
Agile Project Management
(or, Burning Your Gantt Charts)

Embedded Systems Conference Boston (Boston, Massachusetts)

ESC 247-267, October 2008

Michael Karlesky

Atomic Object

karlesky@atomicobject.com

Mark Vander Voord

X-Rite

mvandervoord@gmail.com

Atomic Object, 941 Wealthy Street SE, Grand Rapids, MI 49506

http://atomicobject.com

X-Rite, 4300 44th Street SE, Grand Rapids, MI 49512

http://xrite.com

ABSTRACT – Embrace change. Schedules, budgets, competitive environments, and requirements

change. Unanticipated, difficult problems are discovered during development. Traditional

embedded project management usually hinges on eliminating change and designing out

uncertainty up-front; such an approach is fantasy. Agile Project Management offers solutions to

common, persistent problems: poor estimates, slipped timelines, products languishing in an

almost-done state, and Gantt charts rarely reflecting reality. Here we discuss: usable definitions

of “customer”, “feature” and “done”; prioritization; iterations; estimation; burndown charts;

documentation; and risk & scope management.

Introduction

ROJECTS change. This simple fact is not fundamentally due to a lack of planning or

incompetence on the part of project managers and software developers. Rather, change is an

inherent characteristic of any growing entity. Embedded projects grow as much as they are built.

Living things adapt to their environment. The environment surrounding any embedded project is

ever in flux. Budgets change. Resources change. Schedules change. Competition changes.

Customer needs change. Even if this changing environment could be eliminated, another form of

change would continue to affect embedded projects. A project learns as it grows and must

change in response to this learning. That is, as features come to fruition, the developers, users,

customers, and managers become more fully aware of the project’s reality. That reality is a

project’s limitations, its capabilities, what is needed of it, and how users desire to interact with it

– all these are discovered over time. These discoveries will inevitably drive project change.

For the purposes of our discussion of project management we make the following

distinctions. First, by “traditional project management” we refer mainly to any methodology

where software development is viewed as a specialized version of manufacturing or as a

construction project. This type of project management is identified by its sequential phases of

design, implementation, and testing (the “waterfall” approach) planned out through critical path

analysis (usually represented via Gantt charts). Second, we address here only those projects that

include any sort of variability or unknowns in their requirements. Certain “black box” projects

P

Agile Project Management (or, Burning Your Gantt Charts)

limited to well-defined data manipulation or I/O transformations may not fall within the realm of

the philosophies and techniques we describe here. New product development, R&D

development, and projects requiring user interface work (i.e. the majority of embedded software

projects) are well suited for Agile project management.

Overview of Traditional vs. Agile Project Management

Traditional project management views change and rework as the most expensive aspects of

software development. As such, it attempts to drastically limit, even prevent, change through

extensive upfront planning, design, and documentation. Conventional project management

wisdom holds that if change happens during a project, insufficient planning, design, and

documentation occurred. Traditional techniques advocate for a development path that moves

orderly from laying subsystem foundations through implementing middleware layers and finally

on to feature integration.

Conversely, Agile project management (based in Agile software development techniques[1])

views project failure as the most expensive aspect of software development (e.g. software that

never ships, slipped schedules, marketable features never realized, and quality failures). It holds

that change happens because change happens; change is something to be managed rather than

avoided. Agile project management views planning, design, and documentation beyond the

minimum necessary to be waste. It focuses on delivering working features to a paying customer

as soon as possible, building supporting subsystems and refactoring the code-base as needed to

support said features along the way.

Key Agile Concepts: “Customer”, “Feature” and “Done”

The philosophy of Agile project management is oriented around a handful of central ideas.

All practices, metrics, and decision making come back to these core concepts. To lay the

groundwork for explaining the techniques of Agile project management, we must answer three

questions. Who is a customer? What is a feature? When is a feature done?

Customer Defined

The customer pays for software developed; this much is quite obvious. In Agile project

management, the customer’s role encompasses more than this obvious definition. A customer is

the single point of contact in making decisions on direction, prioritizing features, and answering

domain questions. They are as close to the development team as possible; ideally they are present

as a full-time member of the team providing decisions, priorities, exploratory testing, usability

feedback, and research. Though many people may be involved in these activities, a single person

acts as the voice of the customer.

In developing complex technologies or creating software for complex business situations,

more complex definitions of customers can be necessary. Multiple customers may exist

internally in systems engineering, production, hardware engineering, marketing, etc. Each of

these customers’ decisions cost money and require that value be delivered to those customers. In

such cases, a project manager must coordinate priority decisions among these individuals,

maintaining a single course for the development team to navigate.

The end user of a product and the customer may very well be different people. This generally

occurs when a company develops a product to be sold to a particular market; it is less common

Agile Project Management (or, Burning Your Gantt Charts)

for projects consumed internally. In these cases, it becomes critical to fold user feedback into

development early and often thus requiring features to be delivered as soon as possible (more on

this in later sections). Bringing end users as close to the development as possible engenders

understanding of their needs and aids the customer in making appropriate decisions.

Feature Defined

We define a feature from the customer’s perspective. A feature is a unit of functionality: (1)

described by the customer in his or her own words in terms of system behavior rather than

implementation details (2) verifiable in its completion to the satisfaction of the customer (3)

deemed valuable enough to the customer to be paid for by said customer. Valuable software

meets the needs and desires of the paying customer. As such, in Agile project management, all

efforts are centered on delivering features to the paying customer.

Features are not tasks, nor are they modules or subsystems. In Agile project management,

features are short, high-level narratives capturing the customer’s expectations of system behavior

(often referred to as “stories”). As such, features are not concerned with implementation details,

only user recognizable functionality and value. A well formed feature or story should take no

more than a week or two to implement. An example might read: “When a user holds the power

button for three seconds, the device should power down.”

Tasks exist solely in the realm of a developer’s day-to-day activities. A collection of tasks

comprises the technical implementation details of accomplishing a feature. A progression of

completed tasks leads to the realization of a feature.

Modules, subsystems, and architecture are implementation details that support the delivery of

features. This, in itself, is not a departure from traditional project management. However, in

Agile project management, we invert the understanding of building software. Concentrating on

working features is given priority over building out supporting subsystems. We will elaborate on

this point in a later section.

Done Defined

On its surface, “done” appears to be such a simple idea as to be unworthy of elaboration. Yet,

with traditional project management practices determining when a feature or even a project is

done often requires extraordinary effort and generally produces little exactness. For instance,

“done” is often such a poorly grasped idea that development teams speak in terms of “done” and

“done done.” The former describes when a developer believes a feature is complete; the latter

describes when the feature is truly complete (though this state of completeness is likely to be

quite indeterminate as well). Anecdotes abound of Gantt charts indicating 95% project

completion, yet an amount of time far exceeding the final 5% of the project timeline is required

to finish the embedded software development effort.

In Agile project management “done” has a specific definition and represents a measurable

state of completion. A feature is done when it has thorough test coverage and passes all unit,

system, and acceptance tests. Ideally, the unit and system tests are automated and can be run as a

regression test suite. Unit tests and system tests are created by the developers in parallel with

production code (ideally, the tests precede the production code in the manner of Test-Driven

Development). Acceptance tests are performed by the customer; these can range from scripted

manual operations to variations of end-of-line production test equipment.

Agile Project Management (or, Burning Your Gantt Charts)

Practices

Like all project management methodologies, Agile project management is a set of practices

and philosophies. These form a symbiosis among themselves. As they say, the whole is greater

than the sum of its parts.

Testing

We have defined done in terms of tests. Without tests and this measurable means of

determining the state of a feature, many of the practices of Agile project management become

impossible or ineffective. One of the most effective forms of testing is Test-Driven Development

(TDD). In TDD a developer uses automated, executable, regression tests to capture the effect of

production code to be implemented before said code is implemented. With those tests in place,

the developer can then confidently fill in the production code. This approach is best applied in

both unit tests (tests written in the same environment as the production code exercising the

system’s innards) and system tests (tests that exercise the system externally). Testing of this sort

is an advanced practice[2] well worth the benefits in quality, design, confidence, and metrics it

provides.

Iterations

In general, humans are better at managing highly detailed work over short intervals of time

than long ones. That effectiveness is increased even more when those short intervals of time are

well defined and repeated in such a way as to develop a rhythm. Traditional project management

often stages work in phases lasting many weeks or months. These periods are simply too long to

effectively monitor progress, react to changes and new knowledge, and take action with

sufficient time as to prevent schedule problems. Agile project management uses development

iterations to break up long projects. With these short, defined, repeated periods of time (on the

order of one or two weeks), metrics can be gathered and used to predict and manage schedule

changes after completing only a small number of iterations. Estimation, metrics, and forecasting

(all interconnected to iterations) are addressed in later sections.

Feature-Driven Development

Our goal in software development is to deliver working features for which a customer is

willing to pay. We deliver features not architecture or subsystems. Software architecture and

subsystems exist only to support features. All project management, therefore, should be oriented

around delivering features. Agile project management does just that.

In Agile project management, we ask the customer to prioritize features each iteration. This

guides where programming effort is directed and allows priorities to shift each iteration as

needed in response to circumstances. Delivering features early and often allows end users to

work with and test software long before the final test phase of traditional project management.

This approach invites users to offer feedback that can be folded into iteration planning and

feature prioritization. In learning iteratively as the project grows, features of little value can be

cut from the program (saving time and money) while those that offer the most value are

discovered and implemented. This technique can radically change the initial set of requirements.

However, by regularly re-evaluating feature priorities, we can guarantee that what is most

important to a customer is always accomplished first. Should schedule or budget changes cut the

project short, the most important and valuable features are those that have already been

Agile Project Management (or, Burning Your Gantt Charts)

accomplished.

Simplest Thing That Could Possibly Work

Unneeded complexity is unneeded cost. Complexity increases the chance for introducing

error, complicates testing, slows progress, and obfuscates code (thus increasing maintenance and

documentation effort). The simplest thing that will achieve the goal at hand yields cleaner code,

faster progress, and greater system efficiency than a more interesting, complicated solution.

Simplicity has more enemies than merely complexity. The easiest solution to a problem is

not necessarily the simplest solution. Ease of implementation can drive code duplication,

overloaded functions, excessive nesting of conditionals, etc. Striving for simplicity yields the

most elegant solution to a problem with unneeded complexity and a clean implementation.

Driving development via unit and system tests (i.e. Test-Driven Development) provides a

suite of regression tests. Those tests act as a safety net protecting against bugs and broken code

giving confidence to developers to refactor code towards simplicity.

You Ain’t Gonna Need It

Traditional views of software development and project management strive to avoid change.

Developers and project managers who subscribe to this viewpoint build subsystems and software

architecture to meet every foreseeable need of the layers of software to follow. In reality, much

of the functionality provided by such foundational layers of software will never be consumed by

the software developed later in the project. Any functionality built early in a project that is

unneeded later in the project is waste. Further, the unneeded effort taken to introduce

unnecessary complication creates barriers to change the software and slows progress toward the

ultimate goal of delivering valuable features.

Agile project management takes a different approach. Developers implement only the

software needed at the time they are creating it. Relying on suites of regression tests, developers

can refactor existing code and add functionality when actually needed at later stages of the

project.

Estimation

Planning Poker

Predicting the future in any sort of meaningful way is difficult. Thus, software estimation is

difficult. A high percentage of traditionally managed projects do not meet their time estimates

and thus either fail or are completed with serious budget overruns or lacking important features.

Agile project management addresses the failings of traditional software estimation by

recognizing an inherent limit in humans. We are not particularly capable at estimating how much

time a given task or group of tasks requires. This inability is only compounded in large projects

comprised of a significant number of tasks. However, humans are quite good at estimating

relative complexity (e.g. A is twice as complex as B). In the place of time-based estimation,

Agile project management employs complexity-based estimates.

Planning Poker is a technique used to facilitate arriving at complexity estimates within a

development team. A numbering scheme is arbitrarily selected; popular choices include powers

of two (1, 2, 4, 8…) and a simplified Fibonacci sequence (1, 2, 3, 5, 8…). The high end of the

scale is capped close to 10. Individual features (suitably decomposed to reasonably fit within an

iteration timeframe) are announced and discussed followed by each developer revealing a card

with his or her complexity point estimate. To prevent influence, these estimates are not discussed

Agile Project Management (or, Burning Your Gantt Charts)

until after they are first revealed. Any divergence in the numbers spawns conversation until

general agreement is reached on a complexity points value.

As features are estimated, they are placed in a backlog with their complexity estimates. Some

amount of time at the beginning of a project is necessary to estimate all features known at that

time. The result of planning poker is a comprehensive set of complexity points that taken

together represent the entire complexity of the project. Correlating these point values to time

requires measuring velocity and plotting predictions with Burndown charts.

As a project progresses and change inevitably occurs, features may be dropped from the

backlog altogether while new ones are added. Each time a new feature is conceived and added to

the backlog, a quick round of Planning Poker is played to estimate the complexity points of the

new feature. Any errors in complexity estimates tend to average out to a net error of zero over

the course of a project (i.e. some features are more complex than thought while others are less

complex).

Velocity & Project Forecasting

To correlate complexity points generated in Planning Poker to a project timeline we must

calculate velocity. Velocity is a simple ratio of complexity points completed per iteration. That

is, for each feature marked as done (its tests all pass), its complexity points are credited to the

iteration in which it was completed. Velocity can be calculated as a weighted historical average

favoring recent iterations (as these are most representative of the current rate of progress looking

forward) or as a simple average of the most recent two or three iterations.

This method requires at least a handful of completed iterations before meaningful project

completion estimates can be generated. However, with that overhead out of the way, a

meaningful and ever-current estimate of project completion is available. Project completion is

forecasted simply by dividing the backlog of complexity points by velocity; this yields the

number of remaining iterations in the project. Because features are truly done when all tests pass,

we have confidence that past work is truly complete. Looking forward, we can accurately size

the amount of work and resources available. If project completion extends past the budget or

delivery date, resources, features, and priorities can be adjusted months before the difficult truth

would become apparent using traditional methods.

This technique pins relative complexity to the reality of time. It also very naturally absorbs

all overhead not directly associated with programming. That is, meetings, coffee breaks,

unexpected absences, etc. are folded into velocity calculations. A great deal of overhead will be

revealed in a slower velocity. Adding resources can increase velocity, but there are, of course,

limits to this effect. This too is shown by velocity. By tracking the number of developers on a

project and comparing that number to velocity over time, the natural optimum for the team and

project become quite obvious with simple math.

Burndown Charts

Burndown charts are visual representations of the total backlog of complexity points and

progress made against that backlog over time. It presents the raw data that yields velocity

numbers in a way that allows quick visual analysis. Extrapolating lines on the chart easily reveals

a great deal about project completion – even quite early in the project.

Agile Project Management (or, Burning Your Gantt Charts)

Figure 1 shows an actual burndown chart from a large project. The blue line represents the

total number of complexity points in the project. Note how it fluctuates over time. A drop in total

complexity points demonstrates moments of project re-evaluation where features were removed

from the backlog. An increase demonstrates re-evaluation where features were added. The drops

seen in Figure 1 were specific efforts to simplify the project and pull in the completion date. The

increases shown in Figure 1 were additions of features learned to be essential as the project

progressed. Note that these decisions occurred months before the end of the project specifically

because there was data that demonstrated these decisions had to be made to meet goals. The

orange line in Figure 1 represents the completion of features over time. It tracks with the blue

line but maintains a downward slope towards completion. Note how the graph shows an

increased velocity at the tail end of the project (though the line has the same slope as earlier

times in the project it occurred over a time period where many features were added to the

project).

Continuous Integration

The technique of continuous integration regularly brings together a system’s code and

ensures via the regression test suite that new programming has not broken existing programming.

Automated build systems allow source code and tests to be compiled and run automatically.

Continuous Integration ensures the system’s code-base is always thoroughly tested and has no

integration problems among subsystems or sections of code. Integration problems are discovered

early when it is cheapest to correct them. Further, any such problem will be discovered close to

where and when the problem was created; here, understanding is greatest and good design

choices are most likely.

Figure 1 – Burndown Chart (Complexity points on Y axis; Iterations on X axis)

Agile Project Management (or, Burning Your Gantt Charts)

Documentation

Traditional views of software development and project management favor extensive

documentation. Extensive planning and architectural documents are written before the project

commences. More documentation is added to the source code while it is written. More

documentation still is created once the project is completed. The fundamental difficulty with

software documentation is its short shelf life. Even small changes to the source code of a system

can invalidate significant amounts of documentation.

Agile project management favors limited, flexible, just-in-time documentation. To the extent

that contractual obligations will allow, initial and final documentation should be simple, high-

level overviews of important features and subsystems that are unlikely to change. Unit and

system test suites act as executable documentation on the system’s source code behavior and

architecture. As tests are updated, this living documentation is updated as well. Development

teams can utilize flexible, collaborative documentation systems such as wikis to capture and

easily update essential procedures, setup instructions, and command interfaces. Such systems are

effective at communicating among the team itself and the larger organization. The RaPiD7[3]

documentation technique delays static documentation and manual generation until the last

possible moment. In this method all parties involved in a project are brought together for a single

day documentation sprint to be edited and refined later by a single editor. This concentrates

documentation effort, maximizes communication among the team, and ensures documents are as

up to date as possible before they are shipped.

Risk Management & Scope Management

With Agile project management, managing risk and scope are, in fact, quite simple to

accomplish. The riskiest portions of the project are prioritized to be completed first. As each

iteration is completed, the burndown chart is updated and decisions are made on existing and

new features. Velocity calculations give such foresight that resource and feature planning can be

actively and preemptively adjusted to meet release schedule and budget constraints.

Conclusion

Traditional project management is insufficient to manage the inevitable change inherent to

embedded software projects. Agile project management, however, is well equipped to aid project

managers and software development teams in managing risk, scope, budgets, and schedules to

create successful, valuable products.

References
[1] Kent Beck. Extreme Programming Explained. Reading, MA: Addison Wesley, 2000.

[2] Michael Karlesky, Greg Williams, William Bereza, Matt Fletcher. “Mocking the Embedded World: Test-

Driven Development, Continuous Integration, and Design Patterns” Embedded Systems Conference Silicon

Valley. San Jose, California. April 2007.

[3] Roope Kylmäkoski, “Efficient Authoring of Software Documentation Using RaPiD7,” icse, pp.255, 25th

International Conference on Software Engineering (ICSE'03), 2003.

