
Kubernetes and Logging:
Taming the Complexity

MEZMO EBOOK

Log management for Kubernetes doesn’t have to be painful. Instead of learning a totally new set of
methods and tools, you can adapt and extend your existing log management strategy to fit Kubernetes.

2 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

Introduction
Chapter 1: Kubernetes Logging Essentials

Native Kubernetes Logging and Monitoring Features	
Using Kubectl to Access the “Logs” of Each Kubernetes Pod	
Log Data Stored on Kubernetes Nodes
When Kubernetes’s Native Logging and Monitoring Features Are Useful

Missing Logging and Monitoring Features in Kubernetes
Log Rotation
Log Aggregation and Centralization
Log Analysis
Scalable Logging
Access Historical Monitoring Data

Chapter Conclusion: Filling In Kubernetes’s Logging and Monitoring Gaps
Chapter 2: How to Evolve Your Existing Logging Strategy for Kubernetes

How Kubernetes Logging Is Different	
Managing Kubernetes Logs Efficiently

Don’t Use Kubectl to Manage Logs
Don’t Settle for Stdout and Stderr
Standardize Logs
Simplify Kubernetes Log Agent Deployment

Chapter Summary
Chapter 3: Enhancing the DevOps Experience on Kubernetes with Logging

The Need for Insight
Logs Are the Answer—And the Problem
Log Management
Mezmo
Mezmo and DevOps

Log Data for Developers
QA and Logging
Operations-Level Logging
Logs and Security

Chapter Summary: Logs as a Resource
Conclusion	

TABLE OF CONTENTS

3
4
4
4
4
4
5
5
5
6
6
6
6
7
7
9
9
9
9

10
10
11
11
11
12
12
12
12
13
13
13
13
14

3 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

We’ll admit it: Even though we here at Mezmo are all about logging, we know that log
management and analytics are not on the top of most IT professionals’ lists of fun tasks. For
most teams, log management is just something you have to do, not something you look
forward to doing.

That doesn’t mean log management has to be a pain, though. With the right techniques and
technology, you can make logging less of a chore and more of a streamlined part of your
workflow. What’s more, when done properly, log management makes other parts of your job
easier by helping you to work more efficiently with the rest of your technology stack.

To prove these points and provide some real-world context on what effective log
management looks like for a modern team, this eBook offers guidance on logging for
Kubernetes. It begins with an overview of Kubernetes logging basics, then explains how and
why to build a log management strategy tailored to Kubernetes.

As we’ll see, even though Kubernetes is a fundamentally new type of technology for most IT
pros today, log management for Kubernetes doesn’t have to be painful. Instead of learning a
totally new set of methods and tools, you can adapt and extend your existing log management
strategy to fit Kubernetes. In doing so, you’ll gain critical visibility into your Kubernetes
clusters, making the monumental task of Kubernetes administration much easier.

INTRODUCTION

4 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

CHAPTER 1: KUBERNETES
LOGGING ESSENTIALS

Kubernetes is a container orchestration tool, but its
functionality extends far beyond just orchestrating
containers in a narrow sense. It offers a range of
additional features that—to a limited extent—
address needs such as load balancing, access
control, security policy enforcement, and even
logging and monitoring. Indeed, Kubernetes’s broad
functionality has led some folks to call it an
“operating system” in its own right.

That said, many of the extra features that
Kubernetes provides are not full-fledged solutions.
On the security front, for example, Kubernetes
provides some tools to prevent abuse. Still, it ’s
hardly a sufficient solution on its own to address
every security aspect of a given workload. For
load-balancing, Kubernetes manages the way traffic
is distributed to workloads within a cluster, but it ’s
not as if it will load-balance your entire network.

The same type of limitation applies to Kubernetes’s
logging and monitoring features: While Kubernetes
offers some basic logging and monitoring facilities,
it ’s a far cry from a complete logging and monitoring
solution.

Because of these limitations, understanding what
Kubernetes can do natively, and when it requires
help from external tools to address a particular
need, is critical for deploying Kubernetes
successfully.

With that reality in mind, let’s take a look at
Kubernetes’s built-in logging and monitoring

functionality and what’s missing out-of-the-box on
the logging and monitoring front in Kubernetes.

Native Kubernetes Logging and
Monitoring Features
The built-in monitoring and logging tooling in
Kubernetes is basic but effective for certain types
of needs. Essentially, it boils down to two types of
functionality: log access and log storage.

Using Kubectl to Access the “Logs”
of Each Kubernetes Pod

Using a command like kubectl logs [pod name]
-c [container name], you can read the “logs” of
every container running within a Kubernetes cluster.

The caveat here (and the reason “logs” is in scare
quotes) is that the “logs” you can access this way are
not actually log files in the traditional sense, but
rather the stdout and stderr messages generated by
containers as they run. Kubernetes collects this
data and stores it in a file that you can access with
kubectl.

Log Data Stored on Kubernetes Nodes

Kubernetes also logs data from various components
of Kubernetes itself to files that you can access by
logging into Kubernetes nodes directly.

Specifically, the Kubernetes master node (or nodes,
if you have multiple masters) offers log data at /var/
log/kube-apiserver.log, /var/log/kube-scheduler.
log, and /var/log/kube-controller-manager.log, and
each worker node has /var/log/kubelet.log and /var/
log/kube-proxy.log files.

https://www.itproportal.com/features/kubernetes-as-a-cloud-native-operating-system/
https://www.itproportal.com/features/kubernetes-as-a-cloud-native-operating-system/

5 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

When Kubernetes’s Native Logging
and Monitoring Features Are Useful

The two types of logging facilities described above
come in handy if you need to check information
quickly or research a one-time event that occurred
within your Kubernetes cluster. They’re kind of akin
to the information you could get by running dmesg
| tail in a Bash shell on a Linux server, in that
they are a quick and easy way of accessing small
amounts of information, especially if you already
know what kind of information you are looking for.

Missing Logging and Monitoring
Features in Kubernetes
When it comes to more complex logging and
monitoring needs, however, Kubernetes alone
doesn’t cut it. Kubernetes lacks native features for
the following critical tasks:

Log Rotation

Although Kubernetes creates logs for each
container and for Kubernetes itself, it doesn’t
automatically rotate or archive this data. On the
contrary, it expects you to handle log rotation, and if
you don’t, you risk having your log files eat up all of
the storage space on your nodes.

“The built-in tooling in Kubernetes is basic for certain types
of needs. It boils down to two types of functionality: log
access and log storage.”

(For the record, we should point out that most
Kubernetes distributions do set up log rotation
facilities for you when you install them. However,
Kubernetes itself doesn’t handle log rotation, and if
your distribution doesn’t provide a solution for this
task automatically, you need to implement one
manually.)

Log Aggregation and Centralization

Likewise, Kubernetes doesn’t offer any tools for
aggregating log data in a single location or merging
similar types of logs together. It lets you view logs
for containers and nodes on an individual, one-off
basis, which is useful if you need to pull some quick
information about a particular container or node.

But, what if you want to monitor all of your
containers at once, or trace monitoring data related
to a particular event across multiple containers or
nodes? The only way to do that natively in
Kubernetes would be to access each log manually,
which is not practical to do at scale.

6 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

Log Analysis

Kubernetes will show you log data, but it does nothing
to help you read or interpret it.
It doesn’t offer visualization features, or even alerts
or notifications about monitoring events that
could signal a problem.

Scalable Logging

In most Kubernetes distributions, the container logs
available from kubectl are limited to a mere 10
megabytes in size. Kubernetes automatically deletes
older data if the logs exceed this limit.

This may not be much of an issue if you only have a
few containers running and generating log data.
But if you have dozens, your log file won’t be of much
use because it won’t be large enough to
accommodate all of your containers.

Access Historical Monitoring Data

For similar reasons, accessing log data through
kubectl is not very helpful if you need to access
information about a historical event. Kubernetes may
have deleted that data in order to keep the
log file under 10 megabytes.

Chapter Conclusion:
Filling In Kubernetes Logging
and Monitoring Gaps
In short, Kubernetes offers enough built-in logging
and monitoring functionality to allow you to monitor
workloads on a small scale or research one-off events
that occurred in the recent past.

However, Kubernetes on its own falls far short of
offering a full-fledged logging and monitoring
solution. To fill the gaps, you need to pair Kubernetes
with external tools that can handle log rotation and
aggregation, store historical log data over the long
term, and provide you with the analytics features you
need to achieve true monitoring visibility.

There are different ways to implement this, with the
most common being to run a “sidecar” container in
each pod that interfaces between the pod and an
external log manager. Setting up this type of solution
requires a little extra work. No matter how you ensure
you gather data for all of your stack to fill the gaps
that Kuberentes has, it’s critical to do so if you want to
be able to monitor and provide logging for your
Kubernetes workloads at scale.

1

2

7 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

CHAPTER 2: HOW TO EVOLVE
YOUR EXISTING LOGGING
STRATEGY FOR KUBERNETES

It’s one thing to build a Kubernetes log management strategy
that only needs to support Kubernetes. But most organizations
don’t have that luxury. They have log management practices
already in place for other types of platforms or infrastructure,
and they need to extend them to support Kubernetes.

How can you do that in an efficient way? Keep reading for tips
on integrating Kubernetes logging data into your existing log
management workflow without rebuilding from the ground up.

How Kubernetes Logging Is Different
The first step in devising a strategy for supporting Kubernetes
through your existing logging workflow is to understand how
Kubernetes log data is similar to and different from
conventional logs.

Like any other type of modern software platform, Kubernetes
creates logs. Specifically, it creates two main types of logs:

Logs of stdout and stderr messages for each running
container. These can help you monitor applications
hosted on Kubernetes.

Logs for the main Kubernetes services (like the API
server and Kubelet), which are useful for monitoring
Kubernetes itself and the nodes that host it.

These logs are not fundamentally different in type or scope from
the logs you already manage for other parts of your
infrastructure, such as logs for non-containerized applications
and conventional operating systems.

2

3

4

1

8 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

That said, the way Kubernetes approaches logs is different in several key respects:

Lack of centralization: Kubernetes doesn’t attempt to centralize logs for you or
even centralize all log data in the same logfile. Monitoring information is spread
across multiple files on Kubernetes master and worker nodes.

Log access: Kubernetes expects you to access application logs using the kubectl
utility. Because of this, unlike on a conventional operating system, you can’t use
conventional text-manipulation tools (like grep and awk) to interact with
Kubernetes log data unless you access the logs from outside the Kubernetes
interface.

Log rotation: By default, most Kubernetes distributions delete old data in
application logs once the size of the log file exceeds 10 megabytes, which is
really not a lot if you have lots of applications and therefore lots of log data.
Thus, you can’t count on Kubernetes itself to keep your log data around as long
as you need it; you must devise your own strategy for exporting the logs and
rotating them in a way that aligns with your needs.

Log structure: Unlike, say, a Linux server, Kubernetes doesn’t care about trying
to keep your log data formatted or structured in a neat and consistent way, at
least when it comes to application logs. It just records whatever your containers
dump to stdout or stderr. Whether that data is standardized and easy to work
with depends on the way your containers are configured, not
the way Kubernetes collects data from them.

Each of these differences introduces challenges for integrating Kubernetes into
existing logging workflows.

“The first step in devising a strategy for supporting
Kubernetes through your existing logging workflow is to
understand how Kubernetes log data is similar to and
different from conventional logs.”

9 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

Managing Kubernetes Logs Efficiently
Fortunately, those challenges can be solved. The following are some tips for managing Kubernetes log data
effectively using your existing log management strategy without the need to run a separate log manager just for
Kubernetes.

Don’t Use Kubectl to Manage Logs

Although kubectl lets you view log data, you shouldn’t treat it as your main log management tool. Think of it
instead as a quick way to grab recent monitoring data for an individual application, just as you would with a
command like head or tail on Linux.

When you need a more insightful and comprehensive way to analyze log data from all of the applications that
you have running in Kubernetes, you’ll need to connect log data to a third-party analytics and visualization tool.

Don’t Settle for Stdout and Stderr

Another reason not to depend on kubectl as the foundation of Kubernetes log analytics is that the log data you can
access through kubectl is limited, as noted above, to stdout and stderr. Sometimes, you may run an application
that has no stdout and stderr for whatever reason. Maybe it was designed to expose monitoring data in another
way, in which case Kubernetes won’t capture it. Or maybe the application is not configured to be verbose enough
to generate meaningful messages to stdout or stderr.

One common approach that lets you avoid these limitations is to run a logging agent. You can deploy an agent as
a node-level system, with a DaemonSet, or as a sidecar container (or containers). The agent collects log data
from the application in whichever form the application exposes it. This strategy not only allows you potentially
to collect more logging data but also makes it easy to run the same logging agent inside your Kubernetes
cluster that you use for the rest of your environment.

Standardize Logs

Because Kubernetes itself doesn’t attempt to structure log data in a consistent way, you can end up with a
mess if you attempt to analyze logs from a Kubernetes environment alongside logs from other systems without
tools that can interpret the Kubernetes logs effectively.

That’s why standardizing your Kubernetes logs is so critical. You can do this by exporting log data to a log
manager that supports all common logging formats and then querying logs from the log manager. This is much
more efficient than attempting to use kubectl to interact with log data that may not be structured consistently.

10 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

Simplify Kubernetes Log Agent Deployment

Reading the above, you might be thinking that an enormous amount of manual effort is required to set up a log
management solution for Kubernetes that also works for other types of systems. And it is, if you attempt to create
logging sidecars yourself to host a logging agent system or run a node-level agent.

It’s much easier if you use a solution like Mezmo that offers prebuilt Kubernetes agents that you can deploy with a
few simple commands instead of sidecars. This way, you can easily use the same log management tooling and
workflow for Kubernetes that you use for other parts of your stack.

Chapter Summary
Kubernetes is complicated enough without having to develop a bespoke log management strategy for it. To help
reduce your Kubernetes management overhead, adopt log management tools and strategies that are based on
those you already have in place, instead of ones that require you to develop a separate logging operation just
for Kubernetes.

https://docs.mezmo.com/docs/logdna-agent-v2-for-kubernetes

11 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

CHAPTER 3: ENHANCING THE
DEVOPS EXPERIENCE ON
KUBERNETES WITH LOGGING

Although setting up an effective log management solution for Kubernetes requires some effort, your
investment of labor will be repaid many times through the visibility that you gain—an especially critical asset in
the context of Kubernetes, which in some respects introduces an unprecedented level of complexity to
software stacks. Log-driven visibility is critical for taming that complexity.

Indeed, keeping track of what’s going on in Kubernetes isn’t easy. It’s an environment where things move
quickly, individual containers come and go, and a large number of independent processes involving separate
users may all be happening at the same time. Container-based systems are by their nature optimized for rapid,
efficient response to a heavy load of requests from multiple users in a highly abstracted environment and not
for high-visibility, real-time monitoring.

The Need for Insight
However, the fact remains that you need to know what’s happening inside your Kubernetes clusters; the cost of
not knowing is simply too high. You need to be able to track bugs, to identify bottlenecks and other performance
issues, and to detect security problems—and you may need to do these things in at least close-to-real time. So
how can you gain the necessary insight into your Kubernetes system?

Logs Are the Answer—And the Problem
If you search around, you may see a lot of answers to that question, but the truth is that they pretty much all
come down to this: Look at the logs. Logs are the number one resource for staying on
top of application development and deployment, and that is as true for Kubernetes as it is for any other
platform.

But all too often, logs themselves aren’t that easy to find, let alone manage or read. Kubernetes container logs
last only as long as the pod itself, and every platform, tool, and application has its own logging system. How do
you organize and keep track of them all? And, when you find them and read them, how do you pick your way
through the contents when each log may have its own syntax and method of organization, and any or all of them
may be excessively verbose, or cryptic, or both?

12 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

Log Management
To make effective use of the logs that are available,
you need to automate the process of finding log
data, then gathering and processing that data,
presenting it in clearly understandable formats, and
turning high-priority items into alerts or other calls
to action. You need a comprehensive, powerful tool
to handle the complex and demanding tasks required
for truly useful log management.

Mezmo
That’s where Mezmo comes in. Mezmo does the
heavy lifting when it comes to managing logs and log
data. It can pull in log data from an extraordinarily
wide variety of sources (including Docker, Heroku,
CloudFoundry, AWS, and IBM, plus those here-one-
millisecond-gone-the-next Kubernetes container
logs), as well as parse, manage, and organize the
data; display log contents along with metrics in a
visual format; archive and export log data; and
generate alerts via your favorite alerting system.

Mezmo and DevOps
What can Mezmo do for your DevOps team? We’ve
already seen that Mezmo provides access to a
wealth of log data, so this may be a better way to ask
the question: What can the information contained in
application, infrastructure, and platform logs do for
your team at key points in your DevOps delivery
chain? Let’s take a quick look:

Log Data for Developers

For developers, logging at the code-library level can
provide key insights into application behavior,
including cumulative effects, patterns of action over

13 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

in addition to providing generic email alerts and
webhooks. You can set up alerts based on the
number or frequency of specific log events, then use
the alert service’s features to notify the appropriate
team members based on the time, nature, and
severity of the alert.

Logs and Security

Security is no longer an option in DevOps—it’s a
necessity. Log aggregation, monitoring, and analysis
can and should play a key role in your security
operations. Platform and infrastructure-level
service provider logs are typically the best (and
often the only) way to track user access; to detect
unusual load patterns, anomalous behavior, and
suspicious incidents (such as repeated login errors);
and to trace the actions of intruders. Your alert-
system integration should include any security-
related events and enable quick security-team
access to all relevant log data.

Kubernetes Logs in Context

No matter who in your organization is using Mezmo,
our platform provides the most complete view of log
data from every source. With a centralized view of all
logs, users are able to view Kubernetes events
alongside application logs to gain holistic insights
into the health of their application. No need to
context switch and hunt down logs from various
sources, everything is available from one interface,
eliminating the need for any specialized knowledge
of Kubernetes.

Combined with features to help make data more
actionable, including automatic parsing and real-
time alerting, so everyone on your team feels
empowered with the log data they need to optimize
every stage of the development lifecycle.

time, and anomalous behavior that may not generate
an error. Mezmo includes official integrations with
Node.js, Python, Go, and Ruby among others, as well
as unofficial integrations with Java, and other major
languages and libraries.

Mezmo also makes it easy to monitor the
development process using GitHub event
integration. You can monitor team activities for
individual repositories including push, pull, commit,
fork, create, and comment events.

At the deployment end, operating system-specific
or platform-specific integrations can provide
additional insight into individual apps, as well as
allow you to monitor application interactions with
other apps and the deployment infrastructure.

QA and Logging

For quality assurance, application, platform,
and infrastructure logs can all provide important
information. For performance monitoring, for
example, log data from both the deployment and
host infrastructure can give you valuable insight
into time and resource use at the level of individual
containers and microservices; it can also help
you uncover resource-use conflicts and other
potential bottlenecks.

Operations-Level Logging

At the level of operations, you need quick, centralized
access to key log data items not only from your
deployment and hosting platforms but also from
infrastructure-related management and resource
services. Real-time and near real-time log monitoring
makes it possible to anticipate such things as shifting
load requirements over time and changing patterns of
user access, as well as to make the necessary
adjustments before they become a problem.
Mezmo integrates with most major alerting services

14 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

CONCLUSION

Chapter Summary: Logs as a Resource
What’s the bottom line? Maybe it’s this: Your application, service, and infrastructure logs are a valuable
resource, and if you don’t make good use of them, you are depriving your operation of important—and in
many ways vital—tools. Mezmo makes it easy to harness the full power of your system’s logs and put it to
work for your DevOps team.

You may be tempted to think of Kubernetes log management as a boring, tedious, and challenging task.
After all, the complexity of Kubernetes makes it more difficult to implement log collection and analysis
than it would be in other types of environments, and mastering the nuances of log centralization in
Kubernetes is not most people’ s idea of a fun way to spend the weekend.

But the reality is that Kubernetes log management doesn’t have to be difficult or complicated. Using
a log management solution like Mezmo, you can collect logs from all parts of your Kubernetes cluster,
regardless of which Kubernetes distribution you use or whether your clusters run in the cloud,
on-premises, or via a hybrid architecture. With Mezmo, three simple kubectl commands allow you to
deploy a logging agent that will give you total visibility into your cluster. From there, view Kubernetes
events in context with application logs, and easily set up alerts and views so teams understand the health
of their applications. Mezmo helps modern DevOps teams truly unlock the power of all of their logs,
including Kubernetes.

To learn more about how Mezmo simplifies Kubernetes log management,
sign up for our 14-day free trial.

https://www.mezmo.com/sign-up

15 K UBERNE T E S A ND LOGGING: TA MING T H E C OMP L E XI T Y

ABOUT MEZMO

Mezmo is a centralized log management solution that gives DevOps teams control of their data
and allows them to gain valuable insights from their logs.

Mezmo was brought to life by three-time co-founders Chris Nguyen and Lee Liu and included in
the Winter 2015 batch of Y Combinator. In 2018 Mezmo partnered with tech giant, IBM, to become
the sole logging provider for IBM Cloud.

This past year, the company was named to the Enterprise Tech 30 list, the Forbes Cloud 100
Rising Stars list, the Top 25 Enterprise Software Startups to Watch in 2020 list, and the CRN 10
Hottest Cloud Startups of 2020 list, and received the 2020 IBM Cloud Embed Excellence Award.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@Mezmo.com
support@Mezmo.com
press@Mezmo.com

mailto:outreach%40mezmo.com?subject=
mailto:support%40mezmo.com%20?subject=
mailto:press%40mezmo.com%20?subject=

