
The creators of

Flynn, Tech Evangelist

Linkerd and ingress
controllers: bringing the
outside world in

flynn@buoyant.io | @flynn on slack.linkerd.io

➔ The Ingress Problem™

➔ How it’s solved

➔ How Linkerd works with ingress
controllers

➔ Demo!

What’s on the
agenda?

➔ A Kubernetes cluster, ideally
supporting services of type
LoadBalancer.

➔ To follow along, you’ll also need
kubectl, linkerd, and helm.

➔ Check out the workshop source at

https://github.com/BuoyantIO/
service-mesh-academy/
tree/main/linkerd-and-ingress

What’s needed for
the hands-on part?

The Ingress Problem

❌

How do you let people use your services?

➔ The ingress controller provides control as well as access.
➔ Both the ingress controller and the service mesh can provide security,

reliability, and observability
◆ e.g. both can be great at gRPC load balancing
◆ (when doing things like this, you tend to call it an API gateway instead of

just an ingress controller)
➔ However. The ingress controller can only affect things at the edge of the

cluster; the mesh has influence everywhere.
◆ This is why you generally want both for real-world production use.

Ingress controller and service mesh

➔ Kubernetes has a resource called Ingress

◆ It’s old and limited; the Gateway API is meant to replace it

➔ “Ingress” as a concept means the function of carefully providing a mechanism
for traffic from outside the cluster to find its way into the cluster.

◆ This does not necessarily mean that you’re using the Ingress resource.

A note: ingress concept != Ingress resource

How does Linkerd work with ingress controllers?

How does Linkerd work with ingress controllers?

Ingress Controller Gotchas

➔ If your ingress controller needs to know the IP address of incoming
connections, you must tell Linkerd to skip the incoming port.

◆ If you don’t, the ingress controller will only ever see the Linkerd sidecar
proxy’s IP address.

➔ Skipping the incoming ports is always harmless, since the purpose of the
ingress controller is managing connections from outside.

Skipping Incoming Ports

➔ Do this with an annotation on the ingress controller Pods:
config.linkerd.io/skip-incoming-ports: 8080,8443

Skipping Incoming Ports

apiVersion: v1
kind: Service
metadata:
 name: fancy-ingress
spec:
 ports:
 - name: http
 port: 80
 targetPort: 8080
 selector:
 app: fancy-ingress

➔ Very important: skip the targetPort,
not the Service port!

◆ For the Service shown, you’d need
to skip 8080, not 80

➔ Linkerd expects
connections to the cluster
IP for a workload.

“Ingress Mode”

➔ When connecting to the
cluster IP, Linkerd’s load
balancing gets to choose
which of the workload’s
endpoints to use.

➔ A connection straight to
an endpoint will bypass
Linkerd’s load balancing.

“Ingress Mode”

➔ Sometimes this is what
you want (e.g. Emissary
using its endpoint
resolver).

➔ If not (e.g. Istio Gateway), use
ingress mode!

➔ Annotate the ingress Pod with
linkerd.io/inject: ingress
instead of
linkerd.io/inject: enabled

➔ Note: you don’t want to use
this if you don’t really have to.

“Ingress Mode”

Demo Time!

🤞

Q&A

Monthly hands-on, engineer-focused training
from the creators of the service mesh

Jan 24

Intro to GitOps with Weave GitOps, Flagger and Linkerd (hosted by Weaveworks)

Feb 16

Real-World GitOps with Flagger and Linkerd

The creators of

SIGN UP TODAY!
buoyant.io/sma

Fully managed on any
Kubernetes cluster

Buoyant Cloud automated upgrades, data plane
version tracking, mesh health alerts, and much,

much more.

BOOK A DEMO
buoyant.io/demo

@BuoyantIO buoyant.io

The creators of

Thanks so much!
Flynn
Tech Evangelist, Buoyant
flynn@buoyant.io

