



# Shear wave arrivals in surface microseismic data

Ben Witten\*, Summer Montgomery, and Brad Artman, Spectraseis

## Why are S-waves not often documented from surface microseismic data?



- 1. Are shear waves produced by hydraulic fracturing?
- 2. Can the S-wave energy released be enough to overcome attenuation?
- 3. Can the shear wave be recorded at the surface?

The answer to all these questions is **YES**.

Recording shear waves at the surface requires the right equipment

## Instrumentation necessary to observe S-waves

Three-component instruments

Most S-wave energy exists on the horizontal components

Broadband instruments

S-wave energy central frequency is < ½ of the P



Recording S-waves decreases risks by capturing weaker microseisms and eliminating false positive

#### Overview

#### Theory

Modeling

#### Data examples

- Mannville
- Montney
- Wolfcamp
- Mississippian Carbonate
- Eagle Ford

Using the S-waves Summary

Analytics, numerical, and data agree

#### Introduction

#### (micro)Seismology

- All fractures produce compressional and shear waves
- Energy released in the from of shear waves is greater, often an order of magnitude,
   than compressional waves, for common fracture mechanisms
- All fractures release significant energy in the low frequency bands



Corner frequency does not mean bandwidth



#### Fracture mechanisms



All fractures can be decomposed into these three mechanisms

# Are strong shear waves produced by hydraulic fracturing?





Average amplitude over the unit sphere is a function of Vp/Vs ratio

Theory predicts that S-wave energy dominates

#### Numerical modeling

#### Velocity model



#### Surface array



$$Q_p = Q_s = 100$$

Elastic propagation of a DC and CLVD source from the starred location

# Are strong shear waves produced by hydraulic fracturing?

## Spectraseis

#### Normalized RMS amplitude for all components



Normalized RMS amplitude for vertical component



DC source

$$\begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

**Modeling predicts that S-wave energy dominates** 

# Are strong shear waves produced by hydraulic fracturing?

## Spectraseis

#### Normalized RMS amplitude for all components



Normalized RMS amplitude for vertical component



**CLVD** source

$$\begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

When all 3 components are considered, S-wave has considerably more energy

# Is the S-wave energy released enough to overcome attenuation?



DC

Normalized

S Amplitude

9.26

7.28

4.69

2.08

1.33

1.08

0.84

 $Q_s$ 

100

50

25

12

9

| $Q_p$ | Normalized  |
|-------|-------------|
|       | P Amplitude |
| 100   | 1.00        |

#### **CLVD**

| $Q_s$ | Normalized  |
|-------|-------------|
|       | S Amplitude |
| 100   | 4.39        |
| 50    | 3.46        |
| 25    | 2.25        |
| :     |             |
| 13    | 1.13        |
| 12    | 1.01        |
| 11    | 0.77        |
| :     |             |
| 7     | 0.41        |

| $Q_p$ | Normalized  |
|-------|-------------|
|       | P Amplitude |
| 100   | 1.00        |

It is geologically unreasonable for the entire column to have such low Qs



# Data examples From various geologies and geographies

- Mannville
- Montney
- Wolfcamp
- Mississippian Carbonate
- Eagle Ford

#### Mannville – Alberta, Canada



Well depth: 850 m Bandpass: 5 – 30 Hz



Are S waves observable? Answer: Yes

#### Mannville – Alberta, Canada



Well depth: 850 m



All energy below 15 Hz, requires broadband 3C instruments

#### Mannville – Alberta, Canada



Well depth: 850 m Instrument response for a 15 Hz phone applied



Low-frequency content requires broad-band 3C instruments

#### Montney – British Columbia, Canada

## Spectraseis



Well depth: 2200 m Bandpass: 5 - 100 Hz



198 station imaging project where S waves are dominant

#### Montney – British Columbia, Canada

## Spectraseis



Well depth: 2200 m



S wave bandwidth from 6 – 20 Hz requires broadband 3C instruments

#### Wolfcamp - West Texas, USA



Well depth: 1900 m Bandpass: 5 – 60 Hz



140 station imaging project where S waves dominate the wave field

#### Wolfcamp - West Texas, USA



Well depth: 1900 m



S wave bandwidth from 5 – 20 Hz requires broadband 3C instruments

# Mississippian Carbonate – Oklahoma, USA





Well depth: 1700 m Bandpass: 5 – 60 Hz



201 station imaging project where S waves are clear

# Mississippian Carbonate – Oklahoma, USA

## Spectraseis



Well depth: 1700 m



S wave bandwidth from 13 – 30 Hz requires broadband 3C instruments

#### Eagle Ford – South Texas, USA



Well depth: 2550 m Bandpass: 5 – 40 Hz



187 station imaging project where S waves are strong

#### Eagle Ford – South Texas, USA



Well depth: 2550 m



S wave bandwidth from 3 – 17 Hz requires broadband 3C instruments



#### Using the Shear waves

#### Collect appropriate data

- Collect the data you need to exploit S-waves
- Velocity information along travel path



#### Avoid false positives



Appropriate P-S separation

Appropriate P and S move outs

Extra quality control step of analyzing P-S separation gives high confidence in any detected events

#### Fracture characterization



Moment tensor is better constrained when using both P and S-waves

#### Summary

- Fracture events release most of their energy as shear waves
- S-waves are produced by hydraulic fracturing and are usually the strongest arrival recorded at the surface
- Broad band and 3C phones are essential to capturing the shear arrivals at the surface
- Shear data can be used in many phases of the microseismic workflow
- Collect the data you need to fully realize the potential of the S-waves

#### Acknowledgements

We would like to thank

Company A

**Devon Energy** 

Fasken Oil and Ranch

**Forest Oil** 

**Progress Energy** 

and our colleagues at Spectraseis



#### Wolfcamp - West Texas, USA



Well depth: 1900 m Bandpass: 5 – 100 Hz



140 station imaging project where S waves dominate the wave field



#### Collect appropriate data

- Collect the data you need to exploit S-waves
- Velocity information along travel path

