

Agile Project Management
(or Burning Your Gantt Charts)

ESC-267 Michael Karlesky & Mark VanderVoord

The Zen Of “Done”

3 Things

1. Define Done

2. Feature Done

3. Project Done

Define “Done”

Done | dәn |
adjective.

1. The code has been written
according to the
developers' interpretation
of the spec (delivered 9
months ago). It can now be
tested.

Done | dәn |
adjective.

1. The code has been written
but may require an
unspecified amount of
“cleanup” before shipping.

Done | dәn |
adjective.

1. It works on a developer's
machine.

Done | dәn |
adjective.

1. Gantt chart progress has
reached 100%

2. (more often) Gantt chart
progress has reached 95%
introducing a secondary
state: “almost done”

Done | dәn |
adjective.

1. The developers have
stepped through the code
with the debugger.

Done | dәn |
adjective.

1. The debug build runs.

Done | dәn |
adjective.

1. The state immediately
preceding “done done”

Done | dәn |
adjective.

1. A Zen-like continuation
where the mind is at peace
and the soul is at one with
code, coworker, contractor,
and customer alike

Done | dәn |
adjective.

1. A Zen-like continuation
where the mind is at peace
and the soul is at one with
code, coworker, contractor,
and customer alike

Done | dәn |
adjective.

1. A Zen-like state wherein
all customer-specified
features have been
implemented to glowing
accolades

Done | dәn |
adjective.

1. A Zen-like state wherein
all customer-specified
features have been
implemented to glowing
accolades

Done | dәn |
adjective.

1. A Zen-like state wherein
all customer-specified
features pass a vast
(comprehensive) suite of
unit, system, and
acceptance tests

Done | dәn |
adjective.

1. A Zen-like state wherein
all customer-specified
features pass a vast
(comprehensive) suite of
unit, system, and
acceptance tests

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) all customer-specified
features pass unit, system,
and acceptance tests
(b) ...

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) ...
(b) It works on more than
just my machine

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) ...
(b) It works on more than
just my machine

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) ...
(b) builds are reproducible,
identical, and machine
independent

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) all customer-specified
features pass unit, system,
and acceptance tests
(b) builds are reproducible,
identical, and machine
independent

Define “Feature Done”

Feature?

Feature | ˈfē ch ər |
noun.

1. Something that a customer
can actually define in a
concrete way, crossing that
mystical gap between geek
and non-geek.

Feature | ˈfē ch ər |
noun.

1. Something that a customer
can actually define in a
concrete way, crossing that
mystical gap between geek
and non-geek.

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
know when it has been
done correctly and is
properly Awesome

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
know when it has been
done correctly and is
properly Awesome

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
verify

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
verify (c) feels is worth
some kind of money or
compensation to develop

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
verify (c) feels is worth
some kind of money or
compensation to develop

Feature | ˈfē ch ər |
noun.

1. Something that a customer
(a) can explain (b) can
verify (c) will pay for

Customer?

Customer
noun. synonyms:

1. End User

Customer
noun. synonyms:

1. End User

2. Engineering Department

Customer
noun. synonyms:

1. End User

2. Engineering Department

3. Marketing

Customer
noun. synonyms:

1. End User

2. Engineering Department

3. Marketing

4. Sales

Customer
noun. synonyms:

1. End User

2. Engineering Department

3. Marketing

4. Sales

5. Production

Customer
noun. synonyms:

1. End User

2. Engineering Department

3. Marketing

4. Sales

5. Production

6. Technical Support

Since We Understand Feature

Now For A Round Of

“Is That A Feature?”

?
SPI Interface Driver

?
Application should calculate

and display the air-speed
velocity of an unladen swallow

?
Application Should Initialize

ADC as
Pulse Convert Mode

?
Application Should Filter
Results Before Display

?
Application Should Look

Awesome

?
Application Should Blink A

Warning Light Before It
Crashes

We Know Features

So When Is The Feature Done?

Done | dәn |
adjective.

1. A Zen-like state wherein
(a) all customer-specified
features pass unit, system,
and acceptance tests
(b) builds are reproducible,
identical, and machine
independent

unit, system, acceptance

unit, system, acceptance
prove pieces of code work

unit, system, acceptance
prove the release build works

unit, system, acceptance
proves to customer
the features work

development team

now also develops tests

strangely

does NOT

take more time

does NOT

make the project more complex

plus

encourages good design

encourages modular code

and

(obviously?)

promotes TESTABLE code

when all tests

we know those features

DONE

Done For Good?

Yes!

Continuous Integration

Every Time

Add A Feature

Every Time

Fix A Bug

Every Time

We Change Anything

ALL TESTS

Re-run

Re-validated

Re-verified

But We Can't
Work On

Features Until
There Is

Infrastructure

Right?

Wrong

“Simplest Thing That Works”

Then

Refactor As Needed

You Can't Guess

Exactly

How All Modules Will Be Used

Quite Likely

“You Ain't Gonna Need It”

When You're Wrong

Spend More Time Changing

Than Writing

But You
Skipped The
Step Where
We Wrote A

System
Design

Specification!

Wrong

Develop Documentation

Like Software

Collaborative

Fast

Unobtrusive

Get the Customers Involved

Don't Let It Feel Rigid

Don't Let It Get Stale

Always Evolving

Accurate

wiki

That's Feature Done

 Define “Project Done”

Project Done | präjˌekt dәn |
noun.

Project Done | präjˌekt dәn |
noun.

1. A Zen-like state wherein
(a) all customer-specified
features pass unit, system,
and acceptance tests
(b) builds are reproducible,
identical, and machine
independent

anti-climactic?

really want to know

WHEN

Project Done

Let's Start With

Estimation

All Features Given Points

Points are NOT Hours

Points are Complexity

If Feature 1

2x

Feature 2

Then

2x

Points

Humans Better At Estimating
Complexity Than Time

Estimating Points

Factors Out

Overhead

Overhead

Meetings

Overhead

Documenting

Meetings

Overhead

Documenting

Meetings

Requirement Gathering

Overhead

Documenting

Meetings

Requirement Gathering

Coffee Breaks

Overhead

Documenting

Meetings

Requirement Gathering

Coffee Breaks

Phone Calls

Overhead

Documenting

Meetings
Hear Ryan's Joke

Requirement Gathering

Coffee Breaks

Phone Calls

Overhead

Documenting

Meetings
Hear Ryan's Joke

Requirement Gathering

Coffee Breaks

e-mail

Phone Calls

Overhead

Documenting

Meetings
Hear Ryan's Joke

Requirement Gathering

Coffee Breaks

e-mail

YouTube

Phone Calls

Overhead

Documenting

Meetings
Hear Ryan's Joke

Requirement Gathering

Coffee Breaks

e-mail

YouTube

Phone Calls

less-than-productive time

Because The Truth Is

Documenting

Meetings
Hear Ryan's Joke

Requirement Gathering

Coffee Breaks

e-mail

YouTube

Phone Calls

less-than-productive time

No One Is Productive 100%
Of Their Time

Points

Estimate

Net Progress

So How Do We Assign Points?

Planning Poker

Step 1

As A Group

Choose a Medium-Size Feature

Call it 5

Everyone Has Deck of Cards

Numbered 1-10

(Or 1-2-3-5-8-13)

For Each Feature

Quickly Discuss It

Then, Everyone Chooses a Card

(But Does Not Show It)

Everyone Reveals

If Points are Close

(within a card)

Use the Highest Value

Otherwise

Re-Discuss

(there's a difference in view)

(what the feature is)

(the risks involved)

(or what's unknown)

After Discussion

Re-Select Cards

Repeat Until You Agree

Repeat Until All Features
Estimated

That's It?

What about
Features we

don't
understand
yet, or high

risk Features?

Good Point

Higher Risk Features

Get Higher Points

Lack of Definition

Gets Higher Points

Some of Those Unkowns

Will be Easy

Some will be Scary

In Fact,

Normal Features

Will be Easier / Harder

Than Estimated

But That's OK

(we'll see why in a moment)

Now For A Round Of

“How Many Points?”

Our Features:
1. Return Version Message via
 serial port when requested.
2. Measure Filtered Battery
 Voltage and Return 1/sec
3. Estimate Battery Life
 Remaining and Return 1/sec
4. Blink Red LED when Battery
 Is Too Low
5. Send Out LOW Message
 once when Battery Too Low

So Now What?

It's Time For Fancy Math

We Sum The Points

As We Work

Track Points From
“Features Done”

At Regular Intervals

(Iterations)

Burn-Down Chart

VELOCITY

Variations in Points Completed

Per Iteration

Average Out

We Use Points Completed

In Last Iteration

(or Average of Last Few)

Calculate Velocity

(Points / Iteration)

Use Velocity

From Points Remaining

To Predict “Project Done”

I'm Sorry

That End
Date Is Not
Acceptable.

We Have Options

We're Tracking Velocity

We Know Effect Of Adding
People

We Know Effect Of Dropping or
Modifying Features

We Can Estimate Effect Of
Buy/Build Decisions

Huh?

Feature Sets Change

New Features Are Requested

Features Were Forgotten
During Estimation

Priorities Change

Each Time

We Add / Remove

Points to Total Points

Points Remaining

Giving Us Updated Estimates

Automatic History

De-Featuring / Feature Redesign

Scope Creep

“Project Done”

What About Adding People?

4 people

5 people

Be Careful

6 people

6 people

Because of This

Often Add Another Graph

Track Velocity

Now For A Round Of

“What Happened?”

Where Did We Add Features?

What Was Our Initial Estimate?

What Was Velocity At Iteration 4?

Where Did We De-Feature?

What Was Our Final Total?

Where Was A Velocity Jump?

Where Were We Done?

So We Just
Work Through

Points Until
We're Done?

Almost

The Order Is Important

How Do We Set Priority?

Every Iteration

Work With Customer

Prioritize

Most Important Features First

Highest Risk First

Greatest Unknowns First

(Helps Flush Out Definition)

Plus a Bonus

Stop When You Want

If Customer Happy

Current Feature Set

All Tests Pass

Then Ship It

Why Wait For Low-Priority
Features?

Ship Now.

Make Money.

Find Out What Customer Wants

And Add Those Features

 Iterations

We've Seen

Iterations

Help

To Regularly Adjust Priorities

To Accurately Track Progress

They Also

Serve As Mini-Milestones

Or Mini-Releases

How Long Is An Iteration?

Usually

1 or 2 weeks

1 Week

Faster Feedback

More Flexible

2 Week

Coarse Grained Features

More Interdependencies
With Other Disciplines

Pick What Sounds Right

You Can Always Change

1 ⇨ 2
Sum Pairs Of Past Iterations

2 ⇨ 1
Split Past Iterations Into Halves

What
Happens
When We
Reach The
End Of An
Iteration...

 With
Incomplete
Features?

All Incomplete Features

Count As 0 Points

If

Still High Priority

Work On It Next Iteration

Points Will Average Out

How Do We
Know How
Much Work
To Schedule

For Next
Iteration?

“Yesterday's Weather”

We Assume Our Velocity

Will Be Our Recent Velocity

Then

Work With Customer

Highest Priority Features

Fit In As Many As We Can

Some Teams

Use Visual Reinforcement

Sheets of Paper

Size Proportional To Points

Large Sheet Of Paper

Size Proportional to Velocity

Then Fit Features Into Iteration

Intuitive

Visual (For Visual People)

So Is That It?

Let's See

We Know

Meaning of Done

We Know

How To Estimate The
Complexity Of Features

We Know

When Features Are Done

We Know

How Quickly We
Get Features Done

We Know

When Project Should Be Done

We Know

What Our Options Are To
Change When It's Done

We Know

The Success Of Those Changes

We Know

To Make Constant Corrections

so

Yeah.

We're

Done.

This Presentation is Licensed Under a
Creative Commons 3.0 Attribution,

Share-Alike License.

You may use all or part of this presentation for
whatever you want, as long as you

(1) credit Michael Karlesky and Mark VanderVoord
(2) release any derived works under a similar license

http://www.creativecommons.org/

Images By (thanks!):
Beach Zen - Tanais
Costa Rica Zen Garden – Scott
Robinson
Fire And Water – Paul Sapiano

Zen Garden – Timothy Tak
Mad Scientist - Zoomar

Momento Zen – Silke
Gerstenkorn
Zen – Pierangelo Rosati
Carnival Cruise – Josh Bousel

