OO Testing: from academia to the
real world

Software testing by small teams 1n a
contract programming environment

Carl Erickson
Atomic Object LLC
Uppsala University

30 May 2002




Overview of this talk

e Summary of 1994 work on OO integration
testing

e Atomic Object LLC testing methodology

* A hindsight perspective on my academic testing
work

e Suggestions for improving our process

30 May 02



Unit testing

* The unit: single class or a method

e The functionality of methods, construction and
destruction of objects

e At the unit testing level methods are procedural,
SO testing 1s the same

e Easy to generate test cases

e Readily automatable, suitable for regression
testing

30 May 02



Integration testing

 Fewer obvious structural relationships to guide
testing

e Design for reuse implies many possible
compositions

* How we define a unit has an impact on
integration testing
(unit == method) => intraclass integration
(unit == class) => interclass integration

30 May 02



Integration testing (cont.)

 Some 1deas for integration levels
— Objects in the same package
— Objects involved in a design pattern

— Objects with relationships visible in class diagrams
 More difficult to generate test cases
* Generally automatable with some work

e Construct we proposed in ‘94: MM-Path

30 May 02



MM-Path

 Method Message-Path: sequence of method
executions linked by messages

e MM-Paths may branch oftf from other MM-
Paths

 End point 1s a method that 1ssues no messages
itself

e ATM example

30 May 02



Bankomat PIN entry use case

message is displayed
o ASFends here

customer inserts card

-

. ASF starts here
CardSlot

memberCand

key pushes

.
.
L
L]
.

[ []

getkeyEvants

A |

parsekeyEvent

pinForFan

Ol 1-Path

= = = = P Message



System testing

e [Limited to events visible at the boundaries
* What a user can do with a system

e Correspond to user stories, use cases,
acceptance tests

e Difficult to generate good test cases

* Very tough to automate (GUI problem)
e Construct we proposed in ‘94: ASF

30 May 02



Atomic System Function (ASF)

e Starts at an input port event

e Set of MM-Paths until an output port event 1s
reached

e Often corresponds to something a user would do
with the application

30 May 02 9



Bankomat PIN entry use case

message is displayed
o ASFends here

customer inserts card

-

. ASF starts here
CardSlot

memberCand

key pushes

.
.
L
L]
.

[ []

getkeyEvants

A |

parsekeyEvent

pinForFan

Ol 1-Path

= = = = P Message



Atomic Object testing methodology

e Testing as a marketing tool
— Positive benefit of the “software crisis”?
— Measuring and tracking the code base
o Test-first development
— Simultaneous development of source and test
— An 1dea from Extreme Programming

e Multiplatform testing
— Improves code quality

30 May 02 11



Levels of testing

e What we test

— each method thoroughly

— higher level operations of each class (multiple methods)
— operation of closely related classes

— properties of patterns (e.g. singleton semantics)

— entire subsystem functionality

e Conclusion
— unit vs integration is a false dichotomy

30 May 02

12



System testing

e Testing use cases, user stories
— Corresponds to ASFs

 How to build and release safely?
— Current need driven by our first production release
— Unit/integration test suites necessary but not sufficient
— More than bugs: configuration problems

e GUIs make life difficult

— Tedious manual process
— Recent work with Robot
* An experiment

— mode of operation of the application itself
30 May 02

13



Test-parallel development

* Quibble with the XP name (“test-first”)
— Practical problems

e Testing as development methodology
— Same people, same process, same time
e What good programmers do naturally
— captured and preserved for lasting value
* Costs
— Apparently higher initially
— Quality and maintainability

30 May 02 14



What do we test?

e Test “everything that can break”
— White-box, experienced-based, intuitive
— Cardinal sin of missing tests
e Tests are devised in an ad-hoc fashion
— MM-Paths for estimating coverage, identifying holes?
— Automated tool possible?
e Subsystem tests are more methodical

— All possible combinations of subsystem state

— Distributed file system example
Usage X Ownership X Storage X Connectivity

30 May 02

15



Automated regression testing

* Absolutely necessary to automate

e Test suites and xUnit framework
— Composite pattern of tests
— Setup, tear down, results

 Enables “fearless” development, continuous
code improvement

e Lets anyone work on any code
* The higher the test, the harder to automate

30 May 02 16



Testing and integration

e All tests run 100% correct before you commit

e Limits the scope of problems, speeds up the process of
finding them

e Less onerous to maintain continuously

e The system 1s always in a working state
— Growing working complex systems
— Great marketing

e Size of project determines implementation
— 10 minute rule

30 May 02 17



Unexpected benefits of
test-parallel development

Requirements for a class are resolved earlier and more
thoroughly

Classes are more loosely coupled since they are
designed to be testable in isolation

Developers have tests as a form of class doc

Pace of development is smoother, tests never fall
behind code base, avoiding days in“testall hell”

Get a small but positive psychological lift from tests
passing 100%

Minimize the anxiety of "releasing" incomplete or

0 vRUELEY code to your fellow developers

18



Pragmatics

Test-parallel and going too deep, too quickly

“program to an interface” pays off big
— Example: XMLDataModel, DataSource, SocketDataSource

Concurrency 1s hard in tests, too
Poorly written tests may run standalone

r

I'ests must be independent of each other

r

I'ests should leave the system as they find 1t

r

T'ests that do too much are easy to think of, hard to write
Using the file system directly for test resources 1s bad

30 May 02 19



Statistics from a project

e (Client for an automotive roll tester
— 9 months work

— approximately 2 FTE developers (6 people)
e Source bulk

— 144 classes

— 22,600 statements

— 1055 test methods

— 2.8 assertions/method

30 May 02

20



1z8a

1258
1z8a
1158 ~
118a
1858
laEa -
258
288
258 -
SEa
o8
caa
&558
c8a -
258 -
SHE
458
488 -
258
288
2oE -
cHE -
158
1a8 -
58

5]

Humber of tests

Tests and code bulk

B3-61

30 May 02

18.-81

11-81

12-81

@l-@2 @z-s@82
Date Cmoyl

BI-82

Bd.-82

B5.-ag

B @z

ZEa6E
coBEE
ce2anE
coEEE
coEEE
coaaE
4 EEE
C2aaE
cEEEE
claag
cCEHaBE
19866
138046
17866
1cB8E88
15804
14866
138040
1za6n
11888
188046
QEER
2888
Saan
cHEE
oEan
4EER
2888
CHBaR
16aa
5]

BFoa2

Humber of statements

21



178

le@

158

148 -

138

iz8

188 -

28

28

s

Humber of classes

&8 -

28

4@

28

ol

1a

5]

Number of classes

Bo-81

30 May 02

1681

11-81

1281

Bl-02

Bz-@a2
Date Cmsya

Ba-02

Bd.-02

BS-02

BE-B2

B B2

22



Meaning of data

e Test-parallel development 1s real, tests grow in
parallel with source tree

e (Class count plateaus indicate periods when
design satisties requirements

 Improved GUI integration testing towards end
of project caused increase in tests

30 May 02

23



