
O
O

 Testing: from
 academ

ia to the
real w

orld
Softw

are testing by sm
all team

s in a
contract program

m
ing environm

ent

Carl Erickson
 A

tom
ic O

bject LLC
 U

ppsala U
niversity

30 M
ay 2002

30 M
ay 02

2

O
verview

 of this talk

•
Sum

m
ary of 1994 w

ork on O
O

 integration
testing

•
A

tom
ic O

bject LLC testing m
ethodology

•
A

 hindsight perspective on m
y academ

ic testing
w

ork

•
Suggestions for im

proving our process

30 M
ay 02

3

U
nit testing

•
The unit: single class or a m

ethod
•

The functionality of m
ethods, construction and

destruction of objects
•

A
t the unit testing level m

ethods are procedural,
so testing is the sam

e
•

Easy to generate test cases
•

Readily autom
atable, suitable for regression

testing

30 M
ay 02

4

Integration testing

•
Few

er obvious structural relationships to guide
testing

•
D

esign for reuse im
plies m

any possible
com

positions
•

H
ow

 w
e define a unit has an im

pact on
integration testing
 (unit == m

ethod) => intraclass integration
 (unit == class) => interclass integration

30 M
ay 02

5

Integration testing (cont.)

•
Som

e ideas for integration levels
–

O
bjects in the sam

e package
–

O
bjects involved in a design pattern

–
O

bjects w
ith relationships visible in class diagram

s
•

M
ore difficult to generate test cases

•
G

enerally autom
atable w

ith som
e w

ork
•

Construct w
e proposed in ‘94: M

M
-Path

30 M
ay 02

6

M
M

-Path

•
M

ethod M
essage-Path: sequence of m

ethod
executions linked by m

essages
•

M
M

-Paths m
ay branch off from

 other M
M

-
Paths

•
End point is a m

ethod that issues no m
essages

itself
•

A
TM

 exam
ple

30 M
ay 02

7

Bankom
at PIN

 entry use case

30 M
ay 02

8

System
 testing

•
Lim

ited to events visible at the boundaries
•

W
hat a user can do w

ith a system
•

Correspond to user stories, use cases,
acceptance tests

•
D

ifficult to generate good test cases
•

V
ery tough to autom

ate (G
U

I problem
)

•
Construct w

e proposed in ‘94: A
SF

30 M
ay 02

9

A
tom

ic System
 Function (A

SF)

•
Starts at an input port event

•
Set of M

M
-Paths until an output port event is

reached
•

O
ften corresponds to som

ething a user w
ould do

w
ith the application

30 M
ay 02

10

Bankom
at PIN

 entry use case

30 M
ay 02

11

A
tom

ic O
bject testing m

ethodology

•
Testing as a m

arketing tool
–

Positive benefit of the “softw
are crisis”?

–
M

easuring and tracking the code base
•

Test-first developm
ent

–
Sim

ultaneous developm
ent of source and test

–
A

n idea from
 Extrem

e Program
m

ing
•

M
ultiplatform

 testing
–

Im
proves code quality

30 M
ay 02

12

Levels of testing

•
W

hat w
e test

–
each m

ethod thoroughly
–

higher level operations of each class (m
ultiple m

ethods)
–

operation of closely related classes
–

properties of patterns (e.g. singleton sem
antics)

–
entire subsystem

 functionality
•

Conclusion
–

unit vs integration is a false dichotom
y

30 M
ay 02

13

System
 testing

•
Testing use cases, user stories
–

Corresponds to A
SFs

•
H

ow
 to build and release safely?

–
Current need driven by our first production release

–
U

nit/integration test suites necessary but not sufficient
–

M
ore than bugs: configuration problem

s
•

G
U

Is m
ake life difficult

–
Tedious m

anual process
–

Recent w
ork w

ith Robot
•

A
n experim

ent
–

m
ode of operation of the application itself

30 M
ay 02

14

Test-parallel developm
ent

•
Q

uibble w
ith the X

P nam
e (“test-first”)

–
Practical problem

s
•

Testing as developm
ent m

ethodology
–

Sam
e people, sam

e process, sam
e tim

e
•

W
hat good program

m
ers do naturally

–
captured and preserved for lasting value

•
Costs
–

A
pparently higher initially

–
Q

uality and m
aintainability

30 M
ay 02

15

W
hat do w

e test?

•
Test “everything that can break”
–

W
hite-box, experienced-based, intuitive

–
Cardinal sin of m

issing tests
•

Tests are devised in an ad-hoc fashion
–

M
M

-Paths for estim
ating coverage, identifying holes?

–
A

utom
ated tool possible?

•
Subsystem

 tests are m
ore m

ethodical
–

A
ll possible com

binations of subsystem
 state

–
D

istributed file system
 exam

ple
U

sage X
 O

w
nership X

 Storage X
 Connectivity

30 M
ay 02

16

A
utom

ated regression testing

•
A

bsolutely necessary to autom
ate

•
Test suites and xU

nit fram
ew

ork
–

Com
posite pattern of tests

–
Setup, tear dow

n, results
•

Enables “fearless” developm
ent, continuous

code im
provem

ent
•

Lets anyone w
ork on any code

•
The higher the test, the harder to autom

ate

30 M
ay 02

17

Testing and integration

•
A

ll tests run 100%
 correct before you com

m
it

•
Lim

its the scope of problem
s, speeds up the process of

finding them
•

Less onerous to m
aintain continuously

•
The system

 is alw
ays in a w

orking state
–

G
row

ing w
orking com

plex system
s

–
G

reat m
arketing

•
Size of project determ

ines im
plem

entation
–

10 m
inute rule

30 M
ay 02

18

U
nexpected benefits of

test-parallel developm
ent

•
Requirem

ents for a class are resolved earlier and m
ore

thoroughly
•

Classes are m
ore loosely coupled since they are

designed to be testable in isolation
•

D
evelopers have tests as a form

 of class doc
•

Pace of developm
ent is sm

oother, tests never fall
behind code base, avoiding days in“testall hell”

•
G

et a sm
all but positive psychological lift from

 tests
passing 100%

•
M

inim
ize the anxiety of "releasing" incom

plete or
buggy code to your fellow

 developers

30 M
ay 02

19

Pragm
atics

•
Test-parallel and going too deep, too quickly

•
“program

 to an interface” pays off big
–

Exam
ple: X

M
LD

ataM
odel, D

ataSource, SocketD
ataSource

•
Concurrency is hard in tests, too

•
Poorly w

ritten tests m
ay run standalone

•
Tests m

ust be independent of each other
•

Tests should leave the system
 as they find it

•
Tests that do too m

uch are easy to think of, hard to w
rite

•
U

sing the file system
 directly for test resources is bad

30 M
ay 02

20

Statistics from
 a project

•
Client for an autom

otive roll tester
–

9 m
onths w

ork
–

approxim
ately 2 FTE developers (6 people)

•
Source bulk
–

144 classes
–

22,600 statem
ents

–
1055 test m

ethods
–

2.8 assertions/m
ethod

30 M
ay 02

21

Tests and code bulk

30 M
ay 02

22

N
um

ber of classes

30 M
ay 02

23

M
eaning of data

•
Test-parallel developm

ent is real, tests grow
 in

parallel w
ith source tree

•
Class count plateaus indicate periods w

hen
design satisfies requirem

ents
•

Im
proved G

U
I integration testing tow

ards end
of project caused increase in tests

