Test Report

Bornea Dynamics Limited

Project Name	Nemesis Munitions Testing – 7.62 Load Testing					
Project ID	220008					
Test Name	7.62 Comparison Testing					
Test ID	220008- T1 & T2 & T3 & T4					
Test Date	T1 - September 17, 2022,					
	T2 - September 23, 2022					
	T3 - September 29, 2022					
	T4 – October 3, 2022					
Contract ID	BD-RDD-B-220008-1					
Release Date	October 11, 2022					
Technical Authority	Hayden Maass, Bornea Dynamics hayden.maass@bornea.ca					
Client	Jacob Salk, Next Dynamics Inc. jacob@nextdynamicscorp.com					
Testing Completed	The purpose of this experiment is to compare the performance of					
Summary	Next Dynamics Inc. novel 7.62 projectile against current state-of-the-					
	art in the military industrial complex. Projectiles were fired from a					
	mounted .308 rifle on an outdoor 900-foot (300 yard) range with					
	several linear IR gates to measure velocity.					

Classification: Unclassified Test ID: 22008-1-T1/T2/T3/T4

Table of Contents

Contents

Section 1.0 – Background & Testing Approach	3
1.1 – Discussion	3
1.2 - Method	
1.2.1 – Experimental Setup	4
1.2.2 – Experimental Method	7
Section 2.0 – Results	9
2.1 – Field Measurements	9
Section 3.0 – Analysis	14
3.1 – Performance	14
3.2 – Conclusion	16

Table of Figures

Figure 1: Experimental Configuration	5
Figure 2: Nemesis Shots 1 - 10	12
Figure 3: Berger Shots 1 – 10	13
Figure 4: Winchester Shots 1 - 10	13
Figure 5: Nemesis Velocity Graph	14
Figure 6: Berger Velocity Graph	14
Figure 7: Winchester Velocity	15
Figure 8: Comparison Chart	15

Table of Tables

Table 1: Range Conditions	5
Table 2: M/S Velocity	10
Table 3: F/S Velocity	
Table 4: Performance Summary	
Table 5: Accuracy Summary	12

Section 1.0 – Background & Testing Approach

1.1 – Discussion

The warfighter requires ever advancing technology to maintain their dominance, capability, and effectiveness above and beyond that of the adversary. In the modern conflict space, the technical sophistication of our adversaries is increasing, and approaching our own. In pursuit of technical dominance for Canada and our FVEY allies, Next Dynamics Inc. has developed a novel, velocity and accuracy improved small arms round. These rounds leverage a booster cut-out and with no additional powder to provide up to a 30% improvement in velocity at range, and major reductions to in-flight drag. Therefore, these rounds provide the warfighter the increased lethality and accuracy at-range required to maintain technical dominance over our peer-adversaries. This document outlines Bornea Dynamics inspection, testing, and analysis of Next Dynamics novel 7.62 copper projectile with booster, in the context of modern conflict.

The goal of this testing is to compare the performance of Next Dynamics 'Nemesis' 7.62 copper round with booster against current state-of-the-art in the military industrial complex. Testing includes firing several rounds through a series of linear IR gates towards a tear-able target to measure muzzle velocity, mid-flight velocity, 300-yard impact velocity, and accuracy.

An experimental approach was developed, fabricated, executed, and the resultant data analysed to provide the needed comparison points for evaluation of the Nemesis projectile with booster, when compared to a traditional projectile. This process is described in detail within this document.

Terminology:

Nemesis Cartridge = 7.62 projectile with booster, large rifle primer, Starline .308 Brass

Berger Cartridge = 168 Match Grain .308 cartridge

Winchester Cartridge = 150 GN .308 Winchester Super-X cartridge (X3085)

1.2 - Method

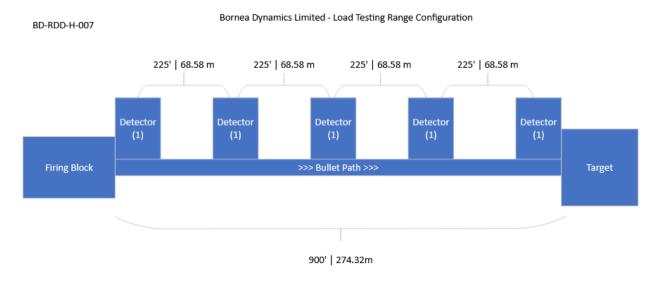
1.2.1 – Experimental Setup

Bornea Dynamics used a range representative of the North American and European climate. The range used is described in this report. The following equipment was used in testing:

- Rifle 1-> A 'Remington 700 SPS Tactical, Bolt Action' modified to fit onto our custom testing rig, and fire using the electronic/robotic assembly was used to fire the Nemesis cartridges and the Berger cartridges.
- Firing Assembly -> A steel baseplate firmly secured to a plywood table, itself mounted to the poured concrete base of our ranges firing post to reduce recoil shift was used to hold Rifle 1, itself connected to the Rifle using a carbon-fibre nylon 3D printed assembly and stainless-steel fasteners.
- Detector 1 -> A custom-fabricated Infrared gate, consisting of two extremely high frequency IR gates spaced 30cm apart. The detector connects to a network using ethernet cables. The detector is capable of measuring average velocity at the detector, and when chained together, average acceleration between detectors. This detector has an error of +- 0.001 m/s.
- Detector 2, 3, 4, 5 -> Four custom-fabricated Infrared gate, consisting of two high frequency IR gates spaced 30cm apart. The detector connects to a network using ethernet cables. The detector is capable of measuring average velocity at the detector, and when chained together, average acceleration between detectors. This detector has an error of +- 0.01 m/s.
- Target -> A stretched sheet of paper mounted to a plywood frame, with a central printed target for sighting of the rifle and tracking of accuracy.
- MATLAB Raspberry Pi Library & Ethernet Toolkit -> The software tool used to (1) acquire experimental data from the networked detectors, control the firing assembly, and analyse data post testing in the lab.

Rifle 1 was mounted to a steel baseplate using a 3D printed carbon-fibre nylon assembly and fasteners. An electronic, remotely triggered robotic system was used to fire each round for safety, and to synchronise the detectors.

The projectiles were as follows:


Berger Cartridge: The baseline (state-of-the-art) 168 GN projectile for this testing was Berger .308 Match Grade Ammunition, 168 GN total weight, procured in a cardboard retail box from a local sport supply store. Based on web research, this cartridge accurately represents state-of-the-art in line with size, weight, load, and casing requirements of the Nemesis cartridge. This projectile is heavier than the 7.62 with booster (by approximately 25 GN).

Classification: Unclassified Test ID: 22008-1-T1/T2/T3/T4

Winchester Cartridge: The baseline (state-of-the-art) 150GN projectile for testing, manufactured by Winchester and purchased in cardboard retail case at a local sports supply store. Based on web research, this cartridge accurately represents the novel 7.62 without a booster, and matches the projectile mass.

Nemesis Cartridge: Bornea Dynamics technician team loaded new Starline .308 brass with: 7.62 projectile with booster, CCI large rifle primer, and 42.1 +- 0.01 GN of Hodgdon 4350 powder by hand, using a digital electronic scale and custom electronic press.

The detectors, rifle, and target were arranged as follows:

Crosswind was determined to be insufficient to effect projectile flight. Other conditions at the range during testing are described in the table below. These conditions were measured with instrumentation at the range, within one hour of conducting the tests by Bornea Dynamics technician team.

Test	Parameter	Condition
	Air Temperature	23 Celsius
	Barometric Pressure	102.61 kPA
T1 – September 17, 2022	Humidity	67%
11 – September 17, 2022	Precipitation	None
	Wind Speed	Negligible (Sub 10 km/hr)
	Wind (Heading)	Negligible (Not measured)
T2 Contombor 22 2022	Air Temperature	15 Celsius
T2 – September 23, 2022	Barometric Pressure	103.21 kPA

Classification: Unclassified

Test ID: 22008-1-T1/T2/T3/T4

	Humidity	59%
	Precipitation	None
	Wind Speed	Negligible (Sub 10 km/hr)
	Wind (Heading)	Negligible (Not measured)
	Air Temperature	14 Celsius
	Barometric Pressure	101.49 kPA
T2 Contombor 20 2022	Humidity	49%
T3 – September 29, 2022	Precipitation	None
	Wind Speed	Negligible (Sub 10 km/hr)
	Wind (Heading)	Negligible (Not measured)
	Air Temperature	15 Celsius
	Barometric Pressure	101.12 kPA
T4 October 2 2022	Humidity	51%
T4 – October 3, 2022	Precipitation	None
	Wind Speed	Negligible (Sub 10 km/hr)
	Wind (Heading)	Negligible (Not measured)

1.2.2 – Experimental Method

To conduct the test, our team completed the following steps:

- 1. Nemesis Loading:
 - a. Loading of the rounds was initially conducted to fabricate subject rounds for testing and enable the test to be conducted. Rounds were loaded by a trained technician under the supervision of an engineer.
 - b. Nemesis rounds were loaded using Starline .308 brass with large rifle primer pocket, a large rifle primer, 42.1 GN of Hodgdon 4350 smokeless powder, and a Nemesis 7.62 projectile with booster. The rounds were loaded using a handforced, electronically governed bullet press, individually. Rounds were prepared in a controlled environment laboratory and transported to the range individually packaged in a polymer reloading kit. Rounds were transported to the range in a small vehicle, approximately 12 km on local and highway roads.
 - c. Berger ammunition was procured from a local sports supply store in cardboard retail packaging.
 - d. Winchester ammunition was procured from a local sport supply store in cardboard retail packaging.
- 2. Laboratory Measurements
 - a. Before field testing, the Bornea Dynamics team took field measurements of the projectiles to establish their standard sizing and deviation of that sizing. These results are included in this report.
- 3. Experimental Fabrication
 - a. For this test, a custom rig was built to mount the rifle to the test stand. The rig was designed, fabricated, and assembled by Bornea Dynamics engineering team, and validated in a laboratory setting before field use.
 - b. After fabrication, all equipment was packaged before transportation to the field range location.
- 4. Experimental Setup
 - a. The project team setup all equipment, fixtures, targets, and the rifle according to the above-described diagram and connected the measurement equipment to a field computer.
 - b. Several test shots of 7.62x39 were fired from a modified AK-47 to test the equipment. All data from these test shots was discarded, to ensure it did not affect the experimental shots.
- 5. Range Operations
 - a. Each round was fired individually towards the target in thirty-second intervals, with pause time to reset instruments and download the data
 - b. Safety officers, operational equipment verification/calibrations, etc. were conducted before and during range testing phase

- 6. Data Archiving & Analysis
 - a. Data returned from the range was imaged, archived, and analysed according to the methods and approach discussed in Section 3.0 Analysis.

Specifically, the test gathered the following data per shot:

- 1 entry for muzzle velocity (2-dimensional)
- 1 entry for each downrange sensor (4 sensors, 2-dimensional)
- 1 entry for grouping deviation at 300 yards (900 feet) per full cartridge (2-dimensional)

The Nemesis cartridge, the Berger cartridge, and the Winchester cartridge were fired, ten cartridges each in this arrangement, with the data described above collected and stored on a range computer for later analysis. Velocity detectors report data as timestamps for later processing. Firing of the rifle via an electronic connection triggers the timers on each unit, which correct for processing delays in their measurements. Results from this testing, and their analysis and comparison are included in the next sections.

The Nemesis 7.62 round with booster data was gathered under T2. The Berger cartridge data was gathered under T3. The Winchester cartridge data was gathered under T4.

Section 2.0 – Results

2.1 – Field Measurements

Velocity Performance: (M/S)

Powder	Round ID	Muzzle Velocity (0 Yards)	Detector 2 Velocity (225 Feet)	Detector 3 Velocity (550 Feet)	Detector 4 Velocity (775 Feet)	Detector 5 Velocity (900 Feet)
	1	866.292	833.37	801.70	771.24	Miss
	2	845.660	813.52	782.61	752.87	724.26
	3	817.402	786.34	756.46	727.71	700.06
4350 @	4	843.074	811.04	780.22	750.57	722.05
42.1 GN	5	853.725	821.28	790.07	760.05	731.17
(7.62 w/	6	887.608	853.88	821.43	790.22	760.19
Booster)	7	856.836	824.28	792.95	762.82	733.83
	8	853.081	820.66	789.48	759.48	730.62
	9	859.029	826.39	794.98	764.77	735.71
	10	835.517	803.77	773.22	743.84	715.58
Avei	rage	851.822	819.45	788.31	758.36	728.16
Standard	Deviation	17.71	17.04	16.39	15.77	15.39
	1	817.808	781.82	744.30	707.08	670.31
	2	808.006	772.45	735.38	698.61	662.28
	3	818.963	782.93	745.35	708.08	671.26
Deveen	4	807.402	771.88	734.83	698.08	661.78
Berger .308 Match	5	817.391	781.43	743.92	706.72	669.97
.308 Match Grade	6	811.380	775.68	738.45	701.52	665.04
Grade	7	819.025	782.99	745.40	708.13	671.31
	8	814.477	778.64	741.27	704.20	667.58
	9	818.686	782.66	745.10	707.84	671.03
	10	816.405	780.48	743.02	705.87	669.16
Avei	rage	814.954	779.10	741.70	704.61	667.97
Standard	Deviation	4.255	4.07	3.87	3.68	3.49
	1	862.598	790.86	724.20	665.10	602.22
	2	860.292	791.80	728.41	664.67	604.70
Winchester	3	855.734	791.19	726.94	666.93	602.84
.308 Super-	4	857.608	788.09	725.33	666.80	601.84
X 150 GN	5	855.020	790.23	723.11	658.19	594.10
(X3085)	6	864.134	791.803	725.293	666.681	602.506
	7	858.937	790.904	728.380	663.878	602.943
	8	857.170	791.431	728.816	668.893	604.033

Classification: Unclassified

Test ID: 22008-1-T1/T2/T3/T4

	9	856.631	786.592	724.943	665.570	599.898
	10	853.507	788.332	722.121	656.625	592.105
Ave	rage	858.163	790.123	725.754	664.333	600.719
Standard	Deviation	3.19	1.72	2.20	3.72	4.02

Table 2: M/S Velocity

Velocity Performance: (F/S)

Powder	Round ID	Muzzle Velocity (0 Yards)	Detector 2 Velocity (225 Feet)	Detector 3 Velocity (550 Feet)	Detector 4 Velocity (775 Feet)	Detector 5 Velocity (900 Feet)
	1	2842.165	2734.16	2630.26	2530.31	Miss
	2	2774.475	2669.04	2567.62	2470.05	2376.19
	3	2681.766	2579.86	2481.82	2387.52	2296.79
4350 @	4	2765.989	2660.88	2559.77	2462.50	2368.92
42.1 GN	5	2800.934	2694.50	2592.11	2493.61	2398.85
(7.62 w/	6	2912.101	2801.44	2694.99	2592.58	2494.06
Booster)	7	2811.142	2704.32	2601.55	2502.70	2407.59
	8	2798.821	2692.47	2590.15	2491.73	2397.04
	9	2818.336	2711.24	2608.21	2509.10	2413.75
	10	2741.197	2637.03	2536.82	2440.43	2347.69
Ave	rage	2794.693	2688.49	2586.33	2488.05	2388.99
Standard	Deviation	58.11	55.90	53.78	51.74	50.48
	1	2683.098	2565.04	2441.92	2319.82	2199.19
	2	2650.938	2534.30	2412.65	2292.02	2172.83
	3	2686.886	2568.66	2445.37	2323.10	2202.30
Berger	4	2648.955	2532.40	2410.85	2290.30	2171.21
.308	5	2681.730	2563.73	2440.67	2318.64	2198.07
Match	6	2662.007	2544.88	2422.72	2301.59	2181.91
Grade	7	2687.091	2568.86	2445.55	2323.28	2202.47
	8	2672.170	2554.59	2431.97	2310.38	2190.24
	9	2685.978	2567.79	2444.54	2322.31	2201.55
	10	2678.493	2560.64	2437.73	2315.84	2195.42
Ave	rage	2673.735	2556.09	2433.40	2311.73	2191.52
Standard	Deviation	13.961	13.35	12.71	12.07	11.44
	1	2830.046	2594.68	2375.97	2182.07	1975.80
Winchester	2	2822.479	2597.76	2389.81	2180.67	1983.91
.308 Super-	3	2807.526	2595.77	2384.96	2188.09	1977.84
X 150 GN	4	2813.674	2585.60	2379.69	2187.66	1974.54
(X3085)	5	2805.183	2592.62	2372.42	2159.41	1949.14
(73083)	6	2835.084	2597.78	2379.57	2187.27	1976.72
	7	2818.034	2594.83	2389.70	2178.08	1978.16

Classification: Unclassified

Test ID: 22008-1-T1/T2/T3/T4

	8	2812.237	2596.56	2391.13	2194.53	1981.74
	9	2810.468	2580.68	2378.42	2183.63	1968.17
	10	2800.220	2586.39	2369.17	2154.28	1942.60
Ave	rage	2815.495	2592.27	2381.08	2179.57	1970.86
Standard	Deviation	10.455	5.63	7.22	12.22	13.19

Table 3: F/S Velocity

Powder	Variable	Value
4350 @ 42.1 GN (7.62 w/	Ballistic Coefficient	526.12 kg/m ²
4550 @ 42.1 GN (7.62 W/ Booster)	Drag Coefficient	0.3712
Boostery	Average Flight V Change	405.7 F/S
	Ballistic Coefficient	529.30 kg/m ²
Berger .308 Match Grade	Drag Coefficient	0.3689
	Average Flight V Change	482.21 F/S
Winchester 208 Super V 150	Ballistic Coefficient	532.39 kg/m ²
Winchester .308 Super-X 150 GN (X3085)	Drag Coefficient	0.4891
	Average Flight V Change	844.64 F/S

Table 4: Performance Summary

Accuracy Performance:

Powder	Variable	Value
4350 @ 42.1 GN (7.62 w/ Booster)	Dinner Plate (100 Yards, Estimated)	4.82 cm
	Dinner Plate (200 Yards, Estimated)	7.11 cm
	Dinner Plate (300 Yards, Actual)	9.79 cm (3.85 Inch)
	Perceived Tumble	<0.2% (Negligible)
Berger .308 Match Grade	Dinner Plate (100 Yards, Estimated)	4.98 cm
	Dinner Plate (200 Yards, Estimated)	7.79 cm
	Dinner Plate (300 Yards, Actual)	9.51 cm (3.74 Inch)
	Perceived Tumble	<0.2% (Negligible)
Winchester .308 Super-X 150 GN (X3085)	Dinner Plate (100 Yards, Estimated)	6.1 cm
	Dinner Plate (200 Yards, Estimated)	8.61 cm
	Dinner Plate (300 Yards, Actual)	12.91 cm (5.08 Inch)
	Perceived Tumble	<0.2% (Negligible)

Classification: Unclassified Test ID: 22008-1-T1/T2/T3/T4

Table 5: Accuracy Summary

*'Dinner Plate' represents the diameter a plate would need to be for all ten shots to land on it, as measured by estimate or actual. (Estimate = model based on velocity and range projection. Actual = measurement using paper target at the range)

Nemesis Shots

Note: 5 shots per image. Shot one on the top left image was a miss.

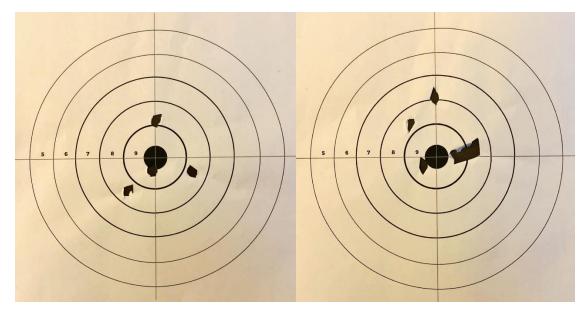


Figure 2: Nemesis Shots 1 - 10

Classification: Unclassified Test I

Test ID: 22008-1-T1/T2/T3/T4

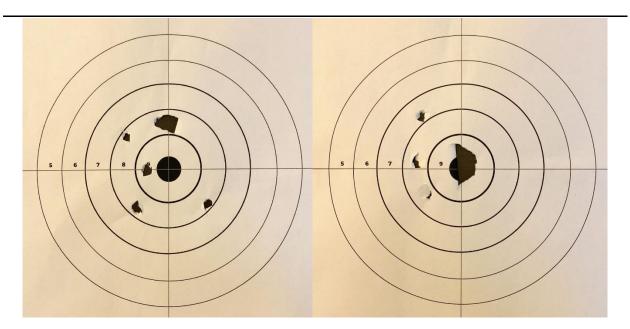


Figure 3: Berger Shots 1 – 10

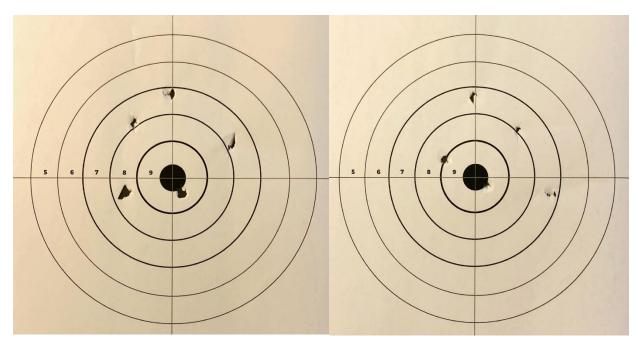
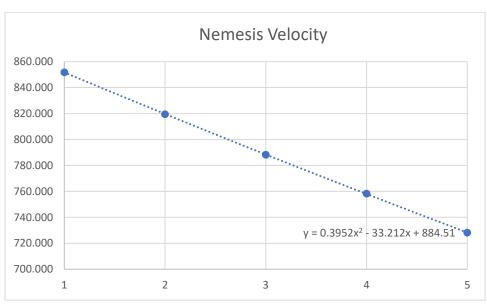
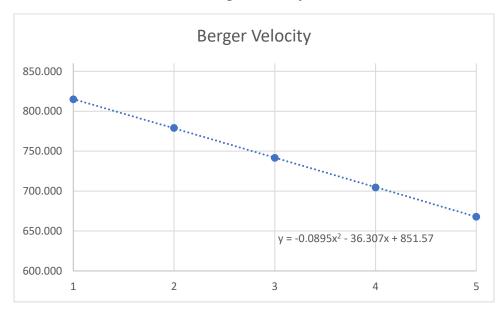
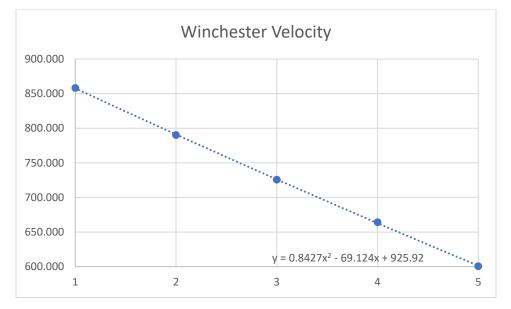



Figure 4: Winchester Shots 1 - 10

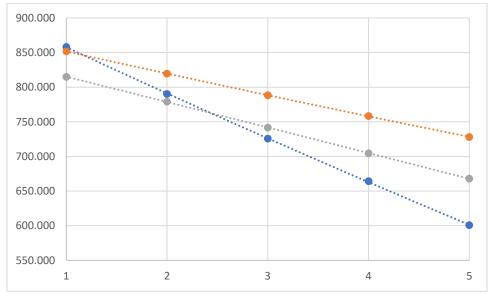

Section 3.0 – Analysis

3.1 – Performance

Nemesis Velocity


Figure 5: Nemesis Velocity Graph

Berger Velocity


Figure 6: Berger Velocity Graph

Winchester Velocity

Figure 7: Winchester Velocity

Comparison Chart

Figure 8: Comparison Chart

Orange = Nemesis Cartridge | Blue = Winchester Cartridge | Gray = Berger Cartridge

3.2 – Conclusion

Our Findings: Through the measurements obtained, we conclude that statistically significant velocity performance improvements in the range of +**4.524%** at the muzzle, and +**9.012%** 300 yards downrange occur when utilizing the 7.62 round with a booster, as compared to a traditional Berger round. We also conclude that statistically significant velocity performance improvements of -**0.739%** at the muzzle and +**26.242%** 300 yards downrange occur when utilizing the 7.62 round with booster as compared to a traditional .308 Winchester round. Specifically, our testing observed the average performance increase in the 7.62 booster round when compared to the traditional rounds. Furthermore, we concluded that no change in accuracy occurs between a traditional rounds and the Nemesis round with a booster. Higher standard deviations observed in the Nemesis rounds can be attributed to handloaded deviances, including compression and primer insertion. This may warrant further investigation, including the use of a high-accuracy electronic or hydraulic press.

Therefore, we conclude that the Nemesis 7.62 copper projectile with a booster demonstrates superior performance to a traditional Berger round of higher projectile mass, and superior performance to a traditional Winchester round of similar projectile mass, when compared at the velocity and accuracy metrics.

<END OF DOCUMENT>