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About us
• Atomic Object develops custom software

• Savant Automation produces automated-guided vehicles



Speed control
• Accepts speed requests from main computer

• Translates speed into voltages the drives understand

• Input and output:

- Digital and analog

- CAN bus

• Microchip PIC18F4480

- 768 bytes RAM

- 16K bytes flash



Speed control



Tools
• Microchip C compiler and simulator

• Ruby

• Rake - Ruby make

- Main build script

- Easy injection of Ruby scripts into the build process

• Other Ruby scripts



Unit testing
• Created our own unit testing macros and runner

• Each test executable ran through the GUI simulator

• Blend of state-based and interaction-based testing

• Model-Conductor-Hardware made testing easier

• All of the code was developed test-first



Model-Conductor-Hardware
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Argent
• Inline code generation

• Ruby script

• Fast; easy to use



void testVoltageCalculatorWithPositiveVoltage()
{
...
}
void testVoltageCalculatorWithNegativeVoltage()
{
...
}

//[[$argent require “tests.rb”; generate_tests;$]]
int main(int argc, char* argv[]) {
  RUN_TEST(testVoltageCalculatorWithPositiveVoltage);
  RUN_TEST(testVoltageCalculatorWithNegativeVoltage);
}
//[[$end$]]



Positives
• Test-driven development resulted in good code

• Rake made for simple, straightforward builds

• Argent automatically detected and executed tests

• We learned a lot about programming this PIC



Negatives
• State-based tests were hard to maintain

• Manual system testing

• GUI simulator

- slow

- brittle



Battery monitor



Battery monitor

Analog input
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New tools
• IAR Systems workbench for PIC

- better compiler

- command-line simulator

• New simulator made the tests run much faster



System testing
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Supporting system tests
• Software:

- Domain-specific language written using Ruby

• Hardware

- Digital and analog input and output

- CAN input and output

- PIC programmer



miniLAB 1008
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System test-driven development
• Test automation

• Choosing support hardware with command line 
and programmatic interfaces

• Diligence. System-test first!



Unit testing
• Much more interaction-based testing than speed control

• Mocks created automatically

- Ruby script scans header file

- Creates mock header and source

• Naming conventions dictate how to declare functions and 
how to call mock functions

• Argent generated code to automatically verify mocks



Continuous integration



Positives
• System tests provided automated regression 

testing of complete features

• Interaction-based testing made tests easier to 
write and less brittle

• Command line simulator made tests run faster

• Cool Ruby extensions



Negatives
• Expensive compiler and simulator (but worth 

every penny)

• Small project

- did not last very long

- did not stress our system testing strategy



vs.



Build your own tools
• Solve specific problems with custom tools

• Automate tedious processes

• Generate repetitive code



Resources
• Rake

- rake.rubyforge.org

• Argent

- rubyforge.org/project/argent

• Minilab Ruby gem

- minilab.rubyforge.org



Resources
• Atomic Object embedded

- www.atomicobject.com/pages/Embedded+Software

- papers

- Embedded Systems Conference 2007 demo project

• Agile Embedded Yahoo! group:

- tech.groups.yahoo.com/group/AgileEmbedded

http://www.atomicobject.com/pages/Embedded+Software
http://www.atomicobject.com/pages/Embedded+Software
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