
Convincing the
Executive

Carl Erickson, PhD
Atomic Object

November 2007

(Click here to start)

Click on a link below to follow the slides for that idea.
Follow these links to move to the next slide, and
the green arrows to return to this index.

• Early delivery

• Timing and cost of bugs

• Fixing scope up-front

• Cost of maintenance

• Team size

• Killing your company

• Theory of Constraints

• Predictability

• Real Options

• Break the batch

• Eliminate waste

Theory of Constraints
• Eli Goldratt, Goldratt Institute, The Goal

• Applying TOC

- identify the constraint

- exploit the constraint

- subordinate the rest of the system to the
decisions above

- elevate the constraint

TOC and Agile
• Favor generalists over specialists

- simplifies the “factory”

• Programming becomes the constraint

- exploit the constraint

✓ connect the team to the customer

✓ reduce waste via TD

✓ fewer handoffs, less info loss

Happy Results
• Better utilization

• More market demand

- predictability

- quality

• Higher profitability

• Elevate via growth

Options - Background

• Financial Options

- puts, calls, futures, derivatives, ...

- can easily be sold

- complicated models for pricing

Real Options

A real option is the right,
but not the obligation, to
undertake some business

decision in the future

Decision Making

Defer decisions to the last
possible, responsible

moment

Agile and Real Options
• Automated regression test suites

- change the software without fear

• Mock objects and TDD

- defers design commitment

• Pairing

- all parts known by at least 2 people

• Backlog and story-driven dev

- defer decision on what to build

Using Real Options
• Budget by iteration, rather than plan

- feed the projects with best ROI

- dump those not going well

• Staffing decisions

- hold your best people to last

• Let customers drive projects

- avoid building more than necessary

Predictability

1 2 3 4

PDF of Duration

Daisy Chain of Delay

Improving Predictability

• Significant business value

- confidently making product plans

- hitting revenue targets

- executing on competitive strategy

• Agile practices increase predictability

requirements, design, program, test

Break the Batch

requirements, design, program, test

Break the Batch

requirements, design, program, test

Break the Batch

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

rd

pt

Early Delivery

• Getting return earlier compounds in
value over time (time-value of money)

• Reaching market sooner may have a
huge impact

Cost and Benefit of Traditional
Development

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34

Months

M
o

n
e
y cost

cum cost
benefit
cum benefit

Traditional vs Agile
(one project)

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34

Months

M
o

n
e
y

agile
traditional

Traditional vs Agile
(two projects)

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34

Months

M
o

n
e
y

agile
traditional

Traditional vs Agile
(two projects)

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34

Months

M
o

n
e
y

agile
traditional

Fixing Scope Up-Front

• Change is expensive, so success comes
from careful work in advance of coding

• Standish Study, 2002

• Key questions to ponder...

When You Fix Bugs

Doing it right the first time

• Test-driven development

• Automated testing

• Pair-everything

• Continuous integration

• Iterative, incremental delivery

Cost of Maintenance

• Old apps never die

• Staff can’t always grow

• Innovation gets squeezed

New Prod Dev vs Maintenance

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

time

a
ll
o

ca
ti

o
n

% maint
% new dev

Team Size
• QSM

- Consultancy specializing in measuring,
estimating, and controlling software dev

- Database of 4000+ projects
• 2005 study on schedule vs team size

- 564 information systems projects since
2002

• Divided into small (< 5) and large (> 20)
projects by team size

Team Size, cont.
• For projects of 100,000 SLOCs
• Peak staffing of project

- Average large team: 32 people
- Average small team: 4 people

• Total effort for each?
- 178 person months for large teams
- 25 person months for small teams

Team Size, cont.

Was it worth the cost?

Did the big team finish first?

Explanations?
Communication and coordination
inefficiency
Greater rate of defects (5x)

Team Size, cont.

Was it worth the cost?

Did the big team finish first?
9.12 months for small team
8.92 months for large team

Explanations?
Communication and coordination
inefficiency
Greater rate of defects (5x)

Team Size, cont.

Was it worth the cost?

Did the big team finish first?
9.12 months for small team
8.92 months for large team

Explanations?
Communication and coordination
inefficiency
Greater rate of defects (5x)

$1.8M

SSE Study
• Systematic Software Engineering

- CMMi level 5

• Productivity of projects/teams

- 1.8x small vs large (> 4000 hours)

• What can agile add to this?

- productivity

- better ROI

Project Size and Failure

months

P
r(
s
u
c
c
e
s
s
)

0 12 24 36

1

0

Killer Core

• Traditional

- value = f(time, quality)

• Agile

- value = f(time, quality, scope, cost)

Belief in Magic

• Customer believes magic will happen
(“we’ll deliver X by date Y”)

• Developers lie to their customers (“we
can make it”), then cut quality to make
it so

Core Functionality

• Aka “legacy”, “core”, “base”

• Velocity to work in this code is much lower

• How does this come to be?

Path of Doom

• New development

- 6 months of work, velocity of 18

- deadline is 5 months

- quality cut to make the date

- team is a hero

Subsequent Projects
• 6 months of work, 5 month deadline,

velocity 17, cut quality, hit date

• 6 months of work, 5 month deadline,
velocity 15, cut quality, hit date

• 6 months of work, 5 month deadline,
velocity 10, cut quality, hit date

• ...

The Usual Signs
• Build core into each function

• Drop functionality

• Give developers to core teams to
increase velocity

• Start rebuilding the core functionality

• Build new functionality and don't
worry about core (fake "done")

The Meaning of Done
• Change the meaning of “done” to hit a

deadline: stabilization phase, user test,
alpha, pre-release

• Reduce quality with these common
behaviors

1. overtime and weekends
2. cut testing
3. cut reviews
4. don't following standards
5. no refactoring

The Death of a Company
• Ken says: 3-10 years for a company to back itself

into a corner with their “core”

• Opens the door for your competition
(innovative, not hobbled by slower dev)

• Cost of supporting magical beliefs is hidden

- should be a top management decision

- reflected on the balance sheet

- every $1 “saved” costs $4 eventually

Eliminate Waste
manufacturing software

overproduction extra features

inventor requirements

extra processing steps extra steps

motion finding information

defects bugs not caught by
tests

waiting waiting

transportation handoffs

software waste agile practice

extra features story-driven dev

requirements story details

extra steps story -> code

finding information co-located team

bugs not caught by tests TDD

waiting deliver early, often

handoffs developers <-> customers

