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Picking versus stacking in a modern microearthquake
location: Comparison of results from a surface
passive seismic monitoring array in Oklahoma

Jeremy D. Pesicek’, Duncan Child', Brad Artman', and Konrad Cie$lik'

ABSTRACT

We present location results for a group of ~200 microearth-
quakes that occurred in 2012 in a region of Oklahoma hosting
ongoing exploration activities. Using a local passive surface
seismic monitoring network of 15 broadband stations, we ap-
plied two modern location techniques that use fundamentally
different approaches. The first is a pick-based double-difference
relocation method with waveform crosscorrelation. Multiple-
event location techniques such as these are generally regarded
as the best approach for obtaining high-precision locations from
pick data. The second approach is an automated waveform mi-
gration stacking method. These types of methods are becoming
increasingly common due to increasing network station den-
sity and computer power. The results from the two methods
show excellent agreement and provide similar results for the

interpreter. Both methods reveal spatial and temporal patterns in
the locations that are not visible in results obtained using a more
traditional pick-based approach. We performed two statistical
uncertainty tests to assess the effects of data quality and quantity
on the two methods. We show that the uncertainties for both
methods are comparable, but that the stack-based locations
are less sensitive to station geometry, likely due to the different
treatment of outliers and the beneficial inclusion of noisier data.
Finally, we discuss the favorable conditions in which to apply
each method and argue that for small aperture surface arrays
where accurate velocity information exists, such as in this study,
the stack-based method is preferable due to the higher degree of
automation. Under these conditions, stack-based methods better
allow for rapid and precise determination of microearthquake
locations, facilitating improved interpretations of seismogenic
processes.

INTRODUCTION

Determining the locations of earthquakes beneath a local seismic
network is a fundamental problem in seismology and remains an
active area of research. Significant advances have been made in re-
cent years using two fundamentally different approaches. The tradi-
tional and still most widely used class of location techniques is
based on Geiger’s method (Geiger, 1910, 1912) and relies on picks
of the arrival times of seismic phases as input data. The picks are
compared with those predicted by an available earth model to de-
termine best-fitting hypocentral parameters in a least-squares sense
(Thurber, 2011). Almost all automated location algorithms in use
today fall into this class, including those that are used to routinely
monitor global and regional seismicity (e.g., Buland et al., 2009;

Olivieri and Clinton, 2012). Herein, we refer to these methods
and their variants as “pick-based” methods.

With pick-based methods, the precision of the picks is a funda-
mental control on the quality of the resulting event location catalog.
Therefore, any effort to increase the quality of the picks, via human
interaction or algorithmic efforts in pre- and post-processing, is
immediately rewarded. For example, the precision of pick data
can be greatly improved by application of advanced automatic pick-
ers (e.g., Nippress et al., 2010) and by the use of waveform cross-
correlation (WCC) techniques (e.g., Rowe, 2002; Du et al., 2004;
Schaff, 2004). In addition, the development and widespread use of
multiple-event location (MEL) techniques (e.g., Douglas, 1967; Got
et al., 1994; Waldhauser and Ellsworth, 2000), usually combined
with WCC, has greatly improved the precision of location catalogs,
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even when using sparse networks (e.g., Rowe et al., 2004; Pesicek
et al., 2008; Statz-Boyer et al., 2009). These techniques are the van-
guard of modern location methods and can improve location pre-
cision by up to two orders of magnitude compared with more
traditional single event location (SEL) methods (Richards et al.,
2006).

Alternative methods that do not require time picks of seismic
phases are becoming increasingly popular for locating earthquakes
using local surface seismic networks. These methods exploit full or
partial waveforms to rebroadcast the seismic signals to the location
in which the energy stack is maximized. We refer to all varieties of
these non-pick-based methods as “stack-based”” methods. More spe-
cifically, we can subdivide them into two categories: (1) those that
exploit full waveforms such as time-reversal (TR) methods (e.g.,
McMechan, 1982; Gajewski and Tessmer, 2005; Artman et al.,
2010) and (2) those that are limited to primary seismic phases only,
and use some sort of migration or “delay and sum” approach to
search for the optimal location (e.g., Kao and Shan, 2004; Baker
et al., 2005). All of these stack-based methods are more computa-
tionally intensive than pick-based methods. Nevertheless, they are
now being routinely applied for many applications. Furthermore,
the second class of stack-based methods, those that perform partial
stacking of primary phases only, is gaining popularity for real-time
monitoring (Baker et al., 2005; Rentsch et al., 2007; Gharti et al.,
2010; Grigoli et al., 2013).

The increasing use of relatively dense local seismic arrays,
coupled with modern computing capabilities has resulted in in-
creased interest in stack-based methods in recent years. However,
the use of such dense arrays makes it more difficult to apply pick-
based methods; manually reviewing and improving automated
picks for these arrays is an onerous task. These inherent differences
in methodology and applicability between the two different classes
make it difficult to directly compare their results. For example, us-
ing dense seismic networks, TR methods can locate microearth-
quakes in environments with low signal-to-noise ratios (S/N)
where accurate picks cannot reliably be obtained. Although some
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Figure 1. Station (triangles) and event location map for approxi-
mately 200 events (M0-M1.7) located using a pick-based SEL
method. Event symbols are shaded by time. The black rectangle
is the area shown in Figure 2.

small subset of the events located using TR methods could also be
located using traditional pick-based SEL methods, these few events
would likely not be an ideal target for application of more precise
MEL methods. Conversely, large event catalogs resulting from
pick-based MEL studies may not be amenable to location using
TR methods, due to network sparseness, inadequate velocity infor-
mation, and/or computational demand. However, simplifications
made in partial stacking methods (compared with TR methods)
make them faster and thus more suitable for broader use. The result
is that more overlap now exists between the applicability of pick-
based location methods and stacking methods, presenting a choice
between microearthquake location techniques that has not existed
until recently.

Developers of these new partial stacking methods have con-
ducted exhaustive synthetic location experiments to validate their
methods and results (Kao and Shan, 2004; Baker et al., 2005; Gharti
etal., 2010; Liao et al., 2012; Grigoli et al., 2013). In addition, lim-
ited comparisons of locations produced by stacking methods versus
those produced by pick-based SEL methods have also been per-
formed. For example, Grigoli et al. (2013) compare their stack-
based locations using P- and S-arrivals with those of a pick-based
“manual procedure” using P only, whereas Liao et al. (2012) locate
one M ~ 4.5 using a stack- and pick-based SEL method. However,
no one has yet systematically compared stack-based location results
with those obtained using MEL methods with WCC, which is gen-
erally regarded as the best approach available for obtaining high-
precision relative event locations from pick data. In this paper,
we use these two different modern location methods to locate a
group of microearthquakes that occurred in a region of Oklahoma
hosting exploration activities. We describe the two different meth-
ods, compare, and contrast their results, and discuss the advantages,
disadvantages, and applicability of each method and the implica-
tions for the future of microseismic location studies.

DATA AND VELOCITY MODEL

The earthquakes discussed in this study (~200) comprise a subset
of events recorded in the region shown in Figure 1, which hosts
ongoing seismic monitoring operations. They occurred over the
course of 17 days during the year 2012 and have magnitudes rang-
ing from O to 1.7. Only one of the events (the eastern most event in
Figure 1 with M = 1.6) was reported by the Oklahoma Geological
Survey (OGS). However, the largest magnitude event occurring in
the box in Figure 1 has a magnitude of 1.7, which was not reported
by the OGS. In fact, none of the events shown in the box in Figure 1
were reportedly felt nor were they recorded by any monitoring
agencies despite many similar magnitude events having been re-
corded elsewhere in the state by the OGS.

We recorded these events using 15 3C broadband seismometers
deployed in three lines (Figure 1). Two types of instruments were
used, both of which have approximately flat transfer functions in the
frequency band of interest (120 s to 50 Hz and 40 s to 50 Hz).
To compute traveltimes, we used a fast-marching Eikonal solver
(Fomel and Alkhalifah, 2001) and a 3D P-wave velocity model
from a prestack time migration rms volume (after conversion to
interval velocity in depth), which covers the entire area. S-wave
traveltimes were computed using a constant Vp/Vg ratio of 1.73.
No station corrections were computed or applied.
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PICK-BASED METHODS

The general work flow for automated pick-based SEL methods is
as follows: (1) an event is detected when the short-term average to
long-term average ratio (STA/LTA) exceeds a specified threshold on
a subset of stations within a specified time window, (2) an automatic
picking algorithm is applied to a window around the detection to
improve the STA/LTA onset times, and (3) the difference between
the observed and predicted traveltimes (computed using the time
picks and available earth model) is minimized to find a preliminary
best-fitting location and origin time. Although automated picking
algorithms have improved significantly lately (e.g., Nippress et al.,
2010), the accuracy and precision of automated picks remains rela-
tively low. Therefore, the automatic picks are usually reviewed and
improved a posteriori by a human analyst and the hypocenter is re-
computed. For our data, we have implemented this procedure using
the algorithm of Oye and Roth (2003). To improve upon these auto-
mated solutions, we have invested considerable effort manually re-
viewing and improving all the picks used in this study. The locations
computed using this approach have a final residual rms of 0.50 s.

To improve the precision of the resulting locations, we next ap-
plied an MEL technique to relocate the event catalog shown in Fig-
ure 1. Of the established MEL algorithms in use today, the double-
difference (DD) algorithm hypoDD (Waldhauser and Ellsworth,
2000; Waldhauser, 2001) is perhaps the most popular. The DD
method minimizes the difference between observed and predicted
traveltime differences (i.e., differential or DD times) for pairs of
events observed at common stations. This effectively minimizes er-
rors due to unmodeled velocity structure outside the source regions
in which the travel paths are highly similar, providing more precise
relative event locations. Differential data can be
computed directly from the existing picks and/or
by using WCC methods (Waldhauser, 2001). In
this study, we use catalog-based and WCC-based

location algorithm, which we name EMMA (efficient multi-
component migration algorithm). The method is based on those
of other workers (Kao and Shan, 2004; Gharti et al., 2010; Liao
et al., 2012; Grigoli et al., 2013) and is designed for real-time ac-
quisition, detection, and location of microearthquakes in areas host-
ing exploration and mining activities. However, the focus of this
study is to present the comparison of results obtained by pick-
and stack-based methods rather than to present the details of another
partial stacking method. Therefore, interested readers are referred to
Appendix A for a description of EMMA and to the included refer-
ences. The results of applying EMMA to the same events located
using pick-based methods are shown in Figure 2c.

UNCERTAINTY ESTIMATES

Automated pick-based SEL methods commonly used for real-
time monitoring (e.g., Oye and Roth, 2003; Buland et al., 2009;
Olivieri and Clinton, 2012) provide formal uncertainty estimates
for each event by applying standard error formulas based on the
precision of the pick data. Such methods for estimating uncertainty
are not as easily implemented for large MEL problems and are not
applicable to stack-based optimization methods. Instead, we have
conducted two commonly used statistical resampling tests, namely
the jackknife and the bootstrap (e.g., Efron, 1982; Waldhauser and
Ellsworth, 2000; Pesicek et al., 2010; Grigoli et al., 2013), which
we have implemented for the DD method and our partial stacking
method. For the jackknife test, we recomputed the location for each
event N times, where N is the total number of stations used in the
preferred location. For the nth location, we removed data from the
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Figure 2. (a) Microearthquake locations using a traditional SEL method, (b) relocations
of the SEL events using DD and WCC methods, and (c) locations produced using our
migration-stacking method. Refer to Figure 1 for additional details.
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nth station and recomputed the location. We then used these relo-
cations from the data subsamples to estimate data covariance ma-
trices and confidence regions (e.g., Aster et al., 2013) for both the
location catalogs (Figure 3). The mean and standard deviations for
the data subsample solutions are listed in Table 1.

Not surprisingly, the jackknife results confirm for both methods
that the locations are better constrained in epicenter than focal
depth. The results also reveal that the epicentral confidence ellipse
for the EMMA solutions is elongated in the same direction (north-
east—southwest) as the real locations (Figure 2¢). Although there are
multiple faults in the region that also trend northeast—southwest, this
pattern might suggest that some of the elongation of the real loca-
tions is artificial and might be due to the network geometry. The
same pattern is not apparent in the DD jackknife results, however,
perhaps because it is obscured by the larger deviations obtained
with this method.

The results in Figure 3 provide insight into the behavior of the
two methods with respect to station geometry and data quantity. It is
clear from the results that the DD locations are more sensitive to
missing stations than the EMMA locations. This effect can be
understood by the differing nature of the two methods and the reli-
ance of the DD method on pick data. For microearthquakes, reliable
picks are harder to obtain on noisy stations. However, waveform data
from these noisy stations are still used by EMMA and directly con-
tribute to maximizing the energy stack. The result is that pick-based
methods generally have fewer stations contributing to the solution,
making each observation more critical and increasing the negative
effects of removing any one station. Said another way, the jackknife
simulations more negatively impact the pick-based solutions by ex-
cluding a larger percentage of the original data. The result is that there
are more observations used by EMMA, providing improved stability
of the solutions with respect to station geometry.

For the same reason, this test may also be illustrating the differing
effects of data and/or model errors between the two methods. Re-
moving an observation during the jackknife test reduces the number
of constraints on the solution, effectively upweighting outliers. In

Pesicek et al.

pick-based methods, large outliers can result from erroneous picks
or from forwarding modeling bias due to systematic velocity model
errors. The least-squares solutions assume Gaussian data distribu-
tions, but it is well known that traveltime residuals are typically not
Gaussian, due to such outliers (e.g., Buland, 1986). The result is that
the pick-based least-squares solutions can be significantly influ-
enced by these outliers (e.g., Aster et al., 2013), and we observe
outlier residuals up to 3.16 s. These issues manifest differently
in stack-based methods and may partly explain the disparity in
the jackknife results. Removing a station during stacking will
change the strength of the stack maximum but is less likely to
change its location. Similarly, large systematic velocity model er-
rors that may not be accounted for in the EMMA stacking window
(0.1 s; see Appendix A) will serve to reduce the stack strength. In
these cases, such errors contribute more to event detectability rather
than location uncertainty. Detectability (see also “Discussion” sec-
tion) is a separate issue that has not influenced our jackknife results
because we have limited our analysis to easily identifiable events
whose stack maximum is well above our chosen detection thresh-
old. In this regard, the pick-based jackknife uncertainty estimates
are more affected by model errors than the stack-based estimates.

The jackknife test has been applied in essentially the same way to
both the location techniques, providing a direct comparison of the
sensitivity of the techniques with variations in data distribution.
However, the inherent differences in the location methods have
the effect that the two methods are affected unequally, as discussed
above. To provide an alternative independent estimate of uncer-
tainty, we have also conducted a bootstrap analysis, designed to as-
sess the effects of noise in the data for both the methods in a more
equitable manner. For pick-based methods, noise is often added
based on the data misfit of the preferred location (e.g., Shearer,
1997; Waldhauser and Ellsworth, 2000). However, no misfit cri-
terion is used in stack-based methods. Furthermore, data noise is
a function of time for pick-based methods but is a function of am-
plitude for stack-based methods, complicating the comparison.
Nevertheless, assessing the effects of noise in the data may provide
valuable insight into the quality of the locations
for each method. To simulate the effects of noise
on the pick-based DD catalog, we added noise to

the traveltimes from a random Gaussian distribu-
tion with standard deviation equal to 0.02 s,
which is representative for our data. We recom-
puted the locations 100 times, each time drawing
noise from the random distribution and again
used the results to estimate location uncertainty.

To assess the effects of noise on our stacking
method, we computed the average noise level
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of all the traces prior to the event and added it
to the amplitudes of the traces containing the
event. We repeated this process 100 times to ob-
tain 100 independent location estimates.

Figure 4 and Table 1 show the results of the
'.":-'_ bootstrap tests. The two methods are generally
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0 500 affected similarly by noise in the data. The con-
fidence regions are larger for the EMMA results
than the DD results, but this difference is rela-

Figure 3. Results of the jackknife uncertainty analyses. Panel (a) shows results of the
analyses applied to the DD relocation results, and panel (b) shows the results using our
migration stacking method. The 95% and 80% error ellipses are determined using
3000 trials (1 trial for each of 15 stationsx approximately 200 events).

tively small. Interestingly, even though the DD
confidence regions are smaller than those of
EMMA, the mean deviations (Table 1) are



Downloaded 11/19/14 to 67.135.67.2. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Picking versus stacking for microseismic

slightly larger. This point illustrates the effect of the trial solution
outliers (not shown in Figure 4), which are larger for EMMA. These
outlier solutions are likely illustrating the rare cases in which the
addition of noise produces a new global maximum in a different
location rather than slightly altering the location of the preferred
maximum. In general, the bootstrap tests illustrate the similar sen-
sitivity of both the methods to the presence of random data noise.

DISCUSSION

Precision and accuracy of earthquake locations depends on many
factors, including station geometry, velocity model errors, and data
noise. In this study, we have applied two different methodologies to
the same real data set with the goal of comparing and validating
each method’s results and estimating each event’s location uncer-
tainty. As is true for all real earthquakes, location error remains un-
known and we are limited to only assessing location uncertainty due
to data noise, which we can accurately estimate. We cannot accu-
rately assess location errors, such as those due to velocity model
error and array geometry because such effects cannot be known
for these events. Furthermore, we have not considered uncertainty
associated with event detectability and false pos-
itives (e.g., Thornton and Eisner, 2011); we have
only discussed high-quality events that are easily
identifiable to the analyst and far above our
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based methods, significant additional effort is required to achieve
the higher level of precision obtained by the use of MEL and
WCC methods. These methods are always applied as postprocess-
ing after the initial efforts to obtain the picks and preliminary lo-
cations using an SEL method. This postprocessing usually
involves considerable additional human and computational effort
to test and optimize the many parameters involved. Although
MEL methods can potentially be applied rapidly following an event
(“near real-time”’; Waldhauser, 2009) in some cases, such applica-
tions are inherently limited to regions in which large archives of
historical seismicity are already available for rapid correlation
and comparison to new events. In areas of new scientific or indus-
trial exploration, no such data exist. Thus, in many cases in which
rapid and precise hypocenters are required beneath a local array, a
partial stacking method such as EMMA can outperform other
methods.

Unfortunately, the benefits of the higher degree of automation of
stacking methods can have drawbacks in some circumstances. In
our comparison, we have used the same 3D velocity model for both
the location methods and have so far neglected any discussion of the
effects of unmodeled velocity heterogeneity. For stacking methods,

Table 1. Results of uncertainty tests: Mean and standard deviations of the trial
locations from the preferred locations.

detection thresholds. In this regard, the uncer-
tainties discussed in this study only inform us
about real event precision and they provide no

Jackknife Bootstrap

information about event accuracy. Although be-

Direction

X(m) Y@m Z@m X@m) Y (@m Z(@m)

yond the scope of this work, many studies have
investigated such effects in various ways with
either synthetic data or explosions with known =~ EMMA
locations, for pick- (e.g., Michelini and Lomax, DD

2004; Lin and Shearer, 2005; Bondar and EMMA
McLaughlin, 2009) and stack-based methods

DD Mean

106 93 122 40 32 84
25 20 57 24 27 90

Standard deviation 193 217 279 125 85 234

83 68 161 79 165 271

(e.g., Kao and Shan, 2004; Gharti et al., 2010;
Liao et al., 2012; Grigoli et al., 2013).

Despite these limitations, the comparison be-
tween location results that we have presented il-

1=
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lustrates the capability of pick- and stack-based
methods to precisely determine microearthquake
locations (Figure 2) using a local surface seismic
array (Figure 1). Our partial stacking method and
the DD method reveal similar spatiotemporal
structure in the locations that is not visible in
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(Figure 2). However, there are significant b)
differences inherent in the two approaches that
warrant further discussion. First, assuming for
a moment that the design of our network is ideal
for locating earthquakes and that our velocity
model is perfect, the most important difference
between the two methods is the difference in
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the amount of human effort invested to obtain ~500
the data that are required for each algorithm.
For our automated stacking algorithm, only min-
imal automated processing of the raw trace data
is performed — no analyst grooming of the
data is required. Although automated earthquake
locations are routinely computed using pick-
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Figure 4. Results of the bootstrap uncertainty analyses. (a) Shows results of the analyses
applied to the DD relocation results, and (b) shows the results using our migration stack-
ing method. The 95% and 80% error ellipses are determined using approximately
20,000 trials (100 trials x approximately 200 events). See the text and Table 1 for addi-
tional details of the tests.
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the reference velocity model is generally obtained independently of
the seismic data used for location purposes, as we have done using
a priori information. In contrast, for pick-based methods, the veloc-
ity model is often constructed and/or improved using the picks from
the acquired data. In cases without sufficient preexisting velocity
information, generating picks may be unavoidable. Furthermore,
the accuracy of the velocity model is more critical for stacking
methods than picking methods. Inaccurate traveltime prediction
will negatively impact both location methods, but pick-based meth-
ods will always produce a best-fitting location for each event. In
contrast, inaccurate traveltime prediction can prevent localization
for stack-based methods altogether by inhibiting focusing of the
stacked energy to a single clear, preferred solution.

In addition to the availability of accurate velocity information,
another factor that will influence the choice of location method
is the size of the search volume and the density of stations. For
stack-based methods, increasing the area being monitored and/or
the station density comes at the expense of increased computational
burden. Although this is also true for automated pick-based SEL
methods, the effect is much greater for stack-based optimization
methods, due to the additional scanning in space and time required
by larger aperture arrays. At some scale, the computational burden
may become too great and pick-based methods may be preferred. In
any case, future advances in computer power will surely facilitate
expanded applicability of stack-based methods.

Another important difference between pick- and stack-based
methodologies is their approach to event detection. In this paper,
we have limited our analysis to events that were easily detected
by both the methodologies, in an effort to make appropriate and
direct comparisons of the location results from both methods. Thus,
we focused on a very limited subset of the catalog of events re-
corded in the area. Here, we note that EMMA was able to detect
and locate roughly twice as many events over the study period com-
pared with the pick-based approach (see also Bardainne et al., 2009).
Similar to the jackknife results, this can be attributed to the beneficial
inclusion of noisier data and the power of stacking to increase S/N.
However, this uplift in detectability depends on the accuracy of the
velocity model, as previously discussed. In addition, detected events
with lower S/N lie closer to the detection threshold, often have re-
duced precision, and require additional consideration to avoid false
positives (e.g., Thornton and Eisner, 2011). Nonetheless, in our
study area (Figure 1), the stack-based method (EMMA) proved
faster, less user intensive, and detected many more events for the
same time period. The final EMMA catalog for the entire data
set is providing significantly more information for interpretation.

Finally, the two classes of location methods do not have to be
viewed as completely independent. Liao et al. (2012) state that their
stacking method is not designed as a replacement for pick-based
MEL methods. Instead, they suggest a complementary role in
which their method serves as an alternative or replacement for
the detection and SEL steps prior to application of more precise
MEL methods. Alternatively, Rentsch et al. (2007) require prelimi-
nary automated picks for appropriate time windowing, but then ap-
ply a stack-based method for location. More recently, Drew et al.
(2013) develop another hybrid approach. Clearly, there is opportu-
nity for synergy between these two disparate methods. For our data,
the EMMA algorithm achieved essentially equivalent results to the
DD method but with much less human interaction. Thus, we have
shown that stacking methods can in some cases serve as full

replacements for SEL and MEL methods. However, even in such cases,
the use of both methods in concert with one another is beneficial. By
applying both methods with similar results, we have achieved greater
confidence in the results of each. This type of approach may help mit-
igate potential problems inherent in either methods. For example, it
has been shown that MEL methods can produce spurious results in
some circumstances (Michelini and Lomax, 2004). Presumably, this
is true for migration methods as well, but due to their relative novelty,
less is known about their limitations. Thus, a strategy employing both
methods may be preferred, leaving little doubt in the results when
agreement is achieved (Figure 2) or leading to better understanding
of the shortcomings of the methods and/or the data when it is not.

CONCLUSIONS

We have conducted a direct comparison of microearthquake lo-
cations obtained using a pick-based MEL method and a partial
stacking method from surface seismic data recorded at a site in
Oklahoma hosting ongoing exploration activities. We find excellent
agreement between the results and show that both methods reveal
spatiotemporal structures in the locations that were not visible in the
results obtained using a traditional SEL method. We have assessed
location uncertainty due to station geometry and find the results of
the stack-based method to be more stable, due in part to the different
handling of outliers and to the additional constraints provided by
noisy stations for which reliable picks cannot be obtained. We also
assessed uncertainty due to data noise and find that both methods
are affected similarly. We conclude that these methods provide sim-
ilar results for the interpreter. However, we argue that for small aper-
ture local surface arrays with detailed 3D velocity information
available, such as in this application, stack-based methods are pref-
erable to pick-based methods due to their comparable precision but
higher automation, better facilitating rapid high-quality results for
interpretation.
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APPENDIX A

EFFICIENT MULTICOMPONENT MIGRATION
ALGORITHM

We have developed an efficient multicomponent migration algo-
rithm (EMMA). The method is designed for real-time acquisition,
detection, and location of microseismicity in areas hosting explo-
ration and mining activities. Following Kao and Shan (2004),
we refer to our objective function as the “brightness” function
and define it for a particular origin time 7 and location r as

N
b(r.t) = up(t+t,,), (A-1)

n=1

where N is the number of recording stations, u,, is the seismogram
recorded at station 7, and ¢, , is the predicted traveltime of a given
seismic phase from the assumed source location r to station n. We
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band-pass and normalize u,, and use the envelope to compensate for
the radiation pattern (Gharti et al., 2010), and refer to the resulting
seismogram as i,. To compensate for errors in the predicted travel-
times, equation A-1 is modified to incorporate contributions within a
time window of size 2M centered on the predicted traveltime

N M
b(r.,7) = Z{ > Wman(r+t,,n+m5t)}, (A-2)

n=1 \m=—M

where 6tisthe sampling rate and W, is the weighting factor (between 0
and 1) for sample m that depends on the distance from the predicted
arrival time in the center of the window. To include P and S arrivals and
assuming that P and S energies are confined to the vertical and hori-
zontal components, respectively, we modify equation A-3 as

N ¢ M
b(r,7) = Z{ Z W, wziZ(t + £, + mét)

n=1 \m=—-M

+WYu ( +trn+m6t)

+wyitX (t + 15 —|—m5t)}}, (A-3)

where 7 > are now the predicted traveltimes for the P- and S-waves,
respectively and &' and Wy y z are the preprocessed seismograms
and weights for the east, north, and vertical components. We use equa-
tion A-3 for event detection and location. For detection, we decimate
the seismic data and then search for and save the location correspond-
ing to the maximum brightness for every sample. For each minute, we
thencompute the STA and LTA of the brightness function and detectan
event when the STA/LTA ratio exceeds a chosen threshold. If an event
isdetected, the process is repeated on the undecimated data around the
preliminary location to determine the final hypocenter. To make the
algorithm fast enough for real-time monitoring, we forego the brute
force full-grid search and instead use a global optimization algorithm
called the covariance matrix adaptation evolution strategy (Hansen
et al., 2003).
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