
Using LogDNA
to Troubleshoot

In Production

LOGDNA EBOOK

LogDNA gives users access to the information they
need to effectively troubleshoot in production.

logdna.com

INTRODUCTIONINTRODUCTION

Traditionally, logging was most commonly associated
with the post-deployment part of the software
development lifecycle, or SDLC. Logs typically served
first and foremost to help IT engineers find and
troubleshoot problems that arose in production.

Today, however, logging can help teams optimize
much more than just production-environment
application management. And indeed, logging needs
to be leveraged across all stages of the SDLC in order
to ensure the reliable, continuous delivery of software.
Developers, testing teams, and anyone else involved in
software delivery must make use of logs and log
analysis as one way to ensure the smooth flow of code
across the entire SDLC.

With that reality in mind, we’ve prepared this guide to
showcase practical approaches to log analytics at
different stages of the SDLC.

In our series of eBooks, you’ll find an explanation of
why logging across the SDLC is essential in modern
software delivery chains, as well as real-world
examples of how teams can use LogDNA to streamline
three distinct stages in the SDLC: Development, QA
and staging, and production troubleshooting. This
eBook is focused on production troubleshooting.

TABLE OF CONTENTS

Introduction		

Using LogDNA to Troubleshoot In Production
Detection and Recovery
The Complexity of Modern Systems

Networking Problems
Performance Issues

Why Centralized Log Management is Essential
Comprehensive Alerting
Root Cause Analysis

Conclusion

			 		

2		

4

5
5
5
6
6
7

8 		

4USING LOGD N A TO T R OUBL E SH OOT IN P R ODUC T ION

In 1946, a moth found its way to a relay of the Mark II
computer in the Computation Laboratory where Grace
Hopper was employed. Since that time, software
engineers and operations specialists have been plagued
by “bugs.” In the age of DevOps, we can catch many bugs
before they escape into a production environment. Still,
occasionally they do, and they can spawn all kinds of
unexpected problems when they do.

In addition to software bugs, today’s modern systems
encounter other problems as well. And these problems
collectively manifest as issues in production. Or, as some
might refer to them, the dreaded incident!

When an incident occurs, it’s not always readily apparent
why it happened or what caused it in the first place. This
chapter explores some of the different situations that
can result in a production incident, and we’ll investigate
how you can uncover these situations using LogDNA.
Troubleshooting a production incident shares many
similarities with how a medical professional might
approach a patient’s diagnosis. We look at the symptoms,
we run tests, and we reach a diagnosis by drawing on our
experience, the experience of others, and sometimes
even relying on the process of elimination.

Detection and Recovery

USING LOGDNA TO
TROUBLESHOOT IN PRODUCTION

5USING LOGD N A TO T R OUBL E SH OOT IN P R ODUC T ION

Production incidents have two distinct phases: detection
and recovery. Many teams track Mean Time To Detection
(MTTD) and Mean Time To Recovery/Resolution (MTTR)
metrics. MTTD is a measure of how long it takes for a
problem or incident to be identified and acknowledged by
the responsible team. MTTR then measures the amount
of time before the team can identify and rectify the
underlying cause.

This eBook is not about tracking metrics; however, it is
essential to measure and track their effect on our results
when we’re investigating and investing in new ideas and
tools. Metrics such as MTTD and MTTR provide visibility
into how effectively the organization manages the
incident process and how valuable different approaches
and toolsets are within that process.

The Complexity of Modern System

Modern computer systems have begun to rely on
microservice architectures, patterns for high-availability,
and public cloud offerings. We build highly scalable systems
that take advantage of ever-improving connectivity and
the availability of third-party infrastructure and services.
While the benefits are apparent, we find ourselves
managing increasingly complex systems. Let’s consider
the example of a web application that becomes
unresponsive.

Networking Problems

Between the user and our web application, there is a
complex web of connections running on private and public
infrastructure. Service outages and hardware failures can
easily affect a user’s ability to connect to our systems.

Even within our systems, network calls travel between
different instances and services. Our applications and

services may be running perfectly, but if the connections
between them are broken or experience performance
degradation, the system won’t work as expected.

Performance Issues

Performance issues can occur due to hardware
problems, constraints in frameworks and infrastructure
we rely on, or poor design within the code itself. As the
amount of traffic our applications handle increases,
many of these problems grow exponentially, resulting in
performance degradation or connection timeouts.

Why Centralized Log Management
is Essential
Logging has always been a central component of

understanding and troubleshooting applications. System
and application logs provide an essential window into
how data is processed and transferred, as well as the
infrastructure’s performance. Distributed systems
complicate log management because there are so many
different places where logs are created and stored.

Centralized log management solutions, like LogDNA, give

6USING LOGD N A TO T R OUBL E SH OOT IN P R ODUC T ION

you the ability to collect and aggregate all of your logs in
a central location. However, collection and aggregation
are just part of the solution. Search capabilities allow
you to find relevant logs to help troubleshoot production
problems and monitor the health of different parts of
your application. Many systems also include monitoring
and configurable alerts to automatically identify
problems and anomalies, and automatically alert support
personnel to address them.

Comprehensive Alerting

The most common types of alerts identify error conditions
within your application. More advanced systems like
LogDNA allow you to specify the type of error and its
frequency as part of the alert. In addition to error states,
you can also configure an alert based on the results of a
predefined query against your logs.

In addition to alerts based on the presence of an error
condition or log query, you can also configure alerts based
on the absence of certain types of logs. An example might
be an online commerce site that expects a minimal level of
transactions each hour. A lack of these transactions might
indicate an access problem within the application.

When used together, alerts for both the presence and
absence of different conditions relieve your engineers
of the responsibility to regularly review logs, and they
can focus on building new features or improving their
processes. You can learn more about alerting from the
LogDNA Alerts Overview.

Root Cause Analysis

Once your support teams have received an alert from the
log management system or a production incident has
occurred, teams need to shift into resolution mode. The
first step in the process is a root cause analysis. You can’t
resolve a problem until you have identified the reason it
occurred and each of the components involved.

Identifying a problem in a distributed system can be
incredibly challenging because you first need to identify
which service is causing the problem and which services
are affected by the situation. This investigation is where
the ability to search through an aggregated collection
of logs using request or transaction identifiers, time
constraints, and additional filters is invaluable. You can
learn more about how to search logs in the LogDNA Search
Documentation.

Once you’ve identified the problem and worked on a
solution, you’ll typically want to deploy the solution while
actively monitoring the logs. LogDNA’s Live Tail lets you
monitor logs as they are received from your application,
giving you real-time visibility into the new deployment
status and allowing you to validate its success or failure.
You can also use the log management system to aggregate
the logs and perform searches after time has passed.

https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/search
https://docs.logdna.com/docs/search

CONCLUSION

7USING LOGD N A TO T R OUBL E SH OOT IN P R ODUC T ION

In this eBook, we’ve shown how to leverage logs and
LogDNA for production troubleshooting. LogDNA can
help optimize other SDLC stages including development
and QA and staging, which are discussed in the other
eBooks in this series. No matter which stage of the
SDLC you help manage, or which challenges you face,
logs are one key resource to help you do your job better.
And in a world where teams are expected to deliver new
application releases multiple times per week, or even per
day, engineers need every insight and data point available
to them to keep the delivery pipeline flowing smoothly.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@logdna.com
support@logdna.com
press@logdna.com

mailto:outreach%40logdna.com%20?subject=
mailto:support%40logdna.com?subject=
mailto:press%40logdna.com?subject=

