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Summary

Common techniques for locating fracture events, from large
earthquakes to small fractures, are often hampered by the need
to pick arrivals in the data domain, which can be onerous or
impossible with low signal-to-noise data. Many methods re-
quire a significant amount of preprocessing and rigid assump-
tions about the source location and type. We use the time-
reverse imaging algorithm to locate transient microseismic
events. The method relies on wave-equation back-propagation
of the data, requires no picking or forward modeling, makes no
assumptions about the source, and needs minimal preprocess-
ing. We calculate event initiation times and the signal-to-noise
ratio in the image domain, then use an intelligent picking algo-
rithm to extract fracture locations. The accuracy is only limited
by the correctness of the velocity model. The method, using
surface array data, compares well with solutions from down-
hole field measurements even with limited velocity informa-
tion. The method provides a statistical confidence threshold
from the data for quality control of the results. These features
combine to produce event locations with reduced uncertainty
and high precision.

Introduction

Microseismic monitoring has become a common technique to
locate fracture events during oil and gas well completion op-
erations. There are numerous techniques including travel-time
picking and semblance (Eisner et al., 2008; Maxwell et al.,
2010), ray migration methods (Schuster et al., 2004; Borcea
et al., 2006; Chambers et al., 2010), and wave-equation based
methods (Steiner et al., 2008; Xuan and Sava, 2010). Bar-
dainne et al. (2009) concludes that migration methods using
P and S waveforms are superior to picking algorithms.

In this paper, we advocate a (elastic when appropriate) wave-
equation method with automatic correlation-based imaging con-
ditions (Artman et al., 2010). Time-reverse imaging (TRI) is
accurate, can locate events in low signal-to-noise ratio (S/N)
data, requires no picking or forward calculations, and makes
no a-priori assumptions about the events. We use a modified
version of the TRI algorithm to generate S/N estimates and a
statistical confidence threshold in the image domain (Witten
and Artman, 2011).

To process very long records with many individual transient
events, we generate many S/N sub-images on the fly during
continuous back-propagation of the time-reversed data. This
maintains the initiation times of events. Focus locations are au-
tomatically picked in the image domain with an intelligent al-
gorithm. The algorithm is demonstrated with synthetic surface
data and elastic propagation. Acoustic processing with single
component data is also possible with the loss of some source
mechanism information. A small field example demonstrates
the accuracy of the method, compared to down-hole solutions.

Method

This method relies on generating many TRI images (Artman
et al., 2010) from consecutive time windows. If one indepen-
dently images discrete time windows, events that are at the
beginning of the time window or span two windows are lost.
Instead, we implement continuous propagation of the data, and
write out sub-images at regular time intervals. After writing,
the working image is zeroed. Thus we ensure all events col-
lapse properly, but avoid the accumulation of stochastic noise
energy. We use time windows, length n;, that are a small mul-
tiple of the time it takes for an event to be recorded across the
entire array. For n; of only several wavelengths, sub-images
approach the pseudo-Wigner distribution function wave fields
proposed in Sava (2011).

Each sub-image is post-processed to calculate an estimate of
the image-domain signal-to-noise ratio (I-SNR) (Witten and
Artman, 2011). This requires imaging a data-domain noise
model as well. Here, we use random data scaled to the RMS
values of the traces for each time window. We generate an en-
tire noise-data volume, n, prior to imaging so that 2 parallel
continuous imaging processes (data and noise) are launched
simultaneously. Each I-SNR image volume is generated by di-
viding the current data sub-image by the corresponding noise
sub-image. This can be done in parallel implementations while
the subsequent time window is propagating. The length n; is
further constrained by the need to be long enough to capture
meaningful statistics of the stochastic noise such that the con-
fidence threshold calculation for the I-SNR image is robust
(Witten and Artman, 2011). Because the time length is reg-
ular and the earth-model does not change, a single confidence
threshold value is used for all I-SNR sub-images. All model
points that fall below the confidence threshold are zeroed or
clipped for display.

Therefore, each j sub-image using the absolute amplitude
auto-correlation imaging condition is calculated for every point
in space by
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where d and i are the reversed and propagated data and noise-
data volumes as function of space and time. Individual images
may be saved separately or stacked to produce a single image
of multiple events. Zeroing the image amplitudes at locations
below the confidence threshold is imperative for stacking since
most of the imaging conditions for TRI are not zero mean (Art-
man et al., 2010). Although stacking minimizes disk require-
ments, event initiation times are lost and nearby events may
blend together. Below, we introduce an automatic picking al-
gorithm to post-process the sub-images such that they need not
be saved.
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Synthetic Example

For illustration, Figure 1 shows three synthetic microseismic
events elastically modeled through the 1D velocity model in
Figure 2. The density was a constant 2000 kg/m3. The model
has 2 m resolution in space, a free surface condition at the top
and absorbing boundaries along the other sides. The data was
recorded at the surface with 65 stations every 25 m, though
only every other trace is displayed in the figure.
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Figure 1 Vertical component of the data. Left: All data, no
noise added. Right: Zoom around the three events after adding
noise. Time axis of all 4 panels is common.
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Figure 2 P and S-wave velocity model for forward and reverse
propagation.

The 3 events in Figure 1 are randomly oriented single forces
generating both P and S waves. The first event is located deep
in the section at 900 m. The second and third events are at
400 m depth, and only 30m apart horizontally. Equal energy
random noise was added to both components of the data such
that the deep event, Figure 1 top-right, has data S/N=0.16. The
shallower events have S/N=0.25 and 0.15. The events are very
difficult to interpret in the noisy data domain panels. We define
n; = 2 s, which is the time for an S wave to propagate across
the domain in the surface layer. Choosing 2 s time windows,
the first event arrives at the beginning of a time boundary of
where different images are written. The third event crosses a
time boundary for different images. Without continuous prop-
agation, neither of these events would focus.

Figure 3 displays 4 of the 10 sub-images where amplitudes less

than the 99% confidence threshold (I-SNR=1.48 for this model
and n;) are blue. The imaging condition used is the wave-
field amplitude auto-correlation, equation 1. The direction of
smearing around each event center is a function of the source
radiation pattern. Other imaging conditions can be applied to
investigate the source more completely (Artman et al., 2010).
Only 3 of the sub-images contain focusing above the confi-
dence threshold. Therefore we only include a single all-zero
image. With perfect velocity accuracy for the synthetics, the
locations of the 3 amplitude maximums have error no greater
than 1 grid cell in any direction. Greater errors are expected
for less accurate velocity models, although the field data re-
sults below using only a 1D profile estimated from a partial
open-hole log indicate generally less error than have been re-
ported in the literature (Eisner et al., 2009; Chambers et al.,
2009).

The first event in Figure 1 was modelled with excitation time
t=3.6 s, and has a minimum travel time to the surface ~ 0.4 s.
Therefore, the event arrives across the array between 4 and 4.5
s. When analysing 2 s sub-images, the initiation time param-
eter of each event is defined at the middle of the time window
plus or minus 1 s. The event is focused in the sub-image cor-
responding to initiation time of 3+1 s, with title 2-4 sec in
Figure 3.

The top panel of Figure 4 shows the stack of all 10 sub-images
generated from the 20 s of data. The bottom panel is the result
of imaging the entire data set, producing a single image. Note
the difference of color scales between the images. Overlain on
both images are the correct event locations. All 3 events are
visible and correctly positioned in the top panel. The 2 shal-
lower events, however, blend together providing an elevated
S/N. On the bottom, only event 2 is correctly located. This
event has the highest data S/N of the three. However, the en-
ergy in the event wavelet is very small compared to the total
stochastic noise energy over 20 s. Therefore, the focus has
I-SNR=6 in the top panel, and only 1.7 in the lower result.
The spurious values on the bottom-right are due to the coher-
ent sum of energy that is below the confidence threshold in the
individual sub-images.
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Figure 4 Top: Stack of all 10 two-second images after zeroing.
Bottom: Image of the continuous data set. Note the different
color scales.
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Figure 3 Two second sub-images. Everything below the 99% confidence level of 1.48 is clipped. Only a single all-zero sub-image

included.

Picking focii with Lloyd

Methods to quantize or compress functions are numerous in
the literature, but all strive to represent a function by the small-
est number of meaningful bytes with minimal loss of informa-
tion. Clapp (2004) introduced the use of Lloyd’s Algorithm
(LA), or Voronoi iteration, for optimally selecting reference
velocities for Fourier-domain wave-equation migrations. The
algorithm solves an iterative quantization problem to optimally
select a small number of representative values from a large
set. We have modified the method to automatically and in-
telligently find focus locations in images without mandating
a minimum (we allow zero) or maximum (can be thousands)
number of returned locations.

Because quantization methods are based on selecting represen-
tative values of a given function, we must first turn the volume
of image amplitudes into a related set of numbers for input to
LA: We’re interested in the coordinate axes values where high
values exist, rather than the distribution of functional ampli-
tude values. Therefore, we build a vector of image coordinate
(x,y,z) values that represents the amplitudes within the volume.
First the amplitudes are discritized between the minimum con-
fidence threshold and the maximum value. We find that 10
levels are sufficient. Then, locations in space with amplitudes
above the threshold are repeatedly entered into the input vec-
tor according to the number of quantum levels associated with
its amplitude. Locations with amplitude below the confidence
threshold, which is most of the domain, are ignored.

Figure 5 shows graphically how the data input into LA is se-
lected from a sampled 1D function. A human will instantly
select 2 plausible focii at locations 5.5 and 11.5. Assume that
the continuous signal is sampled only at the tick marks on the
axis and therefore has 14 amplitude values. The heavy dark
line above the axis represents the minimum threshold. The
maximum value of the function is at sample 11 or 12. The
data values are quantized into three levels. The dots show how
many times each coordinate is selected for input. The coordi-
nate set formed from the signal is [4, 5, 5, 6, 6, 10, 11, 11, 11,
12,12, 12, 13, 13].

The output is a list of optimal locations that best represent the

Figure 5 Dots represent coordinate selection by signal ampli-
tude for input into Lloyds Algorithm.

locations of focusing in the image. A tunable parameter is the
minimum allowable distance between two selected locations.
For the 1D example in Figure 5, LA returns 5 and 12.

Field data

A multi-well pad in a large field development was instrumented
with a 414 station grid of single component geophones to mon-
itor subsurface seismicity for approximately 1 month. Miyazawa
et al. (2008) present the analysis of microseismicity monitored
with a downhole array in a very similar area. The 1D veloc-
ity modelfor this pad, derived from several well logs, is that in
Figure 2. Figure 6 shows the layout and elevation of the array,
the locations of 2 perforation shots, and a fracture event.
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Figure 6 Surface array acquisition and surface projection of
all imaging results. Colors are elevation, dipping 60 m from
the NW to SE.
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Figure 7 is a fracture event after correcting for statics estimated
with the perforation shot data. Consistent with modeled data,
the multiple hyperbolas after the strongest arrival are intrabed
multiples not individual events. Ray based and picking loca-
tion methods will likely treat these arrivals as separate events.

time (s)
254 253 26.2 25.1 25 2409

Figure 7 The western 11 lines of event 1 data with bandpass
between 10 and 60 Hz. No S-waves are seen on the vertical
component data.

Figure 8 is the image of the event in three extractions through
the amplitude maximum in the image. The image is zeroed
below the 99% confidence threshold. With single component
geophones, we were limited to acoustic P-wave imaging. Mod-
elling exercises indicate that for realistic double-couple sources,
it is unrealistic to expect S-wave energy to be recorded on the
vertical component. The data example supports this. Despite
this limitation, there is still radiation pattern information in
Figure 8. If one assumes that the failure mechanism results
in a double-couple source, one can compare modelled data re-
sults with the field data to extract orientation angles that can
be related to the stress field.
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Figure 8 A fracture event image using the data in Figure 7
located at z=396 E=934 N=522.

Conclusions

We present a method to accurately locate microseismic events
from long time series data. It requires no manipulation of
the data and does not rely on picking arrivals. The error of
the location is only a function of the quality of the velocity
model. Two propagations the length of the data (the recorded
data and the noise model) are required. Short-time sub-images
are output for post-processing while the complete time series
are propagated through the model domain. Rather than save
these many large volumes, we use Lloyd’s Algorithm to select
meaningful focus locations. The locations, time window in
which the event focused, and signal-to-noise ratio are saved to
an ascii file. The method is easily adapted to acoustic, elastic,
or anisotropic propagators.

TRI volumes show the radiation pattern of events in the im-
age domain. The patterns are indicative to the failure mecha-
nism of the source event, especially for multi-component data.
Therefore, discarding all of the volumes results in the loss of
valuable information. Individual sub-images using only a few
seconds of data are very fast to calculate on GPU-based imag-
ing software. After the large data volume is processed in bulk,
interesting events or time windows can be re-processed in a
few minutes for further analysis or integration with seismic
volumes.

The TRI algorithm is capable of accurately imaging perfora-
tion shots and fracture events in the surface array data. Us-
ing 1D velocity functions and calculated statics corrections,
the perforation shots are within a few meters of the known
location. As with all imaging methodologies, the accuracy
of the velocity model dictates the accuracy of the TRI result.
The algorithmic accuracy, deduced by self-consistent forward-
reverse modeling, is approximately one grid cell. Therefore,
with a realistic 3D earth model, provided by reflection seismic
and well control, field results will converge to the algorithmic
accuracy. The use of single component geophones, while not
ideal, is sufficient for imaging these events. Acoustic imaging
of events is possible, which will be substantially faster then
elastic propagation. For large amounts of data this may be the
appropriate choice. If the goal is to locate very weak events
or characterize non-explosive sources, elastic imaging is re-
quired.
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