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Abstract—Methodologies for effectively managing software 

development risk and producing quality software are taking hold 
in the IT industry. However, similar practices for embedded 
systems, particularly in resource constrained systems, have not 
yet become prevalent. Today, quality in embedded software is 
generally tied to platform-specific testing tools geared towards 
debugging. We present here an integrated collection of concrete 
concepts and practices that are decoupled from platform-specific 
tools. In fact, our approach drives the actual design of embedded 
software. These strategies yield good design, systems that are 
testable under automation, and a significant reduction in 
software flaws. Examples from an 8 bit system with 16k of 
program memory and 255 bytes of RAM illustrate these ideas. 
 

Index Terms—Design for testability, Microprogramming, 
Software quality, Software testing 

I. INTRODUCTION 
PECTACULAR software failures make headlines. The 
problems plaguing Denver International Airport’s 

automated baggage-handling system in the mid-90’s had 
enough media presence to make a Hollywood star jealous. 
Software bugs with far less media attention are a regularly 
occurring reality. Bugs derail business plans, exasperate 
managers and developers, and adversely impact the bottom 
lines of companies of all sizes. 

Embedded software is a unique specialty within the broader 
software field. High-level IT systems generally run in clean 
environments and have little contact with the physical world. 
While bugs are always costly, bugs in PC software or large 
enterprise applications can be patched with relative ease. In 
contrast, flaws within the embedded software of an automobile 
fuel injection system can cause a massive and expensive 
recall. Worse still is the very real prospect of loss of human 
life due to embedded software flaws. The abilities, 
complexities, and pervasiveness of embedded systems 
continue to grow thus growing the possibility and probability 
of truly expensive software flaws. 

Effective methodologies for managing software risk and 
producing quality software are beginning to take root in 
industry. For instance, the practices under the umbrella of 
“Agile Methodologies” are winning converts [1]. Widespread 
anecdotal evidence and our own experience testify to “Agile” 
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practices producing an order of magnitude or more reduction 
in bugs over traditional methods. In particular, among these 
practices, Test Driven Development (TDD) stands out. TDD is 
counterintuitive; it prescribes that test code be programmed 
before the functional code those tests exercise is implemented. 
Practicing TDD means designing software such that it can be 
tested at any time under automation. Designing for testability 
in TDD is a higher calling than designing “good” code 
because testable code is good code. 

Traditional testing strategies rarely impact the design of 
production code, are onerous for developers and testers, and 
often leave testing to the end of a project where budget and 
time constraints threaten thorough testing. Test Driven 
Development systematically inverts these patterns. 

Practicing TDD follows these essential steps: 
1. Identify a piece of system functionality to 

implement (a single function or method). 
2. Program a test to verify that functionality. 
3. Stub out the functional code under test 

(to allow the test code to compile). 
4. Compile; run the test and see it fail. 
5. Flesh out the functional code. 
6. Compile; run the test. 
7. Refactor the functional code. 
8. Repeat 6 & 7 until the test passes and the 

functional code is cleanly implemented. 
9. Repeat 1-8 until all features are implemented. 

 
In this paper, we draw from experience with resource-

constrained systems that do not enjoy the “luxury” of an 
operating system or object-oriented language (e.g. C++ or 
Java). Within this context, practicing TDD has generally been 
regarded as prohibitively difficult. The direct interaction of 
programming and hardware as well as limited resources for 
running test frameworks seem to set a hurdle too high to clear. 
We shall demonstrate the application of a new software design 
pattern and a multi-tier strategy for testing that brings the 
efficacy of TDD to even the lowest-level embedded software 
(and by extension any embedded system). 

While the importance of testing in embedded software is 
universally recognized, testing approaches, in general, have 
been tied to specific tools or platforms [2]. What we offer here 
are concepts decoupled from particular tools and platforms. 

II. CURRENT STATE OF TESTING IN EMBEDDED SOFTWARE & 
SHORTCOMINGS 

A. Ad-hoc Testing 
Experimentation and ad-hoc testing are often performed 
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during the development process to discover the idiosyncrasies 
of the system under development. The knowledge gained in 
these efforts is then applied in the functional source code. 

With ad-hoc testing, test fixtures and experimentation code 
used to characterize the system and shape the functional code 
are usually discarded or shelved. Over time, these resources 
fall out of step with system development (or no longer exist at 
all) and become vestigial remnants of the system’s evolution. 
Valuable, executable knowledge (in the form of code) is lost. 
Time will almost certainly be lost in later stages of 
development because these tests have not been kept current. 

B. Debugging 
Embedded software relies far more heavily on specialized 

debugging and system inspection tools than does high-level 
software. Most, if not all, of the need for these tools is created 
by the multivariable equation of hardware and software 
commingling. Bugs may be due to hardware, software, or 
both. Thus, finding the source of unintended behavior 
generally requires more effort than in high-level software. 

The existence of sophisticated debugging tools in embedded 
software creates an interesting side effect. With such advanced 
debugging tools available (and needed), developers are 
inclined to design only for debugging and not for true testing. 
The assumption inherent in design-for-debug is that any and 
all code is “debuggable.” The limitations in this assumption 
are threefold. First of all, undesired behaviors in a system 
under development can be due to any number of obscure 
reasons – often in the least expected places. Relying on 
design-for-debug is having faith that one is well-capable of 
finding a needle in a haystack. Secondly, debugging sessions 
are one-time events. After a bug is found and corrected there 
is nothing in place to watch that same code and point out 
undesired code interaction in the future. Finally, relying 
heavily on debugging rarely enforces good coding practices; 
debugging can act as a psychological safety net. 

C. Final Testing 
The traditional “Waterfall” method of software 

development prescribes a progression of design, build, and test 
steps. Final testing is planned as the last major stage of 
development and verification before release to production. 
Embedded projects, just as high-level software projects, most 
often follow these same steps. 

Testing planned for the conclusion of a project presents two 
problems. First of all, time constraints and budget limitations 
usually squeeze final testing into a compressed time period or 
eliminate it entirely. As such, tests that might prevent costly 
future problems are sacrificed for the demands of the present 
day. Secondly, with testing so removed from development, 
source code is unlikely to have been developed for ease of 
testing. For example, a simple temperature measurement 
might be implemented such that a code block contains both an 
analog-to-digital conversion and the math routines that will 
produce a final temperature value. On the surface, there is 
nothing wrong with this approach. In final testing, however, 
the math of the routine can only be tested by subjecting the 
entire system to actual temperature variations or by using a 
special voltage simulation rig. These tests are not necessarily 

conclusive from an accuracy standpoint and require elaborate 
test apparatuses. While simulation environments are certainly 
necessary for aspects of system testing, a temperature chamber 
is not necessary to verify five lines of math code. 

III. TEST DRIVEN DEVELOPMENT 

A. Overview 
Test Driven Development inverts the traditional software 

development/test cycle. In TDD, the development cycle is not 
a progression of writing functional code and then later testing 
it. Instead, testing drives development. A developer looks for 
ways to make the system testable, designs accordingly, writes 
tests and creates testing strategies, and then writes functional 
code to meet the requirements of the test-spawned design [3]. 

Testing takes different forms. At the highest levels (e.g. 
integration and system testing) full automation is unusual. At 
the lowest level, TDD prescribes fully automated unit testing. 

In automated unit testing, a developer first writes a unit test 
(a test that validates correct operation of a single module of 
source code, for instance, a function or method [4]) and then 
implements the complementary functional code. With each 
system feature tackled, unit test code is added to an automated 
test suite. Full regression tests can take place all the time. 

Further higher-level testing will complement these code-
level tests. Whether this testing is integration or system 
testing, it will generally follow the patterns of traditional 
software verification. Ideally, it will also include some 
measure of automation. 

Automated unit tests catch the majority of bugs at a low 
level and leave for the human mind difficult testing issues like 
timing collisions or unexpected sub-system interactions. 

TDD provides several clear benefits: 
1. Code is always tested. 
2. Testing drives the design of the code. As a side 

effect, the code tends to be improved because of 
the decoupling necessary to create testable code. 

3. The system grows organically as more knowledge 
of the system is gained. 

4. The knowledge of the system is captured in tests; 
the tests are “living” documentation. 

5. Developers can add new features or alter existing 
code with confidence that automated regression 
testing will reveal failures and unexpected results. 

B. Particular Advantage of TDD in Embedded Software 
In the context of embedded software TDD provides a 

further advantage beyond those already listed. Because of the 
variability of hardware and software during development, 
bugs are due to hardware, software, or a combination of the 
two. With TDD, software bugs can be eliminated to such a 
degree that it becomes far easier to pinpoint, by process of 
elimination, the source of unexpected system behavior (i.e. 
hardware versus software). 
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IV. UNIT TESTING IN EMBEDDED SOFTWARE 

A. Model-Conductor-Hardware Design Pattern 
Design patterns are documented approaches to solving 

commonly occurring problems in the realm of software 
development. In high-level languages, a multitude of patterns 
exist that address common situations in elegant and language-
independent ways [5]. 

When considering the challenges of applying TDD to 
embedded software, the immediately apparent difficulty is the 
hardware. If tests are to be run in an automated fashion, then 
hardware functions must be automated as well. Initially, this 
seems to be a task too complicated to implement in a cost-
effective manner. Simulating hardware events in a 
comprehensive manner can require complicated platform-
specific tools or elaborate programmable hardware test 
fixtures. However, using existing design patterns as 
inspiration, another approach is available. 

In a Graphical User Interface (GUI), we find a situation 
akin to embedded software. Namely, in GUI programming 
there is a tendency to mix functional logic with event handling 
external to that logic. In this analogy, the asynchronous events 
and programming interfaces of on-screen widgets are similar 
to external interrupts and hardware registers of embedded 
systems. 

Software developers have created two patterns to address 
the problems inherent in architecting good GUI applications. 
The Model-View-Presenter (MVP) and Model-View-
Controller (MVC) design patterns effectively and cleanly 
separate widget event handling from flow control logic [6]. As 
a side effect, the separation these patterns provide allows for 
automated testing of GUI presentation code free from a user 
clicking upon actual widgets. 

In MVP, the View represents a very thin wrapper around a 
collection of widgets comprising a GUI. The Model saves 
state external to the widgets and interfaces with programming 
functions elsewhere in the system not directly related to the 
GUI. The Presenter references both the Model and View and 
embodies the presentation logic necessary to process events 
from the GUI’s widgets and change state on those widgets. 
With this separation, a View can be “mocked”, or simulated. 
A mocked View, under automated test control, can emit events 
and receive calls from the Presenter. Similarly, the Model can 
be mocked. In this way, the presentation logic of the Presenter 
can be thoroughly tested in an automated fashion separate 
from an on-screen GUI [7]. It is assumed that the widgets of 
the View are already well-tested by system vendors. Tests for 
the Presenter and Model are created and added to the 
automated test suite. Functional code is written to cause the 
tests to pass. Final verification by an actual user ensures that 
all has been correctly connected in the production system apart 
from the test system. 

Drawing from MVP and MVC, we developed the Model- 
Conductor-Hardware (MCH) pattern for use in embedded 
software. In this pattern, similar to its GUI cousins, MCH 
allows the physical hardware to be mocked, forces functional 
logic to be decoupled from hardware, and provides a means 
for automated unit test suites to test both the hardware and 

functional logic. 

 
Fig.   1.  Relationships of a Conductor to its complementary MCH triad 
members and their mocks. The depicted mocks stand in for the concrete 
members of the triad and allow for testing of the logic within the 
Conductor. A mock Conductor (not depicted) allows the concrete Model 
and Hardware to be tested. Global variables within mocks capture 
function parameters and simulate return values used in test assertions. 

 
Model 

The Model in MCH models the current state of the system. 
For example, if an analog output is set to +5V, but the 
feedback circuit reports +4V (with tolerance of 100mV), then 
the Model will set a corresponding error state within itself for 
use by the Conductor. The Model ensures internal consistency 
of states in this manner. The Model is only connected to the 
Conductor and has no direct reference to the Hardware. 
 
Hardware 

The Hardware in MCH represents a thin layer around the 
hardware itself. This member of the MCH triad encapsulates 
the ports and registers used in the system. Interrupt Service 
Routines (ISR’s) notify the Conductor of system state 
changes. The Hardware is only connected to the Conductor 
and has no direct reference to the Model. 

 
Conductor 

The Conductor in MCH contains the main control logic of 
the triad. The Conductor is triggered by the Hardware to 
process new data and events. Upon such triggers, the 
Conductor sets the state within the Model and uses the state 
contained by the Model in its logic to send commands or set 
data in the Hardware. The Conductor contains a control loop 
and acts as the intermediary between the Model and the 
Hardware. The Conductor was so named because of its role as 
a system director and because of its proximity to actual 
electrical components. 

For simple systems a single MCH triad may be sufficient. 
Often, multiple triads are necessary to simplify the logical 
segregation of testing. In these cases, triads generally exist 
independently of one another with a central “executor” to call 
each Conductor’s control loop. If there is any overlap between 
triads, it tends to happen at the Hardware level. 

B. Testing with Model-Conductor-Hardware 
Testing with MCH centers on making test assertions against 

the information captured in mocks. Each functional member of 
the triad is unit tested in isolation from the system via 

Conductor

Model Mock 
Model

Hardware Mock 
Hardware
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composition with mocks of the system. The calls and 
parameters of the triad member under test are captured within 
the mocks for test assertions. The proper operation of the logic 
under test is revealed by its actions on the mocks. 

With mocks constructed for each member of the MCH triad, 
clear testing possibilities become apparent. Code testing via 
simulator, on-chip, or in a cross-compiled environment are all 
possible. The states and behavior within the Model are tested 
independently of hardware events and functional logic. The 
system logic in the Conductor is tested with simulated events 
from Hardware and simulated states in the Model. With a 
mock Conductor, even hardware register configuration code 
and ISR’s can be tested via a simulator, hardware test fixture, 
or board-level feedback loops. MCH code examples follow in 
a later section of this paper. 

C. Unit Testing Framework 
Unit testing frameworks exist for nearly every high-level 

programming language in common use today. The mechanics 
of a test framework are relatively simple to implement [8]. A 
framework holds test code apart from functional code, 
provides functions for comparing expected and received 
results from the functional module under test, and collects and 
reports the test results for the entire test suite. 

In our work, we have both customized the open source 
project Embunit (Embedded Unit) and created a very 
lightweight framework called Unity [9]. Embunit and Unity 
are both C-based frameworks we modify for target platforms 
as needed. 

D. The cost of using Model-Conductor-Hardware 
MCH adds little to no overhead to a production embedded 

system. Of course, mocks are not included in the final system. 
Further, MCH is essentially naming, organization, and calling 
conventions with little to no extra memory use or function 
calls; any overhead incurred by these conventions is easily 
optimized away by the compiler. 

TDD, in general, does add to project cost in added 
developer time. However, clear savings are realized over the 
system’s lifetime in reduced bugs, reduced likelihood of 
recall, and ease of feature additions and modifications. 

V. TDD IN EMBEDDED SOFTWARE 

A. Four Tier Testing Strategy 
Thorough software testing includes automated unit testing 

at the lowest level and integration and system testing at higher 
levels. Unit testing was addressed in the preceding section. 
Implementing an overall TDD strategy in embedded software 
is a four tier testing approach. With each step up through the 
tiers, less automated testing occurs and more human 
interaction is required. However, each tier provides increasing 
test confidence and frees developers and testers to use their 
human intelligence and intuition for difficult testing matters 
such as sub-system interaction and timing collisions. 
Automated testing at the lowest levels of system development 
can eliminate a high number of bugs early on. Ultimately, 
system flaws found earlier in the development process cost 
less than those found later. 

1) Automated Unit Testing 
Developers use MCH to decouple functional logic code 

from hardware code and develop unit tests to be run in an 
automated test framework. These tests are run on-chip, cross-
compiled on a PC, or executed in a platform simulator such 
that automated regression tests can always be executed. Note 
that work in this tier can progress without target hardware. 

2) Hardware Level Testing 
Developers and engineers use a combination of unit tests, 

hardware features, and direct developer interaction to test 
hardware functions and hardware setup code. Using feedback 
loops designed into the hardware, processor diagnostic 
functions, hardware test fixtures, and user interaction, all 
hardware functions are tested. The approach taken here is 
system-dependent. Once hardware functions are tested and 
operational, it is likely that tests developed here will be run far 
less frequently than in Tier 1. 

3) Communication Channel Testing 
If the embedded system includes an external 

communication interface, developers use PC tools to exercise 
and capture test results of the system through this channel. A 
complementary hardware test fixture, software test fixture, 
and/or significant human interaction are likely to be required 
to exercise the system and provoke communication events. 

4) End to End System Testing 
Having confidence in low level test successes, developers 

and/or testers manually exercise an end-to-end exploratory 
system test looking for emergent timing issues, responsiveness 
deficiencies, UI inconsistencies, etc. 

B. Continuous Integration 
The technique of continuous integration regularly brings 

together a system’s code (possibly from multiple developers) 
and ensures via regression tests that new programming has not 
broken existing programming. Automated build systems allow 
source code and tests to be compiled and run automatically. 
These ideas and tools are important supports to effective TDD 
but are beyond the scope of this paper [10]. 

VI. EMBEDDED MODEL-CONDUCTOR-HARDWARE EXAMPLES 

A. MCH in a C-based Environment 
Creating mocks and tests in an embedded C environment is 

accomplished through compiled mock.o implementations of 
header file function declarations. For example, suppose 
hardware.h declares all functions for interfacing the 
hardware features of a particular microcontroller. In this 
example, Conductor tests will verify that the Conductor makes 
specific calls on the hardware with appropriate parameters. As 
such, a mockhardware.c definition file will be written 
containing otherwise empty functions that store individual 
function call parameter values or return specific values – both 
as defined by global variables. Object files for mock and 
functional code are linked together, and tests access the 
previously mentioned global values to verify the Conductor 
calls to the mockhardware.h interface. 

B. Code Samples 
The following code blocks are examples drawn from a real-
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world project developed for Savant Automation of Grand 
Rapids, Michigan. Savant builds Automated Guided Vehicles. 
These samples pertain to a dedicated speed control board; the 
functions shown set output drive voltage. In this testing 
scenario, we illustrate a Conductor under test. The example 
tests verify that the Conductor is correctly using the hardware 
interface (note use of ASSERT macros from test framework). 

 
hardware.h 
 
/// Get feedback from analog drive output. 
millivolts Hardware_GetFeedbackVoltage(void); 
 
/// Set the drive output voltage 
void Hardware_SetOutputVoltage( 
  millivolts output); 
 
/// Set the error flag. 
void Hardware_SetError(bool err); 
 
model.h 
 
typedef struct _ModelInstance { 
  millivolts FeedbackVoltage; 
  millivolts OutputVoltage; 
  bool Error; 
} ModelInstance; 
 
/// Set the feedback voltage. 
void Model_SetFeedbackVoltage( 
  millivolts feedback); 
 
/// Get drive output voltage for hardware. 
millivolts Model_GetOutputVoltage(void); 
 
/// Get the error state. 
bool Model_GetError(void); 
 
conductor.h 
 
/// Callback for hardware feedback voltage. 
void Conductor_HandleFeedbackVoltage(void); 
 
/// Control loop called by main() forever 
void Conductor_Run(void); 
 
mockhardware.h 
 
/// Feedback voltage to return 
extern millivolts 
  Hardware_InputFeedbackVoltage; 
 
/// Output voltage set by conductor. 
extern millivolts 
  Hardware_OutputDriveOutputVoltage; 
 
/// Error flag 
extern bool Hardware_OutputError; 

mockhardware.c 
 
#include "mockhardware.h" 
#include "hardware.h" 
#include "conductor.h" 
 
millivolts Hardware_InputFeedbackVoltage; 
millivolts Hardware_OutputDriveOutputVoltage; 
bool Hardware_OutputError; 
 
millivolts Hardware_GetFeedbackVoltage(void) { 
  return Hardware_InputFeedbackVoltage; 
} 
 
void Hardware_SetOutputVoltage( 
  millivolts output){ 
  Hardware_OutputDriveOutputVoltage = output; 
} 
 
void Hardware_SetError(bool err) { 
  Hardware_OutputError = err; 
} 
 
mockmodel.h 
 
/// Modeled system feedback voltage 
extern millivolts Model_FeedbackVoltage; 
 
/// Modeled system output voltage 
extern millovolts Model_OutputVoltage; 
 
/// Modeled error state 
extern bool Model_Error; 
 
mockmodel.c 
 
// Linked with testconductor.o in place of  
// model.o to allow conductor tests  
// independent of logic in actual model. 
 
#include "mockmodel.h" 
 
millivolts Model_FeedbackVoltage; 
millovolts Model_OutputVoltage; 
bool Model_Error; 
 
void Model_SetFeedbackVoltage( 
  millivolts feedback) { 
 
  Model_FeedbackVoltage = feedback; 
} 
 
millivolts Model_GetOutputVoltage(void) { 
  return Model_OutputVoltage; 
}   
 
bool Model_GetError(void) { 
  return Model_Error; 
} 
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model.c 
 
#include "model.h" 
 
ModelInstance Model; 
 
void Model_SetFeedbackVoltage( 
  millivolts feedback) { 
 
  Model.FeedbackVoltage = feedback; 
 
  if(feedback != Model.OutputVoltage) { 
    // realistically use nominal value 
    Model.Error = true; 
  } 
} 
 
millivolts Model_GetOutputVoltage(void) { 
  return Model.OutputVoltage; 
}   
 
bool Model_GetError(void) { 
  return Model.Error; 
} 
 
conductor.c 
 
#include "model.h" 
#include "hardware.h" 
 
void Conductor_HandleFeedbackVoltage(void) { 
  Model_SetFeedbackVoltage( 
    Hardware_GetFeedbackVoltage()); 
} 
 
void Conductor_Run(void) { 
  Hardware_SetError(Model_GetError()); 
 
  if(!Model_GetError()) { 
    Hardware_SetOutputVoltage( 
      Model_GetOutputVoltage()); 
  } 
} 
 
testconductor.c 
 
#include "conductor.h" 
#include "mockhardware.h" 
#include "mockmodel.h"  
 
static void testHandleFeedback(void) { 
  Hardware_InputFeedbackVoltage = 7; 
 
  Conductor_HandleFeedbackVoltage(); 
 
  TEST_ASSERT_EQUAL_INT( 7, 
    Model_FeedbackVoltage); 
} 
 
static void testConductorRun(void) { 
  Model_Error = false; 
  Model_OutputVoltage = 78; 
 
  Conductor_Run(); 
 
  TEST_ASSERT_MESSAGE( 
    Hardware_OutputError == false, 
    "Error set incorrectly"); 
 
  TEST_ASSERT_EQUAL_INT( 78, 

    Hardware_OutputDriveOutputVoltage); 
 
  Model_Error = true; 
  Model_OutputVoltage = 99; 
 
  Conductor_Run(); 
 
  TEST_ASSERT_MESSAGE( 
    Hardware_OutputError == true, 
    "Error not set"); 
 
  TEST_ASSERT_EQUAL_INT(78, 
    Hardware_OutputDriveOutputVoltage); 
} 

VII. CONCLUSION / FUTURE WORK 
Applying Test Driven Development in embedded software 

allows developers to create well-tested systems. The concepts 
we have presented are tool and platform independent allowing 
the methods of TDD to drive design and test implementation. 
Software design and quality are both improved leading to 
overall cost savings in reduced field defects and eventual 
feature enhancements. TDD and to a lesser extent initial setup 
and tool customization for each new project will add to project 
development time; however, the benefits far outweigh this 
cost. Total test automation can likely never be accomplished. 
Nevertheless, the presented methods codify a flexible 
approach that encourages consistent testability. 

Planned future work includes applying and expanding the 
practices covered in this paper in the context of Real Time 
Operating Systems. Further, given our experience with our 
own Unity framework, we believe that it is feasible to create a 
unit test framework for assembly languages. 
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