a, b, and c. The lines L1 and L2 are right below and par-
allel to ab and the perpendicular bisector to bc, respectively. The
lines L3 and L4 are the reflections of L1 and L2 about the perpen-
dicular bisector to ac. There are two special blue points: d above
b and e below b, both above the lines L1 and L3. The rest of the
blue points are (almost) evenly distributed among L1, L2, L3, and
L4; then some lines (at least one) have k blue points on them and
the rest k − 1. The blue points on L1 and L3 should be below the
intersection of L1 and L3 such that the edges from these points to
c pass below all blue points on L3; and the edges from the blue
points on L3 to a pass below all blue points on L1. The points on
L2 and L4 should be outside of �abc, below ac, and so that the
edges from these points to b do not cross �abc. Note that none
of the edges crosses the sides of �abc. So exterior edges do not
cross interior edges. For L1 and L2, the edges to c make no cross-
ings with the edges to a and b. A similar situation applies to L3

and L4 by symmetry.
First look at the interior edges. Let p be the ith blue point on L1

from top to bottom. Then there are at most k− i blue points on L1

below p and i − 1 above. The edges from b to the points below p

cross the edge pa, giving k− i ≤ k−1 < k crossings with pa. The
edges from a to e and to the points above p cross the edge pb,

giving i ≤ k crossings with pb. The edges from a to the points
on L3 cross the edge pc, giving at most k crossings with pc. Note
that no other edges cross pa, pb, or pc. A similar argument ap-
plies for the ith point on L3. The edge ea is crossed only by the
edges from b to points on L1, giving at most k crossings with ea.
Symmetrically, ec is crossed at most k times. Finally, the edge
eb is not crossed, completing the proof that any interior edge is
crossed at most k times.

Now look at the exterior edges. Take the ith point q on L2 from
top to bottom. Then there are i − 1 points on L2 above q and at
most k − i below. The edges from b to the points above q cross
the edge qa, giving i − 1 ≤ k crossings with qa. The edges from
a to the points below q and the edge da cross the edge qb, giving
at most k − i + 1 ≤ k crossings with qb. The edges from a to the
points on L4 cross the edge qc, giving at most k crossings with qc.
Note that no other edges cross qa, qb, or qc. A similar argument
applies for the ith point on L4. The edge da is crossed only by the
edges from b to points on L2, giving at most k crossings with ea.
Symmetrically, dc is crossed at most k times. Finally, the edge
db is not crossed, completing the proof that any exterior edge is
crossed at most k times.

Note that if there are k points on L1, L2, L3, or L4, then the edge
ea, da, ec, or dc, respectively, is crossed exactly k times. �
Theorem 3. For any integer n ≥ 4,

lcr(K4,n) =

⌈
n − 2

2

⌉
.

Proof. The Turán’s construction of K4,n for m = 4 and any n has
local crossing number

⌈
n−2

2

⌉
(see Fig. 1), proving that lcr(K4,n) ≤⌈

n−2
2

⌉
.

We now prove that lcr(K4,n) ≥ � n−2
2 �. Consider any drawing D

of K4,n. As usual, the two vertex-classes R and B are colored red
and blue. So R has 4 red points, B has n blue points, and every red
point is joined to every blue point by a straight line-segment. By
simplicity, we assume that R is in general position (Otherwise,
a small enough perturbation of the points in R to achieve gen-
eral position would not affect the local crossing number of D).
We prove that D must have an edge that is crossed at least � n−2

2 �
times. Let C be the vertex set of the convex hull of R ∪ B. We
consider several cases according to the number of blue and red
points on C. We say that a simple curve is C-connecting if both
its endpoints are in C. So a segment with endpoints in C or a sim-
ple path of D with endpoint in C are called C-connecting segment
or path, respectively. If � is a C-connecting curve, then removing
� from the convex hull of R ∪ B results in two disjoint connected
sets S 1 and S 2 called the sides of �. We say that two points are
separated by �, if they are in different sides of �. So we say that
� separates red points if both S 1 and S 2 contain at least one red
point.
Lemma 4. If there is a C-connecting curve contained in two

edges of D and that separates red points, then lcr(R∪B) ≥ � n−2
2 �.

Proof. Suppose that the curve separates the red points x and y
and is contained in the edges s and t. Let Bx and By be the sets of
blue points on the same side of the curve as x and y, respectively.
Then xz and yw cross the path for any z ∈ By and w ∈ Bx. That is,
there are at least |Bx ∪ By| ≥ n− 2 edges crossing the curve. Each
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Fig. 5 No red points in C.

Fig. 6 Exactly one red point in C.

of these segments crosses s or t (or even both), so s or t is crossed
at least � n−2

2 � times. Thus lcr(R ∪ B) ≥ � n−2
2 �. �

Corollary 5. If there is a C-connecting 2-path of D that sepa-

rates red points, then lcr(R ∪ B) ≥ � n−2
2 �.

Corollary 6. If there is a C-connecting segment with blue end-

points that separates red points, then lcr(R ∪ B) ≥ � n−2
2 �.

Proof. If xy is a C-connecting segment with blue endpoints
(x ∈ B and y ∈ B) that separates red points (see Fig. 5 (a)), then
there are at least 2 red points u1 and u2 on one of its sides and
at least one red point v on the other. By Observation 1, we can
assume that �xyu1 does not contain u2. Then the path xu1y sepa-
rates u2 and v. The result holds by Corollary 5. �

We now return to the proof of Theorem 3.
Case 1. Assume that there are no red points on C. In this case,

we can assume that R is contained in a triangle with blue vertices
x, y, and z in C, otherwise there is a C-connecting segment with
blue end points that separates red points and the result holds by
Corollary 6 (See Fig. 5 (a)). Assume that yz is horizontal, y to the
left of z, and x is above yz. Let u and v be two red points and as-
sume that the line uv crosses the segments xy and xz, u to the left
of v as in Fig. 5 (b)–(d). If quadrilateral uxyz contains a red point
w, then the C-connecting path xuz separates the red points v and
w and the result holds by Corollary 5 (See Fig. 5 (b)). The same
holds for the quadrilateral vyzx. So we assume that all red points
are in the quadrilateral xutv, where t is the point of intersection
of yv and zu. If there is a red point w below the line yu, then the
C-connecting path xwy separates u and v and the result holds by
Corollary 5 (see Fig. 5 (c)). The same holds for the line zv. So we
assume that the remaining 2 red points are above the lines yu and
zv. By Observation 1, one of these two points, call it w1, satisfies
that �w1yz does not contain the other, call it w2 (see Fig. 5 (d)).

Then the path yw1z separates w2 from u and v and the result holds
by Corollary 5.

Case 2. Assume that there are one or two red points on C.
Then there are at least two red points not on C.
Lemma 7. If � is a line through two red points not in C and there

are blue points in C on both sides of �, then lcr(R ∪ B) ≥ � n−2
2 �.

Proof. Let x be any red point on C. Assume that � is horizontal
and passes through the red points y and z not in C with y to the
left of z. Suppose that u and v are blue points in C with u below �
and v above. If x is to the right of −→uv, then y and x are separated by
the path uzv. If x is to the left of −→uv, then x and z are separated by
the path uyv. In either case the result follows by Corollary 5. �

Case 2.1 Assume that x is the only red point in C. Let u and v
be two blue points in C such that u, x, and v are consecutive (in
clockwise order) along C. Label the three remaining red points
y1, y2, and y3 according to the order in which the ray −→xu finds
them when continuously rotated around x counterclockwise. By
Lemma 7, we can assume that the line y1y3 does not cross the seg-
ment uv (i.e., y1y3 crosses the segments xu and xv, see Fig. 6 (a)).
If y2 is below vy1 or uy3, then y2 and x are separated by the path
uy1v or uy3v, respectively. If y2 is above the line uy1 or vy3, then
the path uy2v separates x from y1 or y3, respectively. In either
case, the result holds by Corollary 5. Assume then that y2 is above
vy1 and uy3 and below the lines uy1 and vy3.

Define the regions A, B1, B2, C1, C2, and D as in Fig. 6 (b) and
Fig. 6 (c). So A is the region between rays xy1 and xy2, below the
path uy2v, and below vy1 or uy3; D is the region between rays xy1

and xy2 and above region A; B1 and C1 are the regions below and
above the line uv, respectively, and to the right of ray xy1; and B2

and C2 are the regions below and above the line uv, respectively,
and to the left of ray xy3. If there is a blue point w in region A,
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Fig. 7 Exactly two red points in C. Note that region E is empty in (a) and
the region A is disconnected in (b).

then xw, crosses one of the edges vy1, uy2, vy2 or uy3. Then the
union of xw and such an edge contains a simple curve that sep-
arates y1 and y3 and the result holds by Lemma 4. Then we can
assume that there are no blue points in region A.

If y2 is below the line y1y3 (Fig. 6 (b)), then the edges from
each blue point in B1 to y2 and y3 cross the edge vy1, and the
edges from each blue point in B2 to y1 and y2 cross the edge uy3.
If y2 is above the line y1y3 (Fig. 6 (c)), then the edges from each
blue point in B1 to y3 and the edges from each blue point in b2 to
y1 cross the edge vy2. Thus, if there are at least n−2

2 blue points in
B1 ∪ B2, then one of the edges vy1, uy3, or vy2 is crossed at least
� n−2

2 � times. Then we can assume that there are less than n−2
2 blue

points in B1 ∪ B2, that is, there are at least n−2
2 blue points in

C1 ∪C2 ∪ D.
Rotate the ray −→xu counterclockwise around x until finding the

first blue point w in C1 ∪ C2 ∪ D. If w ∈ C1, then the edge wy3

is crossed at least � n−2
2 � times. This is because the edge from any

blue point in C1 ∪C2 ∪ D to either x or y1 crosses wy3. A similar
argument holds for region C2. So we now assume that both C1

and C2 do not contain blue points, that is, there are at least � n−2
2 �

blue points in D.
This time rotate the ray −−→y1v counterclockwise around y1 until

finding the first blue point w in D. If w is below the line y1y3,
then the edge xw is crossed at least � n−2

2 � times. This is because
the edge from any blue point in D to either y1 or y3 crosses xw.
Assume that all the blue points in D are above the line y1y3.

Rotate the ray −−→y1x clockwise around y1 until finding the first
blue point w in D. Then one of the edges wy2 or y2v is crossed at
least � n−2

2 � times. This is because the edge from any blue point in
D ∪ B1 ∪ B2 to either y1 or y3 crosses the path wy2y3.

Case 2.2. Assume that there are exactly two red points on C.
If these two points, x and y are not consecutive along C, then they
are separated by a C-connecting segment with blue endpoints and
the result holds by Corollary 6. Assume that u, x, and y are con-
secutive in counterclockwise order along C, so u is a blue point.
Label the other two red points w and z. If the line wz separates
two blue points in C, then Lemma 7 implies the result. Then we
can assume that either the line wz crosses the segment xy and one
of the neighboring convex hull edges (we can assume it crosses
xu, Fig. 7 (a)), or the line wz crosses both edges in the convex hull
neighboring xy (Fig. 7 (b)). Consider the regions A, B,C1,C2,D,
and E as shown in Fig. 7. If there is a blue point t in region A, then
the path xty separates w and z and the result holds by Corollary 5.
Assume that there are no blue points in region A. If there are at

Fig. 8 At least 3 red points on C. Note that when y is on the convex hull C,
one of the regions R1,R2, or R3 is disconnected.

least n−2
2 blue points in region B, then one of the edges uw or uz

is crossed at least � n−2
2 � times. This is because for any blue point

t in B, the edges tx and ty determine 2 crossings with uw and uz.
Assume then that there are less than n−2

2 blue points in B, that is,
there are at least n−2

2 blue points in C1 ∪C2 ∪ D ∪ E.
Rotate the ray −→xu clockwise around x until finding the first blue

point t in C1 ∪ C2 ∪ D ∪ E. If t ∈ C1, then the edge ty is crossed
at least � n−2

2 � times. This is because the edge from any blue point
in C1 ∪C2 ∪D∪ E to either x or z crosses ty. A similar argument
holds for region C2. So we now assume that both C1 and C2 do
not contain blue points, that is, there are at least � n−2

2 � blue points
in D ∪ E.

When the line wz crosses the segment xy (Fig. 7 (a)), rotate the
ray −→yx clockwise around y until finding the first blue point t in D.
Then the path tzu is crossed at least n − 2 times (the edge from
any blue point, other than u or t, to y or w crosses the path tzu),
and so one of the edges tz or zu is crossed at least � n−2

2 � times.
Now consider the case when the line wz and the segment xy do

not cross (Fig. 7 (b)). If the interior of �yxw contains blue points,
then rotate the ray −→yx clockwise around y until finding the first
blue point t in D. Then t is in the interior of �yxw and so the edge
tz is crossed at least � n−2

2 � times (the edge from any blue point in
D ∪ E, other than t, to y or w crosses the edge tz). Similarly, if
the interior of �xyz contains blue points, then rotate the ray −→xy
counterclockwise around x until finding the first blue point t′ in
D. Then t′ is in the interior of �xyz and so the edge t′w is crossed
at least � n−2

2 � times (the edge from any blue point in D ∪ E, other
than t, to x or z crosses the edge tw). Thus we can assume that
there are no blue points in region D. This means that there are at
least n−2

2 blue points in E. Let p be the intersection of the lines
xw and yz. This time rotate the ray −→wp clockwise around w until
finding the first blue point t in E. Then the edge xt is crossed at
least � n−2

2 � times (the edge from any blue point in E, other than t,
to y or w crosses the edge tx), concluding the proof.

Case 3. Assume that there are at least three red points on C.
Let x1, x2, and x3 be three red points in clockwise order along C

and let y be any blue point. The rays −−→yx1,
−−→yx2, and −−→yx3 partition

the plane into three regions R1, R2, and R3 (see Fig. 8). The fourth
red point z is in one of these regions. If z is in Ri, then the path
x jyxk separates xi and z, where {i, j, k} = {1, 2, 3} and the result
holds by Corollary 5. �

3. General Upper Bounds

Let P = R ∪ B be a set of red (R) and blue (B) points in the

c© 2017 Information Processing Society of Japan 546



Journal of Information Processing Vol.25 542–550 (Aug. 2017)

Fig. 9 The c blue points shown here are replacing a blue point b ∈ B, p is
the ith point along sb. There are xe + ye + 1 red points on the same
side of sb as r.

Fig. 10 Initial construction for Theorem 10.

Fig. 11 Initial construction for m = 5. The n blue points are almost equally
distributed among the three blue segments.

Fig. 12 Initial construction for m = 6. The n blue points are almost equally
distributed among the ten blue segments.

Fig. 13 Initial construction for m = 7. The n blue points are almost equally
distributed among the four blue segments.

Fig. 14 Initial construction for m = 8. The n blue points are almost equally
distributed among the nine blue segments.

Fig. 15 Initial construction for m = 9. The n blue points are almost equally
distributed among the ten blue segments.

Fig. 16 Initial construction for m = 10. The n blue points are almost equally
distributed among the three blue segments.
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plane. For each blue point b ∈ B, let sb be a segment centered
at b and small enough so that the triangle formed by sb and any
red point r ∈ R does not contain any points of P in its interior
or boundary, except for b and r. Let S = {sb : b ∈ B}. We say
that S is a set of valid blue segments for P (We can analogously
define a set of valid red segments for P). For any positive integer
c, denote by PS ,c the set of points obtained from P by replacing
each blue point b ∈ B by c blue points evenly placed along sb.
Lemma 8. Let D be a drawing of Km,n with vertex-classes R and

Table 1 Upper bounds for lcr(Km,n) for 5 ≤ m ≤ 10.

m 5 6 7 8 9 10

lcr(Km,n) ≤ 2
3 n + O(1) 4

5 n + O(1) n + O(1) 4
3 n + O(1) 7

5 n + O(1) 5
3 n + O(1)

Table 2 Upper bounds on lcr(Km,n) for 3 ≤ m ≤ 10.

Initial set

for m

Value of cr(e)

from a base point on si

to the point j

Value of max(xe, ye)

from a base point on si

to the point j

m = 5

Fig. 11

cr(e) 1 2 3 4 5
s1 0 0 1 1 1
s2 0 1 0 1 0
s3 1 1 1 0 0

max(xe, ye) 1 2 3 4 5
s1 1 2 1 2 1
s2 2 1 1 1 2
s3 1 1 2 1 2

m = 6

Fig. 12

cr(e) 1 2 3 4 5 6
s1 3 6 2 6 7 4
s2 0 5 5 7 6 5
s3 5 0 6 6 5 6
s4 6 3 5 3 4 7
s5 7 6 4 0 6 7
s6 6 7 0 4 7 6
s7 7 4 6 2 3 6
s8 6 5 7 5 0 5
s9 5 6 6 6 5 0
s10 4 7 3 5 6 3

max(xe, ye) 1 2 3 4 5 6
s1 3 2 3 2 1 1
s2 2 3 1 1 2 3
s3 3 2 1 1 3 2
s4 2 3 2 3 1 1
s5 1 2 2 2 2 1
s6 2 1 2 2 1 2
s7 1 1 2 3 3 2
s8 2 3 1 1 2 3
s9 3 2 1 1 3 2
s10 1 1 3 2 2 3

m = 7

Fig. 13

cr(e) 1 2 3 4 5 6 7
s1 0 1 2 1 0 3 2
s2 1 0 0 1 2 2 3
s3 3 2 0 1 2 0 1
s4 2 3 2 1 0 1 0

max(xe, ye) 1 2 3 4 5 6 7
s1 4 3 2 3 4 1 1
s2 3 4 4 3 2 1 1
s3 1 1 4 3 2 4 3
s4 1 1 2 3 4 3 4

m = 8

Fig. 14

cr(e) 1 2 3 4 5 6 7 8
s1 4 6 0 4 8 10 7 4
s2 0 4 4 6 8 8 7 6
s3 4 0 8 8 8 6 7 8
s4 6 4 8 6 4 4 7 10
s5 8 8 8 4 0 10 10 10
s6 9 6 9 6 3 5 7 9
s7 8 7 10 9 8 0 4 8
s8 7 8 5 6 7 8 4 0
s9 6 9 0 3 6 9 7 5

max(xe, ye) 1 2 3 4 5 6 7 8
s1 4 3 4 3 2 2 1 2
s2 4 3 4 3 2 2 1 2
s3 3 4 2 3 4 2 1 2
s4 3 4 2 3 4 2 1 2
s5 3 4 2 3 4 2 1 2
s6 1 1 3 4 5 5 4 3
s7 1 2 2 3 4 2 4 3
s8 1 1 5 4 3 3 4 5
s9 1 1 5 4 3 3 4 5

m = 9

Fig. 15

cr(e) 1 2 3 4 5 6 7 8 9
s1 5 8 11 3 7 11 12 9 6
s2 0 5 10 8 10 12 10 9 8
s3 10 5 0 10 10 10 8 9 10
s4 11 8 5 9 7 5 6 9 12
s5 12 11 10 8 4 0 10 11 12
s6 10 11 12 0 4 8 12 11 10
s7 12 9 6 11 7 3 5 8 11
s8 10 9 8 12 10 8 0 5 10
s9 8 9 10 10 10 10 10 5 0
s10 6 9 12 5 7 9 11 8 5

max(xe, ye) 1 2 3 4 5 6 7 8 9
s1 5 4 3 5 4 3 2 1 2
s2 3 4 3 3 2 2 2 3 4
s3 3 4 3 2 2 3 4 3 2
s4 3 4 5 3 4 5 2 1 2
s5 2 3 4 3 4 3 3 2 2
s6 3 2 2 3 4 3 2 3 4
s7 2 1 2 3 4 5 5 4 3
s8 2 2 3 2 3 4 3 4 3
s9 4 3 2 3 2 2 3 4 3
s10 2 1 2 5 4 3 3 4 5

m = 10

Fig. 16

cr(e) 1 2 3 4 5 6 7 8 9 10
s1 1 0 0 1 2 2 2 2 2 2
s2 1 2 2 1 0 0 1 2 2 1
s3 2 2 2 2 2 2 1 0 0 1

max(xe, ye) 1 2 3 4 5 6 7 8 9 10
s1 4 5 5 4 3 3 3 2 2 3
s2 3 2 2 3 5 5 4 3 3 4
s3 3 2 2 3 3 3 4 5 5 4

B colored red and blue. Let P = R ∪ B, S a set of valid blue

segments for P, and c a positive integer. Let DS ,c be the drawing

of Km,cn with vertex set PS ,c. For each edge e = rb (with r ∈ R

and b ∈ B), let xe and ye be the number of red points on each side

of e and on the same side of sb as r. Then

lcr(DS ,c) ≤ max
e edge of D

(c · cr(e) + (c − 1) max(xe, ye)),

where cr(e) is the number of edges crossing e in D.
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Proof. Let b ∈ B and r ∈ R. Then b is replaced by c blue points
along the segment sb. Let p be the ith point on sb. We compute
cr(pr). Let e = br and e′ = pr. Originally, e is crossed by cr(e)
edges of D. Each of these cr(e) edges is replaced by c edges in
DS ,c creating c · cr(e) crossings with e′. The only other edges
crossing e′ are those joining points on sb with red points on the
opposite side on e′ and on the same side of sb as r. Say that e′

separates x(e) such red points from i − 1 blue points on sb, and
ye such red points from the remaining c − i blue points on sb as
shown in Fig. 9. Then cr(e′) = c · cr(e) + (i − 1)xe + (c − i)ye ≤
c·cr(e)+(i−1+c−i) max(xe, ye) = c·cr(e)+(c−1) max(xe, ye). �

As a corollary of Lemma 8, we obtain the following result.
Theorem 9. For any positive integers m, n, and c,

lcr(Km,cn) ≤ c lcr(Km,n) + (c − 1)
(⌈m

2

⌉
− 1
)
.

Proof. Let D be a drawing of Km,n with vertex-classes R and
B colored red and blue, respectively, and such that lcr(D) =
lcr(Km,n). Let P = R∪B. We choose a set S of blue valid segments
for P such that for each b ∈ B the line containing the segment sb

separates the red points in almost half (i.e., there are �m
2  on one

side of sb and �m
2 � on the other). Then max(xe, ye) ≤ �m

2 � − 1
for any edge e of D. By Lemma 8, lcr(DS ,c) ≤ c lcr(D) + (c −
1)
(⌈

m
2

⌉
− 1
)
= c lcr(Km,n) + (c − 1)

(⌈
m
2

⌉
− 1
)
. �

Theorem 10. For any integers m ≥ 5 and n ≥ 5,

lcr(Km,n) ≤ 3
14

(m − 1)(n − 1).

Proof. We first deal with the case when 7|m and 4|n. Consider
the set P = R ∪ B of 11 points together with the valid set of blue
segments S (B) and the valid set of red segments S (R) shown in
Fig. 10. It can be checked that for every edge e in D (the drawing
of K7,4 with vertex-classes R and B), 1 ≤ max(xe, ye) ≤ 4 and
cr(e) ≤ 4 − max(xe, ye). Let P′ = PS (B),n/4 and P′′ = P′S (R),m/7

(Note that S (R) is also a valid set of red segments for P′). By
Lemma 8,

lcr(P′) = max
e edge of D

(n
4
· cr(e) +

(n
4
− 1
)

max(xe, ye)
)

≤
(n
4
· (4 −max(xe, ye)) +

(n
4
− 1
)

max(xe, ye)
)
≤ n − 1.

For every red point r, the line containing sr separates the blue
points of P′ in half. Thus max(xe, ye) ≤ 2 · n

4 − 1 = n
2 − 1 for any

edge e in D′. Using Lemma 8 again,

lcr(Km,n) ≤ lcr(P′′)

= max
e edge of D′

(m
7
· cr(e) +

(m
7
− 1
)

max(xe, ye)
)

≤ m
7

(n − 1) +
(m

7
− 1
) (n

2
− 1
)

=
3
14

mn − 2m
7
− n

2
+ 1

≤ 3
14

(m − 1)(n − 1).

For the general case when 7|m and 4|n do not necessarily hold,
let m′ = 7�m

7 � ≤ m + 6 and n′ = 4� n
4 � ≤ n + 3, which could add

only a O(m + n) term as

lcr(Km,n) ≤ lcr(Km′ ,n′ ) ≤ 3
14

m′n′ − 2m′

7
− n′

2
+ 1

≤ 3
14

(m − 1)(n − 1).

�
The technique used in the proof of Theorem 10 can be used

more carefully for specific values of m. Figures 11–16 show ini-
tial sets for each 5 ≤ m ≤ 10 that improve the upper bound in
Theorem 10. These improvements are summarized in Table 1.
The upper bounds are obtained by using Lemma 8. The values of
cr(e) and max(xe, ye) for each e are included in Table 2.
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(UNAM). She then moved to the United
States where received her Ph.D. in Math-

ematics from Rutgers University in 2001. Her current research
interest is in discrete geometry, combinatorics, and geometric and
topological graph theory.

Evgeniya Lagoda received her B.S. de-
gree in Mathematics from California State
University, Northridge, USA, in 2016, and
then moved to attend a graduate program
at Berlin Mathematical School, Germany.

Seyed Sajjadi was born in 1994 in
Tehran. He moved to the U.S. at age
18 to attend California State University,
Northridge. He is pursuing Computer en-
gineering with double minor in mathemat-
ics and computer science. He is currently
the president and chapter chair of ACM
and an active member of IEEE. His re-

search interests are artificial intelligence and mathematical mod-
eling.

Yakov Sapozhnikov was born in 1985.
He received his M.S. in Mathematics from
California State University, Northridge in
2017. His research interests are algebra,
combinatorics, and number theory.

c© 2017 Information Processing Society of Japan 550


