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Signal-to-noise estimates of time-reverse images
Ben Witten* and Brad Artman, Spectraseis AG

SUMMARY

Locating subsurface sources from passive seismic recordings
is difficult when attempted with data that has no observable ar-
rivals or a low signal-to-noise ratio. Using time-reversal tech-
niques recorded energy can be focused at its source depth.
However, when a focus cannot be matched to a particular
event, it can be difficult to distinguish true focusing from ar-
tifacts. Artificial focusing could arise from numerous causes,
including surface waves, local noise sources, acquisition ge-
ometry and velocity model effects. We present a method to
more reliably locate subsurface sources that reduces the am-
biguity of the results. Time-reverse imaging techniques are
implemented on both the recorded data and a noise model. In
the data domain, the noise model only approximates the en-
ergy of local noise sources. After imaging, however, the result
also captures the effects of acquisition geometry and the ve-
locity model. The noise image is then used to correct the data
image to produce an estimate of the signal-to-noise ratio. Syn-
thetic data examples show the versatility of this technique to
varying amounts of noise and to challenging velocity models.
A field data example shows how this technique can be used to
locate the source of low-frequency energy collocated with an
oil reservoir.

INTRODUCTION

To better understand physical processes in the subsurface, ac-
curately identifying the location of an event, often from passive
measurements, is important for many applications. Tools to
locate subsurface events are regularly applied to reservoir and
CO? sequestration monitoring (Maxwell et al., 2004), induced
micro-fracture localization (Maxwell and Ubancic, 2001), and
hydrocarbon exploration (Steiner et al., 2008) which focus en-
ergy at the source. These measurements, however, often have
low signal-to-noise ratios that have no identifiable events in
the data. With no evident arrivals, separating the true source
focusing and focusing due other effects is not trivial. Artificial
focusing can arise due to factors such as, noise sources in the
data, including surface waves, sampling artifacts, or velocity
model effects. We introduce noise images as an estimate of
these artifacts in the image domain. The noise image is then
used to correct the data image to produce an estimate of the
signal-to-noise ratio.

IMAGING AND PROPAGATION

Our method begins with time-reverse modeling (TRM) which
was developed to locate sources from acoustic measurements
(Fink, 1999). It is the process of injecting a time-reversed seis-
mic wave field at the recording locations and propagating it
through a velocity model. We then apply an imaging condi-
tion to produce a single image in physical space. The chain of
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operations of propagating a time-reversed wave field through
a model and applying an imaging condition is the process we
call time-reverse imaging (TRI). For the examples presented
here, elastic propagation is used. We define two imaging con-
ditions here. The first, 1, is the zero lag of the autocorrelation
of the wave field amplitude,

L(x) =Y Ju(x,0)lju(x,1)], (1)

where u(x,?) is the wave field in 1-, 2-, or 3- spatial dimen-
sions, and propagation time, ¢. Alternatively, the wave field can
be decomposed into its constituent P- and S-wave components
and a cross-correlation imaging condition can be constructed
(Artman et al., 2009). It is defined as

Ips(x) =Y _P(x,1)S(x,1). )

Because the wave field is sampled at discrete locations, artifi-
cial energy is created when injecting the data, which corrupts
the image (Xuan and Sava, 2009). Figure 1 shows a time snap-
shot of a subsampled horizontal plane wave of vertical particle
motion through a homogeneous medium. The wave-front has
healed sufficiently to approximate the full wave field, clearly
seen at a depth of approximately 2200 m. However, numerous
artifacts, manifested as superposed circular wave fronts, ex-
ist behind the coherent wave-front. These artifacts are mainly
high-ray-parameter energy, traveling at high angles. This in-
cludes all of the S-wave energy, which is purely artificial here.
Field data will also contain surface wave energy that has sim-
ilar characteristics to these artifacts. In either case, artifacts or
surface waves, this energy is problematic when locating body
wave sources at depth. Therefore, a means to attenuate it is
necessary.
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Figure 1: Time snapshot of the absolute wave field amplitude
from a sub-sampled plane wave propagating through a homo-
geneous medium.

In a v(z) earth model, energy will bend according to Snell’s
Law. Because the artifacts and surface waves exist mainly at
high ray parameters, their effects are mitigated by propagation.
Energy at high angles becomes evanescent and are effectively
trapped in the near surface. Figure 2 shows the result of the
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I,s imaging condition after propagating the subsampled plane
wave through a homogeneous (left) and a 0.8 km/s/km gradi-
ent (right) velocity model. The solid lines are traces extracted
from a recording/injection location and the dashed lines are
taken from between recording locations. If the full plane wave
was sampled and imaged, there would be zeros everywhere
because there is no real S-wave energy. Due to the limitations
of the sparse recording, S-wave energy is introduced and is
a sampling artifact. In the homogeneous medium case, these
artifacts propagate throughout the model and cause non-zero
artifacts at all depths. However, in the gradient velocity case,
S-waves, which have no vertically propagating energy, con-
tinually overturn and reflect off the surface causing extremely
high values in the near surface. This energy, however, does not
affect the image at depth. Since the earth generally has increas-
ing velocity with depth, propagating field data to depth with
the TRI algorithm ensures that most of the energy imaged at
depth is not artifacts or surface waves. Therefore propagation
through a v(z) medium, increasing with depth, is a surface-
wave filter.
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Figure 2: Left: I,; image of a sub-sampled horizontal plane
wave with vertical particle motion through a homogeneous
medium. Right: I,; image of the sub-sampled plane wave
through a gradient velocity. The solid lines are a traces ex-
tracted from recording locations and the dashed line is taken
between recording locations.

SIGNAL TO NOISE IMAGES

Now that it has been shown that, at depth, TRI results attenu-
ate sampling artifacts and surface waves, we must ensure that
no bias due to noise and the velocity model exist. We call this
bias the system response and define it as the cumulative ef-
fects of the acquisition geometry, velocity model, and noise in
the image domain. This includes the near-surface effects seen
previously. To accurately interpret the signal contribution, we
must estimate and remove the system response from the TRI
result.

We start by defining a noise model as random traces that are
scaled to the amplitude of the field data after bandpassing to
the frequency band of interest. This guarantees that the noise
traces have equal energy to the recorded traces but without any
correlated phase information between the traces. The advan-
tage of this type of noise model is that it is based directly on
the data. No information about the acquisition environment is
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necessary. The disadvantage is that it can only account for un-
correlated noise sources across the array. Other noise models
can be generated, with the most accurate noise model provid-
ing the best results.

Once created, the estimated noise data is imaged with the TRI
algorithm in the same fashion as the field data, creating the
system response. The system response will take the role of an
estimated noise model to incorporate into the signal-to-noise
estimate presented by Melton and Bailey (1957). While those
discussions develop the signal-to-noise quantity in the data do-
main, we introduce the analogous formalism to the image do-
main.

We start by assuming the recorded data, d, is a combination of
signal and noise: d = s+ n. The image created from this data
is the apparent signal image, I, which will contain contribu-
tions from both the signal and the system response. The appar-
ent signal for the recorded data for an autocorrelation imaging
condition, such as equation 1, is defined as:

I:Z(sf+n,)2:Zs,2+2slnt+n,2, 3)
t t

where ¢ is the time-axis over which we sum for correlation. For
conciseness we will drop this subscript. For cross-correlation
imaging conditions, such as equation 2, a similar equation can
be constructed. The estimated noise image, N, is defined as:

N=) i, 4)

where 7i is the estimated noise data. Next we divide equa-
tion 3, by the estimated noise image, N. Before division, N
is smoothed for stability. Rearranging terms and substituting
the definitions of 7 and N, we obtain an estimated signal to
noise ratio at each model location:

2 2
i:i—zs +22f"+27 .
L

— = 5
N S ©)
The division of two images from data sets that we have, I and
N, results in the right hand side of equation 5. If the noise has
2
n

been estimated correctly, then n ~ 7i and ~ 1. Any de-

72
parture from this value of 1 provides an indication of how well
the noise has been estimated away from the source location.

SYNTHETIC EXAMPLES

To demonstrate the advantages of the estimated signal to noise
images, we will create synthetic data sets. A single 15 second
time trace is constructed from 50 randomly distributed vertical
single forces of random amplitude with a central frequency
of 3.5 Hz. This trace is then injected into the model at one
location (3500,6000) and elastically propagated through a 0.8
km/s/km gradient velocity model with a constant V), /Vj ratio
and density. The resulting wave field is recording at the surface
at 250 meter intervals. Noise is added to the data and we apply
the estimated signal to noise imaging procedure.

Figure 3 shows the wave field amplitude auto-correlation imag-
ing results from these tests (equation 1). The black dot indi-
cates the true source position. Noise has been added to the data
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such that it has signal-to-noise ratios of (from left to right) oo,
0.5, and 0.25. The signal-to-noise ratio of the data will be ab-
breviated as DSNR to distinguish it from the image domain
signal-to-noise ration, ISNR. The top row shows the appar-
ent signal image, I,, generated from equation 3, and the bot-
tom row shows the estimated signal-to-noise images, I, from
equation 5. The images on the left are the best possible given
the acquisition geometry because DSNR= oo. Despite this, nu-
merous artifacts still exist in the apparent signal image (top)
in the near surface due to not fully sampling the wave field.
By dividing by the noise model, the system response has been
removed and the artifacts are greatly reduced in the estimated
signal-to-noise image (bottom). For DSNR= 0.5 (middle col-
umn), the focusing at the source location in the apparent signal
image is poorly separated from the noise above. The artifacts
in the near surface are stronger than the focus at the source
location. The estimated signal-to-noise image has, again, re-
moved the artifacts and enhanced the source focusing with re-
spect to the background. The apparent signal image generated
from DSNR= 0.25 (left), has only a slight indication of focus-
ing at the source location. It is much weaker than the energy
in the near surface. The estimated signal-to-noise image is still
clearly defined and easily interpretable with the strongest focus
around the source location.

FIELD DATA EXAMPLE

A low-frequency passive seismic survey was conducted over
and around an oil discovery in the Egyptian desert. One-hundred
ten stations continuously recorded over approximately 60 hours.
Figure 4 shows acquisition geometry of the survey. The dis-
covery well location is located at the intersection of AA” and
BB’. The data was selected to be the quietest 3 minutes of the
recorded data between 1 and 6 Hz. We will focus on lines AA’
and BB’ shown in Figure 4.

Figure 4: Acquisition geometry of the field survey.

Since all the stations were recording synchronously, 3D TRI
was implemented. This allows for all three components to be
utilized in the propagation and allows the energy to coalesce
appropriately in (X,y,z)-space. Figure 5 is a depth slice from
the 3D cube near the approximate reservoir depth. A strong
central area of high ISNR values is clearly evident around the
structural high. No other areas show consistent values above
1, ISNR = 0.

Figure 6 shows extracted lines along AA’ and BB’ from the 3D
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TRI volume overlayed on the reflection seismic images. By in-
tegrating the TRI results with the other geologic and geophysi-
cal information, such as the reflection seismic volume, a better
understanding of the subsurface may be achieved. While the
reflection seismic volume provides structural information, the
TRI can add another piece of information related to the fluid
properties (Riahi et al., 2009; Goloshubin et al., 2006).

Figure 5: Depth slice from the 3D I, TRI cube at the reservoir
interval.

CONCLUSIONS

We present a method for locating subsurface sources from pas-
sive recordings based on time-reversal that corrects for the
contributions of acquisition geometry, surface waves, noise,
and velocity model effects. It can be used for any source type,
but is particularly useful for data with a low signal-to-noise
ratio or with no observable arrivals. Our method reduces the
ambiguity in results by utilizing a noise model to simultane-
ously correct for the effects of under-sampling the wave field,
localized surface noise sources, and effects due to the velocity
model. This creates an estimate of the signal-to-noise ratio at
every point in the physical, (x,y,z), space. The method is flexi-
ble to any acquisition geometry and can be applied to complex
velocity fields. When used as a complementary tool along with
with the structural information of reflection seismology, it can
be used to evaluate prospective areas. In the field data example
presented, we have shown that the TRI image shows a strong
source focusing that is spatially collocated with the structural
high and known hydrocarbon.
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Figure 3: Top: apparent signal images, I,, generated from DSNR of (from left to right) e, 0.5, and 0.25. Bottom:estimated signal
to noise images, I, generated from the same data as above.
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Figure 6: 3D I, TRI images of lines AA’ and BB’ overlayed on a reflection seismic section. The red line indicates the lateral
location intersection of the lines at the discovery well.
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