
Evolving into
Embedded Development

Matt Fletcher
Atomic Object

Agile 2007

About us
• Atomic Object develops custom software

• Savant Automation produces automated-guided vehicles

Speed control
• Accepts speed requests from main computer

• Translates speed into voltages the drives understand

• Input and output:

- Digital and analog

- CAN bus

• Microchip PIC18F4480

- 768 bytes RAM

- 16K bytes flash

Speed control

Tools
• Microchip C compiler and simulator

• Ruby

• Rake - Ruby make

- Main build script

- Easy injection of Ruby scripts into the build process

• Other Ruby scripts

Unit testing
• Created our own unit testing macros and runner

• Each test executable ran through the GUI simulator

• Blend of state-based and interaction-based testing

• Model-Conductor-Hardware made testing easier

• All of the code was developed test-first

Model-Conductor-Hardware

Conductor

Model Hardware

composed into

Argent
• Inline code generation

• Ruby script

• Fast; easy to use

void testVoltageCalculatorWithPositiveVoltage()
{
...
}
void testVoltageCalculatorWithNegativeVoltage()
{
...
}

//[[$argent require “tests.rb”; generate_tests;$]]
int main(int argc, char* argv[]) {
 RUN_TEST(testVoltageCalculatorWithPositiveVoltage);
 RUN_TEST(testVoltageCalculatorWithNegativeVoltage);
}
//[[end]]

Positives
• Test-driven development resulted in good code

• Rake made for simple, straightforward builds

• Argent automatically detected and executed tests

• We learned a lot about programming this PIC

Negatives
• State-based tests were hard to maintain

• Manual system testing

• GUI simulator

- slow

- brittle

Battery monitor

Battery monitor

Analog input

Battery monitor

Analog input

Digital output

Battery monitor

Analog input

Digital output

CAN output

Battery monitor

Microchip
PIC18F4480

Analog input

Digital output

CAN output

New tools
• IAR Systems workbench for PIC

- better compiler

- command-line simulator

• New simulator made the tests run much faster

System testing
Create system test

for new feature

Run the system test

Pass?
Yes

Develop

supporting units

No

Supporting system tests
• Software:

- Domain-specific language written using Ruby

• Hardware

- Digital and analog input and output

- CAN input and output

- PIC programmer

miniLAB 1008

pCAN-USB

System test-driven development
• Test automation

• Choosing support hardware with command line
and programmatic interfaces

• Diligence. System-test first!

Unit testing
• Much more interaction-based testing than speed control

• Mocks created automatically

- Ruby script scans header file

- Creates mock header and source

• Naming conventions dictate how to declare functions and
how to call mock functions

• Argent generated code to automatically verify mocks

Continuous integration

Positives
• System tests provided automated regression

testing of complete features

• Interaction-based testing made tests easier to
write and less brittle

• Command line simulator made tests run faster

• Cool Ruby extensions

Negatives
• Expensive compiler and simulator (but worth

every penny)

• Small project

- did not last very long

- did not stress our system testing strategy

vs.

Build your own tools
• Solve specific problems with custom tools

• Automate tedious processes

• Generate repetitive code

Resources
• Rake

- rake.rubyforge.org

• Argent

- rubyforge.org/project/argent

• Minilab Ruby gem

- minilab.rubyforge.org

Resources
• Atomic Object embedded

- www.atomicobject.com/pages/Embedded+Software

- papers

- Embedded Systems Conference 2007 demo project

• Agile Embedded Yahoo! group:

- tech.groups.yahoo.com/group/AgileEmbedded

http://www.atomicobject.com/pages/Embedded+Software
http://www.atomicobject.com/pages/Embedded+Software

Thanks
• Bill Bereza, Mike Karlesky, and Greg Williams

• Matt Werner and Andrew Black

• Chad Fowler and Carl Erickson

Questions?

