Evolving into Embedded Development

Matt Fletcher, William Bereza, Mike Karlesky, and Greg Williams
Atomic Object, LLC
{fletcher, bereza, karlesky, williams } @atomicobject.com

Abstract

In late 2005 we had the opportunity to start our first em-
bedded development project. We apply agile practices to a
variety of domains from web development to desktop appli-
cations to factory floor test equipment. The challenge for
this new work was not learning the environment and tech-
nology. Our challenge was applying the practices of the ag-
ile world to the small and complex world of embedded sys-
tems. The hurdles were numerous: we battled the archaic
state of many embedded tool sets, the lack of integration
with tools like Rake that provide easy automation, and poor
support for object oriented design. We’ve overcome each of
these difficulties. This report is about our yearlong experi-
ence in introducing our development practices to embedded
development.

1. Introduction

Atomic Object has been developing software for six
years using Extreme Programming. We test a little, code
a little, test a little more, and code a little more. Test-driven
development (TDD) is not an optional practice in our office.
We’re test-infected and we’re proud of it.

Two years ago Savant Automation hired us to rewrite the
software for two of the half dozen boards controlling the
automated guided vehicles they produce. These vehicles
drive themselves through warehouses, carrying stock, fol-
lowing preprogrammed paths. Several of us at Atomic Ob-
ject had been hoping to get into embedded programming.
This project was something we jumped at.

TDD is uncommon in the embedded world. A few
people like James Grenning [1], Micah Dowty [2], and
Nancy Van Schooenderwoert [3] have introduced TDD and
other agile practices to embedded development, but a lot
of firmware engineers simply are not interested or do not
believe agile practices are applicable to embedded devel-
opment. So aside from simply working on some interesting
embedded systems, we wanted to build upon previous work,
further innovate on testing practices in the domain, and pro-

mote agile embedded development.

This report is about our yearlong endeavor on the Sa-
vant boards. Section 2 recounts our experience creating the
firmware for the first system, the ‘speed control’ board. Sec-
tion 3 describes both the second system, the ‘battery mon-
itor’ board, and the changes and improvements we made
based on our experience with the speed board. We con-
clude by discussing the most significant lesson we learned:
there is nothing stopping a motivated developer from apply-
ing strong agile practices to embedded development.

2. Speed control

The board Savant had us start with was the ‘speed con-
trol’ board. Speed control’s role in the system was to take
the speed and direction requested by the vehicle’s onboard
computer and turn it into real motion of the vehicle. To ac-
complish this, speed control needed to translate the speed,
in millimeters per second, into a specific voltage for the ve-
hicle’s drives. Further, speed control was required to gen-
tly ramp the actual speed to the desired speed —otherwise,
the vehicle would not accelerate and decelerate smoothly.
Speed control was also part of the vehicle’s safety chain,
so that if the board detected a problem related to speed (for
example, not being able to attain the commanded speed be-
cause of an obstruction), then the board could trip the safety
mechanism and halt the vehicle. Finally, speed control was
responsible for reporting its status to the rest of the system
via digital outputs and CAN bus [4] messages. We began
working on the speed control board in the fall of 2005.

2.1. Initial development

The microprocessor controlling speed control was Mi-
crochip’s PIC18F4480, which has 768 bytes of RAM and
16k bytes of flash [5]. At the beginning of the project, we
chose to use Microchip’s compiler and simulator for devel-
oping the firmware. Microchip’s compiler constrained us to
C and assembly language for development.

Ruby was introduced to the project in the form of a
Rake [6] build script. We chose to use Rake instead of make



{

// mock expectations
int result = 800;
ADC_Start_ Expect();

// run the functional code
ADCGatherer CollectData();

void testShouldCollectResultAverageItAndStartNextConversion()

ADC_GetResult ExpectAndReturn(result);
Averager AddResult Expect(result);

// mock verification is automatically done in tearDown()

Figure 1. An example unit test for the ADC gatherer

or Microchip’s IDE because we’ve found Rake to be more
effective, efficient, and useful than make. We’ve had a lot
of success using Ruby for automation on previous projects;
Rake made it easy to integrate Ruby code generation pro-
grams into our build process.

2.2. Unit testing

We started developing the firmware unit test-first, just
like we do on any other project. Our environment was set
up such that tests for each logical grouping of units (such
as ADC functions, CAN input functions, CAN output func-
tions, etc) were compiled into their own test executable. At
test time, the build environment recompiled the necessary
modules and then used Microchip’s PIC simulator to exe-
cute each test file. Each test output its pass or failure status
after executing; test output was collected by the simulator
and analyzed to give us the overall red bar or green bar test
status.

To further support unit testing, we integrated a Ruby
script named Argent [7] into our build process. Argent is
much like the C preprocessor in that it reads an input file
and looks for specific directives to it. Generally, the di-
rectives request that Argent run another Ruby script, but it
could be inline Ruby code. The output of the executed Ruby
is then dumped back into the source file. We setup our build
system to run Argent against each test file as it is compiled.
The file directs Argent to scan the code, look for test func-
tion signatures, and generate the code in the main function
to execute each test.

We used the C unit test framework embunit [8] for a little
while, but eventually moved away from it because of effi-
ciency. Specifically, because of the limited RAM and ROM
in our microprocessor, we could not compile more than just
a few unit tests into a single executable. Although we could

have overcome this by breaking up our unit test suites into
more and more executables, we chose to instead develop
a unit test framework targeted directly at our needs. The
result is a small and light unit testing environment we call
Unity.

Being confined to C in an embedded environment did not
stop us from developing the firmware like we would any
other application. All of the code was developed test-first;
our tests helped us define precisely what each unit was re-
sponsible for and what other units we were dependent upon.
Whenever the testing for a unit became too difficult (say, be-
cause it took too much effort to set up the conditions for the
test), we pushed the hard work out into another unit. The
result is C code that had a look and feel just like the Java
and Ruby code we develop in other projects.

Our unit tests made heavy use of mock objects. We’ve
found mock objects to be extremely useful in our other de-
velopment projects—they make it easy to separate and test
the roles of the various components in the system [9]. In an
object-oriented language, we’d normally insert mocks into
our objects under test using constructor injection. Since we
were using C, we couldn’t use constructor injection, so in-
stead we simply manipulated which object files were linked
into our test files. In the production code, each component
was linked against the real object files, but in test code, the
module under test was linked against the mock object files.

Consider a unit responsible for gathering the last analog-
to-digital conversion (ADC) result, accumulating it into the
running average, and then starting the next analog sampling.
In a situation like this, we found performing both the sam-
pling of analog data and maintaining the average was too
much responsibility for one unit—setting up an exhaustive
set of tests for all of this work was too hard. The solution
was to push the work of running the ADC peripheral into
one unit and the average calculations into another. Figure 1



is a listing of an example unit test and Figure 2 is the cor-
responding functional code. Now the tests and the code for
both ADC conversion and averaging are small, easy to un-
derstand, and thanks to the gatherer, have no knowledge of
each other.

void ADCGatherer CollectData(void)

{
int result = ADC_GetResult();
Averager_ AddResult(result);
ADC_Start();

}

Figure 2. Functional code for the ADC gath-
erer

2.3. Model-Conductor-Hardware

Throughout the course of creating the speed board
firmware, we found ourselves following a common devel-
opment pattern while implementing each of the firmware’s
features. For each feature (like ADC sampling, CAN bus
input, digital output, etc), we broke the code up into three
high-level components: a model implementing the feature’s
logic, the hardware making things happen, and a conductor
in the middle. The conductor’s role was to relay events and
data between the model and hardware. We call this devel-
opment pattern Model-Conductor-Hardware [10] (MCH).
This doesn’t mean there were only three components for ev-
ery feature—the model and hardware were typically reliant
on several helpers.

MCH improved our development experience because it
made testing easy. The system logic and hardware control
were cleanly separated and controlled by a third party. This
allowed us to easily mock out each component; with each
component mocked, setting up the conditions for each unit
under test was trivial. The previously discussed test in Fig-
ure 1 demonstrates how mock objects (in this case, the mock
ADC and averager) made our tests easy to understand.

2.4. Speed control experience

Developing speed control was not without its hiccups.
Over the course of about nine months, we managed to in-
troduce our basic practices. Mostly.

One of our missteps was not making the most of our
mocks. Often times the mocks we created failed to make
strong assertions; things like enforcing call count and order-
ing were not done. Even worse was that sometimes mocks
were not even used (usually models in conductor tests). The

tests for code that didn’t use mocks sometimes became dif-
ficult to understand and maintain. Reflecting on this, the
problem was that the mocks were generated by hand, not
automatically. Creating mocks by hand is tedious and error-
prone. Because hand-crafting mocks is so painful, it is
tempting to avoid using them to their full potential. This
is precisely what happened during the speed board develop-
ment.

A constant source of frustration for us was our depen-
dence on Microchip’s compiler and simulator. The com-
piler worked in the sense that it generated code, but often
times it would silently make unexpected assumptions. This
led to some long and aggravating debugging sessions. Even
worse was the simulator. First, the simulator was incapable
of simulating the microcontroller’s peripherals or the timer
interrupts. This meant our tests could not be as thorough
as we wanted. Second, the simulator could only be invoked
through the GUI. So in order to run our automated unit tests,
an AutoHotkey [11] script took over control of our system,
ran the tests, and collected the results. Since AutoHotkey
was controlling the GUI, any outside interruption (like a
user shifting focus to another window) would disrupt the
script and it would fail to finish. By the end of the project,
running the entire test suite took dozens of minutes— which
is a long time to wait for test results.

What we really missed out on with the speed control
board was automated system tests. Like unit tests, system
tests are useful in defining how a particular feature should
work from beginning to end. For example, a simple, yet ef-
fective system test for speed control would have shown that
when a speed command is issued, the board produces the
correct output voltage to the drives. System tests push us to
develop the minimal set of code needed to make the defined
features complete.

The system tests also serve as automated regression tests.
Our development speed board was hooked up to a nice
test fixture: it had digital switches, analog joysticks, and
LEDs that allowed the user to easily control the state of the
board. The test fixture was great for demoing the board,
but poor for demonstrating that every aspect of the system
still worked. Having both unit and system tests as part of
the continuous integration system would have alerted us to
broken features as soon as possible. Our lack of automated
system tests was the biggest regret we had coming away
from the speed control board.

On the positive side, speed control proved to us that we
could take the practices we’ve learned in application de-
velopment and apply them to embedded development. We
showed that we can:

1. Develop the software unit test-first
2. Automate building the software and running the tests

3. Use mock objects to support our unit testing



4. Write C code in a highly testable fashion

We also found the problems we solved both complicated
and interesting. We got to learn about things like PID con-
trollers, ADC, and CAN bus communications—the stuff
that is often already done for you in application develop-
ment. Speed control was a fun project.

3. Battery monitor

Development of the firmware for the ‘battery monitor
board’ started in July 2006. The battery board’s purpose
was to report the overall state of charge for the vehicle’s
battery. Using a combination of two analog inputs from
the battery and an internal lookup table, the battery board
communicated the current charge level through digital out-
put lines and CAN bus messages. The consumer of this
information was the vehicle’s main computer, which would
make decisions about whether the vehicle should stop and
recharge or if it was done charging and should go back to
work. The battery board’s microcontroller was a Microchip
PIC18F2480. The 2480 model has the same specifications
as speed control’s 4480, but in a different form factor. We
planned on introducing some of our new ideas to the battery
board, so we were excited to get started.

3.1. System testing

The single most important goal for us, aside from devel-
oping good software, was to introduce automated system-
test first development to our workflow. As discussed in the
previous section, system testing provides the same kind of
advantages that unit tests do, but at a higher, more user-
oriented level. To make system testing possible, software
and hardware to drive and support the tests was necessary.

Several pieces of hardware were required to set up an
adequate test fixture. We purchased:

e a PIC firmware programming device

miniLAB 1008, a USB digital and analog input/output
device [12].

PCAN-USB, a CAN bus communication device [13]

a USB to serial converter

a small enclosure and USB hub to tie everything to-
gether

Each of these devices was tucked neatly into the enclo-
sure. Our sample battery board was mounted to the top of
the enclosure with about a dozen wires running from the

board to inside the box. ! Compared to the speed board’s

test fixture, with its LEDs and switches, the battery board’s
fixture looked pretty boring. But it proved to be much more
effective.

Software to drive the tests was easy to come by: we de-
cided to use Systir [14], a Ruby system testing framework
developed in-house. Systir capitalizes on Ruby’s expressive
syntax to help the user create and write tests using a domain-
specific language. The language we created for the battery
board tests was focused on simulating specific battery con-
ditions and reading the output from the board, whether it
be from the legacy digital lines or modern CAN messages.
The miniLAB and PCAN-USB devices were chosen for our
test fixture because they could be controlled programmati-
cally via C libraries. We exposed their functionality to our
system tests by using Ruby’s native C extension facilities.

It took a bit of hardware and software to get our test fix-
ture prepared, but once it was done we were able to cre-
ate system tests like the one shown in Figure 3. This test
shows that the battery board outputs the correct instanta-
neous charge level (as opposed to average charge level)
when given a known battery voltage reading.

set charge level output to_ instantaneous

set battery voltage to 4.5
see_charge level of 7

set battery voltage to 1.1
see_charge level of 2

Figure 3. System test for battery level

With the right combination of software and hardware,
our system tests were easy to write, cleanly encapsulated
the particular features the customer asked for, provided au-
tomated regression testing, and enabled our system test-first
development approach.

3.2. Better toolchain

A second change we made at the beginning of battery
board development was our choice of toolset. This time, we
used the PIC version of IAR Systems’ Embedded Work-
bench [15] instead of Microchip’s tools. The suite includes
a fast, modern compiler, a configurable simulator that can
be executed from the command line, and a rich set of li-
braries. Further, one of the authors had a positive experi-
ence previously with IAR’s ARM toolkit.

IPictures are available at http://spin.atomicobject.com/2006/09/19/
hardware-in-support-of-automated-system-testing/



We began to appreciate the new tools more and more
each day. The compiler provided simple and easy ac-
cess to intrinsic hardware functions and gave us mean-
ingful error messages when there was a problem. The
linker was intelligent and good at preserving precious code
space. The header files for accessing hardware registers had
some extremely convenient macros defined to help make the
hardware-level code highly readable. But the real winner
for us was the command line simulator. No longer did we
need to wait minutes for our test suite to run! Substantial
time and frustration were saved by the new simulator.

One downside to switching toolchains is that we lost ac-
cess to Microchip’s libraries for driving the on-board pe-
ripherals, like the ADC and CAN modules. The libraries
would, for example, define simple functions for configur-
ing and reading the ADC device. Despite this, between the
Microchip data sheet [5] and our experience with the previ-
ous board, we had no trouble recreating the functionality we
needed. Another downside was the cost for the new tools.
But in the end, we found them to be worth every penny.

3.3. Automatically generated mocks

We spent the next few months developing the battery
board system and unit-test first. The system tests instilled
a lot more confidence in the team and the new tools helped
streamline the development cycle. We also started develop-
ing ‘Conductor First,” which was a take off of the ‘Presenter
First’ [16] [17] technique used around our office on other
projects. Conductor First pushed us to write the tests for the
conductor modules first, because those tests defined what
we needed, and only what we needed, from the hardware
and model modules. Because of the limited scope of the
battery board’s features, we didn’t get much opportunity to
refine this practice. After a few model-conductor-hardware
groupings were created, our high-level design needs were
satisfied; most of the work was done in model and hardware
helpers.

The need for a lot of model and hardware helpers ex-
posed one weakness in our system: all of our mocks were
still created by hand. As mentioned in Section 2.4, hand
generated mocks had led to some poor testing habits in the
speed control board. We were a lot more diligent about
properly using mocks in the battery board, but creating them
by hand was still a real nuisance.

To alleviate this, one of the authors spent a weekend cre-
ating a Ruby script to automatically generate a mock for
each module in the system. The mock generation script
worked by scanning a header file and using regular expres-
sions to match the different types of function signatures.
Depending on the type of function identified (such as one
that takes no parameters and returns nothing, one that takes
no parameters but returns something, etc.), the script would

generate a mock version of the function that can be pro-
grammed with expectations much like jMock’s [18]. All of
the functions found in a single header file were turned into
a mock that could be included by the tests as needed.

We tied the mock generation script into the build sys-
tem so that the mocks would be regenerated whenever the
system was built. As each test was compiled into its own
executable, the build script linked the test to the module
under test and each of the mocks. This way, as each test ex-
ecuted, any calls the code under test made to other modules
was tracked by the mocks. If an unexpected or incorrect
call to another module was made, the mocks would report
the failure. This behavior paid off when we switched from
the hand generated mocks to the new system: our mocks re-
vealed that some of the code was making calls it shouldn’t
have been.

The mocks also helped us enforce single responsibility.
Whenever the tests for a piece of code got too complicated,
we could usually find a good way to break some of the
complexity out into another module. Without the automatic
mocks, there was always some pain associated with adding
another module. But our scripts did all of the hard work by
building the mocks for us.

3.4. Battery monitor experience

The battery monitor project had a short lifetime com-
pared to speed control; we worked on the battery monitor
for four months as opposed speed control for nine months.
We learned more about good embedded development dur-
ing the battery board project than we did on speed control,
despite the shorter timeframe. We successfully introduced
a better toolset, system test-driven development, and auto-
matically generated mocks.

One thing that should have been improved were our build
scripts. The scripts were not particularly intelligent; be-
cause of our setup, whenever a header file changed, almost
the entire system would rebuild. This wasn’t because of
some crazy dependences within the code—it was because
our build script was including every mock into every test.
Most tests didn’t need more than one or two mocks, so in-
cluding every mock was inefficient. Our project was small,
so this problem wasn’t too painful, but going forward our
build scripts will need to be reworked to include only the
required mocks for any given test.

4. Future work and conclusion

The two Savant projects blessed us with systems that had
clear inputs and outputs: status information from the vehi-
cle battery and computer went in; directives to other vehicle
components went out. This made the role of our system
tests obvious. Next time, we’d like to get experience with



another board that doesn’t have such easily testable features.
We’re sure that our unit testing strategy can remain about
the same, but introducing system tests to a device without
such an easily testable interface will be an interesting chal-
lenge.

We are currently involved in a new embedded project
with another customer; this time the firmware is driving a
color measurement device. The team has, so far, imple-
mented minimal exception creation and handling routines in
C, unit test support for their exceptions, and a Ruby exten-
sion for communicating with the device via USB. Each has
made it easier for the team to develop and test their firmware
at both the unit and system level.

Some time ago we were charged with applying agile
practices to the embedded domain. Two years later, we’ve
successfully carried over our set of standard practices with
great results. Our combination of system and unit test-first
development has really helped us attain the fabled ‘clean
code that works.” We’ve learned that there is nothing spe-
cial about the embedded domain preventing us from using
the same techniques we’d use during desktop or web ap-
plication development. Going forward, we consider system
tests, unit tests, and mocks an essential part of our the em-
bedded development process. Each of these helped each of
us become productive, happy programmers that are excited
about embedded development.
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