
 1

Abstract—Methodologies for effectively managing software

development risk and producing quality software are taking hold
in the IT industry. However, similar practices for embedded
systems, particularly in resource constrained systems, have not
yet become prevalent. Today, quality in embedded software is
generally tied to platform-specific testing tools geared towards
debugging. We present here an integrated collection of concrete
concepts and practices that are decoupled from platform-specific
tools. In fact, our approach drives the actual design of embedded
software. These strategies yield good design, systems that are
testable under automation, and a significant reduction in
software flaws. Examples from an 8 bit system with 16k of
program memory and 255 bytes of RAM illustrate these ideas.

Index Terms—Design for testability, Microprogramming,
Software quality, Software testing

I. INTRODUCTION
PECTACULAR software failures make headlines. The
problems plaguing Denver International Airport’s

automated baggage-handling system in the mid-90’s had
enough media presence to make a Hollywood star jealous.
Software bugs with far less media attention are a regularly
occurring reality. Bugs derail business plans, exasperate
managers and developers, and adversely impact the bottom
lines of companies of all sizes.

Embedded software is a unique specialty within the broader
software field. High-level IT systems generally run in clean
environments and have little contact with the physical world.
While bugs are always costly, bugs in PC software or large
enterprise applications can be patched with relative ease. In
contrast, flaws within the embedded software of an automobile
fuel injection system can cause a massive and expensive
recall. Worse still is the very real prospect of loss of human
life due to embedded software flaws. The abilities,
complexities, and pervasiveness of embedded systems
continue to grow thus growing the possibility and probability
of truly expensive software flaws.

Effective methodologies for managing software risk and
producing quality software are beginning to take root in
industry. For instance, the practices under the umbrella of
“Agile Methodologies” are winning converts [1]. Widespread
anecdotal evidence and our own experience testify to “Agile”

Manuscript submitted April 2006. This paper is based on ideas developed

and work performed for various clients as part of ongoing contract software
development engagements.

Michael J. Karlesky, William I. Bereza, and Carl B. Erickson, PhD are all
with Atomic Object LLC, 941 Wealthy Street SE, Grand Rapids, MI 49506
USA. voice: (616) 776-6020 fax: (616) 776-6015
email: karlesky@atomicobject.com.

practices producing an order of magnitude or more reduction
in bugs over traditional methods. In particular, among these
practices, Test Driven Development (TDD) stands out. TDD is
counterintuitive; it prescribes that test code be programmed
before the functional code those tests exercise is implemented.
Practicing TDD means designing software such that it can be
tested at any time under automation. Designing for testability
in TDD is a higher calling than designing “good” code
because testable code is good code.

Traditional testing strategies rarely impact the design of
production code, are onerous for developers and testers, and
often leave testing to the end of a project where budget and
time constraints threaten thorough testing. Test Driven
Development systematically inverts these patterns.

Practicing TDD follows these essential steps:
1. Identify a piece of system functionality to

implement (a single function or method).
2. Program a test to verify that functionality.
3. Stub out the functional code under test

(to allow the test code to compile).
4. Compile; run the test and see it fail.
5. Flesh out the functional code.
6. Compile; run the test.
7. Refactor the functional code.
8. Repeat 6 & 7 until the test passes and the

functional code is cleanly implemented.
9. Repeat 1-8 until all features are implemented.

In this paper, we draw from experience with resource-

constrained systems that do not enjoy the “luxury” of an
operating system or object-oriented language (e.g. C++ or
Java). Within this context, practicing TDD has generally been
regarded as prohibitively difficult. The direct interaction of
programming and hardware as well as limited resources for
running test frameworks seem to set a hurdle too high to clear.
We shall demonstrate the application of a new software design
pattern and a multi-tier strategy for testing that brings the
efficacy of TDD to even the lowest-level embedded software
(and by extension any embedded system).

While the importance of testing in embedded software is
universally recognized, testing approaches, in general, have
been tied to specific tools or platforms [2]. What we offer here
are concepts decoupled from particular tools and platforms.

II. CURRENT STATE OF TESTING IN EMBEDDED SOFTWARE &
SHORTCOMINGS

A. Ad-hoc Testing
Experimentation and ad-hoc testing are often performed

Michael J. Karlesky, William I. Bereza, and Carl B. Erickson, PhD

Effective Test Driven Development for
Embedded Software

S

 2

during the development process to discover the idiosyncrasies
of the system under development. The knowledge gained in
these efforts is then applied in the functional source code.

With ad-hoc testing, test fixtures and experimentation code
used to characterize the system and shape the functional code
are usually discarded or shelved. Over time, these resources
fall out of step with system development (or no longer exist at
all) and become vestigial remnants of the system’s evolution.
Valuable, executable knowledge (in the form of code) is lost.
Time will almost certainly be lost in later stages of
development because these tests have not been kept current.

B. Debugging
Embedded software relies far more heavily on specialized

debugging and system inspection tools than does high-level
software. Most, if not all, of the need for these tools is created
by the multivariable equation of hardware and software
commingling. Bugs may be due to hardware, software, or
both. Thus, finding the source of unintended behavior
generally requires more effort than in high-level software.

The existence of sophisticated debugging tools in embedded
software creates an interesting side effect. With such advanced
debugging tools available (and needed), developers are
inclined to design only for debugging and not for true testing.
The assumption inherent in design-for-debug is that any and
all code is “debuggable.” The limitations in this assumption
are threefold. First of all, undesired behaviors in a system
under development can be due to any number of obscure
reasons – often in the least expected places. Relying on
design-for-debug is having faith that one is well-capable of
finding a needle in a haystack. Secondly, debugging sessions
are one-time events. After a bug is found and corrected there
is nothing in place to watch that same code and point out
undesired code interaction in the future. Finally, relying
heavily on debugging rarely enforces good coding practices;
debugging can act as a psychological safety net.

C. Final Testing
The traditional “Waterfall” method of software

development prescribes a progression of design, build, and test
steps. Final testing is planned as the last major stage of
development and verification before release to production.
Embedded projects, just as high-level software projects, most
often follow these same steps.

Testing planned for the conclusion of a project presents two
problems. First of all, time constraints and budget limitations
usually squeeze final testing into a compressed time period or
eliminate it entirely. As such, tests that might prevent costly
future problems are sacrificed for the demands of the present
day. Secondly, with testing so removed from development,
source code is unlikely to have been developed for ease of
testing. For example, a simple temperature measurement
might be implemented such that a code block contains both an
analog-to-digital conversion and the math routines that will
produce a final temperature value. On the surface, there is
nothing wrong with this approach. In final testing, however,
the math of the routine can only be tested by subjecting the
entire system to actual temperature variations or by using a
special voltage simulation rig. These tests are not necessarily

conclusive from an accuracy standpoint and require elaborate
test apparatuses. While simulation environments are certainly
necessary for aspects of system testing, a temperature chamber
is not necessary to verify five lines of math code.

III. TEST DRIVEN DEVELOPMENT

A. Overview
Test Driven Development inverts the traditional software

development/test cycle. In TDD, the development cycle is not
a progression of writing functional code and then later testing
it. Instead, testing drives development. A developer looks for
ways to make the system testable, designs accordingly, writes
tests and creates testing strategies, and then writes functional
code to meet the requirements of the test-spawned design [3].

Testing takes different forms. At the highest levels (e.g.
integration and system testing) full automation is unusual. At
the lowest level, TDD prescribes fully automated unit testing.

In automated unit testing, a developer first writes a unit test
(a test that validates correct operation of a single module of
source code, for instance, a function or method [4]) and then
implements the complementary functional code. With each
system feature tackled, unit test code is added to an automated
test suite. Full regression tests can take place all the time.

Further higher-level testing will complement these code-
level tests. Whether this testing is integration or system
testing, it will generally follow the patterns of traditional
software verification. Ideally, it will also include some
measure of automation.

Automated unit tests catch the majority of bugs at a low
level and leave for the human mind difficult testing issues like
timing collisions or unexpected sub-system interactions.

TDD provides several clear benefits:
1. Code is always tested.
2. Testing drives the design of the code. As a side

effect, the code tends to be improved because of
the decoupling necessary to create testable code.

3. The system grows organically as more knowledge
of the system is gained.

4. The knowledge of the system is captured in tests;
the tests are “living” documentation.

5. Developers can add new features or alter existing
code with confidence that automated regression
testing will reveal failures and unexpected results.

B. Particular Advantage of TDD in Embedded Software
In the context of embedded software TDD provides a

further advantage beyond those already listed. Because of the
variability of hardware and software during development,
bugs are due to hardware, software, or a combination of the
two. With TDD, software bugs can be eliminated to such a
degree that it becomes far easier to pinpoint, by process of
elimination, the source of unexpected system behavior (i.e.
hardware versus software).

 3

IV. UNIT TESTING IN EMBEDDED SOFTWARE

A. Model-Conductor-Hardware Design Pattern
Design patterns are documented approaches to solving

commonly occurring problems in the realm of software
development. In high-level languages, a multitude of patterns
exist that address common situations in elegant and language-
independent ways [5].

When considering the challenges of applying TDD to
embedded software, the immediately apparent difficulty is the
hardware. If tests are to be run in an automated fashion, then
hardware functions must be automated as well. Initially, this
seems to be a task too complicated to implement in a cost-
effective manner. Simulating hardware events in a
comprehensive manner can require complicated platform-
specific tools or elaborate programmable hardware test
fixtures. However, using existing design patterns as
inspiration, another approach is available.

In a Graphical User Interface (GUI), we find a situation
akin to embedded software. Namely, in GUI programming
there is a tendency to mix functional logic with event handling
external to that logic. In this analogy, the asynchronous events
and programming interfaces of on-screen widgets are similar
to external interrupts and hardware registers of embedded
systems.

Software developers have created two patterns to address
the problems inherent in architecting good GUI applications.
The Model-View-Presenter (MVP) and Model-View-
Controller (MVC) design patterns effectively and cleanly
separate widget event handling from flow control logic [6]. As
a side effect, the separation these patterns provide allows for
automated testing of GUI presentation code free from a user
clicking upon actual widgets.

In MVP, the View represents a very thin wrapper around a
collection of widgets comprising a GUI. The Model saves
state external to the widgets and interfaces with programming
functions elsewhere in the system not directly related to the
GUI. The Presenter references both the Model and View and
embodies the presentation logic necessary to process events
from the GUI’s widgets and change state on those widgets.
With this separation, a View can be “mocked”, or simulated.
A mocked View, under automated test control, can emit events
and receive calls from the Presenter. Similarly, the Model can
be mocked. In this way, the presentation logic of the Presenter
can be thoroughly tested in an automated fashion separate
from an on-screen GUI [7]. It is assumed that the widgets of
the View are already well-tested by system vendors. Tests for
the Presenter and Model are created and added to the
automated test suite. Functional code is written to cause the
tests to pass. Final verification by an actual user ensures that
all has been correctly connected in the production system apart
from the test system.

Drawing from MVP and MVC, we developed the Model-
Conductor-Hardware (MCH) pattern for use in embedded
software. In this pattern, similar to its GUI cousins, MCH
allows the physical hardware to be mocked, forces functional
logic to be decoupled from hardware, and provides a means
for automated unit test suites to test both the hardware and

functional logic.

Fig. 1. Relationships of a Conductor to its complementary MCH triad
members and their mocks. The depicted mocks stand in for the concrete
members of the triad and allow for testing of the logic within the
Conductor. A mock Conductor (not depicted) allows the concrete Model
and Hardware to be tested. Global variables within mocks capture
function parameters and simulate return values used in test assertions.

Model

The Model in MCH models the current state of the system.
For example, if an analog output is set to +5V, but the
feedback circuit reports +4V (with tolerance of 100mV), then
the Model will set a corresponding error state within itself for
use by the Conductor. The Model ensures internal consistency
of states in this manner. The Model is only connected to the
Conductor and has no direct reference to the Hardware.

Hardware

The Hardware in MCH represents a thin layer around the
hardware itself. This member of the MCH triad encapsulates
the ports and registers used in the system. Interrupt Service
Routines (ISR’s) notify the Conductor of system state
changes. The Hardware is only connected to the Conductor
and has no direct reference to the Model.

Conductor

The Conductor in MCH contains the main control logic of
the triad. The Conductor is triggered by the Hardware to
process new data and events. Upon such triggers, the
Conductor sets the state within the Model and uses the state
contained by the Model in its logic to send commands or set
data in the Hardware. The Conductor contains a control loop
and acts as the intermediary between the Model and the
Hardware. The Conductor was so named because of its role as
a system director and because of its proximity to actual
electrical components.

For simple systems a single MCH triad may be sufficient.
Often, multiple triads are necessary to simplify the logical
segregation of testing. In these cases, triads generally exist
independently of one another with a central “executor” to call
each Conductor’s control loop. If there is any overlap between
triads, it tends to happen at the Hardware level.

B. Testing with Model-Conductor-Hardware
Testing with MCH centers on making test assertions against

the information captured in mocks. Each functional member of
the triad is unit tested in isolation from the system via

Conductor

Model Mock
Model

Hardware Mock
Hardware

 4

composition with mocks of the system. The calls and
parameters of the triad member under test are captured within
the mocks for test assertions. The proper operation of the logic
under test is revealed by its actions on the mocks.

With mocks constructed for each member of the MCH triad,
clear testing possibilities become apparent. Code testing via
simulator, on-chip, or in a cross-compiled environment are all
possible. The states and behavior within the Model are tested
independently of hardware events and functional logic. The
system logic in the Conductor is tested with simulated events
from Hardware and simulated states in the Model. With a
mock Conductor, even hardware register configuration code
and ISR’s can be tested via a simulator, hardware test fixture,
or board-level feedback loops. MCH code examples follow in
a later section of this paper.

C. Unit Testing Framework
Unit testing frameworks exist for nearly every high-level

programming language in common use today. The mechanics
of a test framework are relatively simple to implement [8]. A
framework holds test code apart from functional code,
provides functions for comparing expected and received
results from the functional module under test, and collects and
reports the test results for the entire test suite.

In our work, we have both customized the open source
project Embunit (Embedded Unit) and created a very
lightweight framework called Unity [9]. Embunit and Unity
are both C-based frameworks we modify for target platforms
as needed.

D. The cost of using Model-Conductor-Hardware
MCH adds little to no overhead to a production embedded

system. Of course, mocks are not included in the final system.
Further, MCH is essentially naming, organization, and calling
conventions with little to no extra memory use or function
calls; any overhead incurred by these conventions is easily
optimized away by the compiler.

TDD, in general, does add to project cost in added
developer time. However, clear savings are realized over the
system’s lifetime in reduced bugs, reduced likelihood of
recall, and ease of feature additions and modifications.

V. TDD IN EMBEDDED SOFTWARE

A. Four Tier Testing Strategy
Thorough software testing includes automated unit testing

at the lowest level and integration and system testing at higher
levels. Unit testing was addressed in the preceding section.
Implementing an overall TDD strategy in embedded software
is a four tier testing approach. With each step up through the
tiers, less automated testing occurs and more human
interaction is required. However, each tier provides increasing
test confidence and frees developers and testers to use their
human intelligence and intuition for difficult testing matters
such as sub-system interaction and timing collisions.
Automated testing at the lowest levels of system development
can eliminate a high number of bugs early on. Ultimately,
system flaws found earlier in the development process cost
less than those found later.

1) Automated Unit Testing
Developers use MCH to decouple functional logic code

from hardware code and develop unit tests to be run in an
automated test framework. These tests are run on-chip, cross-
compiled on a PC, or executed in a platform simulator such
that automated regression tests can always be executed. Note
that work in this tier can progress without target hardware.

2) Hardware Level Testing
Developers and engineers use a combination of unit tests,

hardware features, and direct developer interaction to test
hardware functions and hardware setup code. Using feedback
loops designed into the hardware, processor diagnostic
functions, hardware test fixtures, and user interaction, all
hardware functions are tested. The approach taken here is
system-dependent. Once hardware functions are tested and
operational, it is likely that tests developed here will be run far
less frequently than in Tier 1.

3) Communication Channel Testing
If the embedded system includes an external

communication interface, developers use PC tools to exercise
and capture test results of the system through this channel. A
complementary hardware test fixture, software test fixture,
and/or significant human interaction are likely to be required
to exercise the system and provoke communication events.

4) End to End System Testing
Having confidence in low level test successes, developers

and/or testers manually exercise an end-to-end exploratory
system test looking for emergent timing issues, responsiveness
deficiencies, UI inconsistencies, etc.

B. Continuous Integration
The technique of continuous integration regularly brings

together a system’s code (possibly from multiple developers)
and ensures via regression tests that new programming has not
broken existing programming. Automated build systems allow
source code and tests to be compiled and run automatically.
These ideas and tools are important supports to effective TDD
but are beyond the scope of this paper [10].

VI. EMBEDDED MODEL-CONDUCTOR-HARDWARE EXAMPLES

A. MCH in a C-based Environment
Creating mocks and tests in an embedded C environment is

accomplished through compiled mock.o implementations of
header file function declarations. For example, suppose
hardware.h declares all functions for interfacing the
hardware features of a particular microcontroller. In this
example, Conductor tests will verify that the Conductor makes
specific calls on the hardware with appropriate parameters. As
such, a mockhardware.c definition file will be written
containing otherwise empty functions that store individual
function call parameter values or return specific values – both
as defined by global variables. Object files for mock and
functional code are linked together, and tests access the
previously mentioned global values to verify the Conductor
calls to the mockhardware.h interface.

B. Code Samples
The following code blocks are examples drawn from a real-

 5

world project developed for Savant Automation of Grand
Rapids, Michigan. Savant builds Automated Guided Vehicles.
These samples pertain to a dedicated speed control board; the
functions shown set output drive voltage. In this testing
scenario, we illustrate a Conductor under test. The example
tests verify that the Conductor is correctly using the hardware
interface (note use of ASSERT macros from test framework).

hardware.h

/// Get feedback from analog drive output.
millivolts Hardware_GetFeedbackVoltage(void);

/// Set the drive output voltage
void Hardware_SetOutputVoltage(
 millivolts output);

/// Set the error flag.
void Hardware_SetError(bool err);

model.h

typedef struct _ModelInstance {
 millivolts FeedbackVoltage;
 millivolts OutputVoltage;
 bool Error;
} ModelInstance;

/// Set the feedback voltage.
void Model_SetFeedbackVoltage(
 millivolts feedback);

/// Get drive output voltage for hardware.
millivolts Model_GetOutputVoltage(void);

/// Get the error state.
bool Model_GetError(void);

conductor.h

/// Callback for hardware feedback voltage.
void Conductor_HandleFeedbackVoltage(void);

/// Control loop called by main() forever
void Conductor_Run(void);

mockhardware.h

/// Feedback voltage to return
extern millivolts
 Hardware_InputFeedbackVoltage;

/// Output voltage set by conductor.
extern millivolts
 Hardware_OutputDriveOutputVoltage;

/// Error flag
extern bool Hardware_OutputError;

mockhardware.c

#include "mockhardware.h"
#include "hardware.h"
#include "conductor.h"

millivolts Hardware_InputFeedbackVoltage;
millivolts Hardware_OutputDriveOutputVoltage;
bool Hardware_OutputError;

millivolts Hardware_GetFeedbackVoltage(void) {
 return Hardware_InputFeedbackVoltage;
}

void Hardware_SetOutputVoltage(
 millivolts output){
 Hardware_OutputDriveOutputVoltage = output;
}

void Hardware_SetError(bool err) {
 Hardware_OutputError = err;
}

mockmodel.h

/// Modeled system feedback voltage
extern millivolts Model_FeedbackVoltage;

/// Modeled system output voltage
extern millovolts Model_OutputVoltage;

/// Modeled error state
extern bool Model_Error;

mockmodel.c

// Linked with testconductor.o in place of
// model.o to allow conductor tests
// independent of logic in actual model.

#include "mockmodel.h"

millivolts Model_FeedbackVoltage;
millovolts Model_OutputVoltage;
bool Model_Error;

void Model_SetFeedbackVoltage(
 millivolts feedback) {

 Model_FeedbackVoltage = feedback;
}

millivolts Model_GetOutputVoltage(void) {
 return Model_OutputVoltage;
}

bool Model_GetError(void) {
 return Model_Error;
}

 6

model.c

#include "model.h"

ModelInstance Model;

void Model_SetFeedbackVoltage(
 millivolts feedback) {

 Model.FeedbackVoltage = feedback;

 if(feedback != Model.OutputVoltage) {
 // realistically use nominal value
 Model.Error = true;
 }
}

millivolts Model_GetOutputVoltage(void) {
 return Model.OutputVoltage;
}

bool Model_GetError(void) {
 return Model.Error;
}

conductor.c

#include "model.h"
#include "hardware.h"

void Conductor_HandleFeedbackVoltage(void) {
 Model_SetFeedbackVoltage(
 Hardware_GetFeedbackVoltage());
}

void Conductor_Run(void) {
 Hardware_SetError(Model_GetError());

 if(!Model_GetError()) {
 Hardware_SetOutputVoltage(
 Model_GetOutputVoltage());
 }
}

testconductor.c

#include "conductor.h"
#include "mockhardware.h"
#include "mockmodel.h"

static void testHandleFeedback(void) {
 Hardware_InputFeedbackVoltage = 7;

 Conductor_HandleFeedbackVoltage();

 TEST_ASSERT_EQUAL_INT(7,
 Model_FeedbackVoltage);
}

static void testConductorRun(void) {
 Model_Error = false;
 Model_OutputVoltage = 78;

 Conductor_Run();

 TEST_ASSERT_MESSAGE(
 Hardware_OutputError == false,
 "Error set incorrectly");

 TEST_ASSERT_EQUAL_INT(78,

 Hardware_OutputDriveOutputVoltage);

 Model_Error = true;
 Model_OutputVoltage = 99;

 Conductor_Run();

 TEST_ASSERT_MESSAGE(
 Hardware_OutputError == true,
 "Error not set");

 TEST_ASSERT_EQUAL_INT(78,
 Hardware_OutputDriveOutputVoltage);
}

VII. CONCLUSION / FUTURE WORK
Applying Test Driven Development in embedded software

allows developers to create well-tested systems. The concepts
we have presented are tool and platform independent allowing
the methods of TDD to drive design and test implementation.
Software design and quality are both improved leading to
overall cost savings in reduced field defects and eventual
feature enhancements. TDD and to a lesser extent initial setup
and tool customization for each new project will add to project
development time; however, the benefits far outweigh this
cost. Total test automation can likely never be accomplished.
Nevertheless, the presented methods codify a flexible
approach that encourages consistent testability.

Planned future work includes applying and expanding the
practices covered in this paper in the context of Real Time
Operating Systems. Further, given our experience with our
own Unity framework, we believe that it is feasible to create a
unit test framework for assembly languages.

ACKNOWLEDGMENT
Authors thank Matt Werner of Savant Automation for the

opportunity to implement in a production system the ideas that
inspired this paper.

REFERENCES
[1] Kent Beck, Extreme Programming Explained, Reading, MA: Addison

Wesley, 2000.
[2] Wolfgang Schmitt. “Automated Unit Testing of Embedded ARM

Applications.” Information Quarterly, Volume 3, Number 4, p. 29,
2004.

[3] David Astels, Test Driven Development: A Practical Guide, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

[4] “Unit Test.” http://en.wikipedia.org/wiki/Unit_test.
[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software, Reading,
MA: Addison-Wesley Professional Computing Series, 1995.

[6] Martin Fowler. “Model View Presenter.”
http://www.martinfowler.com/eaaDev/ModelViewPresenter.html. July
2004.

[7] M. Alles, D. Crosby, C. Erickson, B. Harleton, M. Marsiglia, G.
Pattison, C. Stienstra. “Presenter First: Organizing Complex GUI
Applications for Test-Driven Development,” accepted at Agile 2006
conference, Minneapolis, MN.

[8] Kent Beck, “Simple Smalltalk Testing: With Patterns.”
http://www.xprogramming.com/testfram.htm.

[9] http://www.atomicobject.com/embeddedtesting.page.
[10] “Continuous Integration.”

http://en.wikipedia.org/wiki/Continuous_integration.

