
AUDIT

LUX
December 9th, 2022.



TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A.VAR-1 : State variables are declared with default

values

B. MINT-1 : Toggle function for minting could be

consolidated

C.FUNT-1 : Public getter functions are being declared

for state variables

D.PAY-1 : Payments could be accepted in stablecoin if

fixed price is required

E. INDEX-1 : ERC721A standard has an index that

iterates on mints

F. INTER-1 : Checks effects interactions best practice

G.MESS-1 : Message value could be used to send funds

in mint function

IV. DISCLAIMER

2



AUDIT SUMMARY

This report was written for LUX in order to find flaws and vulnerabilities

in the LUX project's source code, as well as any contract dependencies

that weren't part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and LUX Deployment techniques. The auditing

process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3



AUDIT OVERVIEW

PROJECT SUMMARY

Project name LUX

Description On December 11th 2022, 1000 digital collectibles will
be put out for purchase at 1K$. Each of these
collectibles is attached to a hotel stay and to one of the
6 bespoke travel experiences crafted for this occasion.
Gift your loved ones (or yourself) the best and most
surprising Christmas present yet, and discover what’s
inside on Christmas day.

Platform …

Language Solidity

Codebase Lux.sol

4



FINDINGS SUMMARY

Vulnerability Total Resolved

● Critical 0 0

● Major 0 0

● Medium 0 0

● Minor 0 0

● Informational 7 0

5



AUDIT FINDINGS

Code Title Severity

VAR-1 State variables are declared
with default values

● Informational

MINT-1 Toggle function for minting
could be consolidated

● Informational

FUNT-1 Public getter functions are
being declared for state
variables

● Informational

PAY-1 Payments could be

accepted in stablecoin if

fixed price is required

● Informational

INDEX-1 ERC721A standard has an

index that iterates on mints

● Informational

INTER-1 Checks effects interactions

best practice

● Informational

MESS-1 Message value could be used

to send funds in mint function

● Informational

6



VAR-1 | State variables are declared with default values

Description

State variables such as index, _isMintOn, uri, and mintPartnershipCount

are declared with values that are the same as their defaults. When

variables are set, they will automatically be set to their default value

which in the case of a uint will be 0, a bool will be false, and a string will

be an empty string. Due to this reason, if the values for index,

_isMintOn, uri, and mintPartnershipCount could be initialized to defaults

without declaration.

Recommendation

Declare the types and names for index, _isMintOn, uri, and

mintPartnershipCount but do not declare the default values:

uint index;

bool _isMintOn;

string uri;

uint mintPartnershipCount;

7



MINT-1 | Toggle function for minting could be consolidated

Description

The toggles functions used to change the value of _isMintOn could be

consolidated into a single function that sets the value to the opposite of

the current value. This will minimally reduce the gas cost of other write

functions depending on the placement of the function in the selector

logic but it will minimize code used for a similar purpose.

Recommendation

Consolidate the stopMint and enableMint functions into a single

function:

function toggleMint() external onlyOwner {

_isMintOn = !_isMintOn;

}

8



FUNT-1 | Public getter functions are being declared

for state variables

Description

Functions have been created to fetch the values for state variables such

as index, price, and _isMintOn. By declaring the state variables that are

desired to be visible as public, these functions can be removed.

Declaring getter functions may be required for interoperability with

external contracts but there is no clear reference to this based on the

information shared.

9



PAY-1 | Payments could be accepted in stablecoin if

fixed price is required

Description

The NFT price is set in terms of Ether, which due to volatility may require

multiple updates from the admin to ensure that it aligns with a desired

dollar sale price. If there is a fixed price that the project would like to

accept for each of the NFTs then the mint function could be edited to

solely accept USDC. However, this would only be recommended if the

price that each NFT is being sold at must be in a tightly fixed range in

dollar terms.

To do this, the IERC20 interface could be imported using OpenZeppelin

library and the mint function would check that the balanceOf() the

msg.sender is more than the price. In the example of USDC, if the

amount accepted was 100 dollars then the fixed value would be

100000000 (as USDC token is set to 6 decimal places). These funds

could then be sent by the contract to the mainWallet, the additional step

that would be required on a front-end would be the approval step for

the fixed price of the NFT.

10



INDEX-1 | ERC721A standard has an index that

iterates on mints

Description

The standard being used for the collection has a public getter function

called totalSupply(). This function returns the currentIndex minus the

burnCounter minus the startTokenId - this means there is an active log of

the index factoring in burnt tokens. Alternatively, there is also a function

called _nextTokenId(), which returns the _currentIndex being iterated

upon by the standard.

In theory, this means that the index that is iterated on in the mint and

mintPartnership functions could be discarded in exchange for one of the

standard existing functions.

11



INTER-1 | Checks effects interactions best practice

Description

The best practice approach is to check conditions, update effects in the

existing contract, and then interact externally. As the non-reentrant

modifier is being used, this will prevent any re-entrancy risk in the mint

function. However, it would be best practice to iterate the index before

the external call is made to send funds to the MAIN_WALLET.

If there are any issues with the funds being sent or tokens being minted

then the function will revert and all changes to the contract state will be

returned to how they were prior to the contract call.

Recommendation

Iterate the index before the external transaction sending Ethereum:

index += quantity;

(bool success, ) = payable(MAIN_WALLET).call{value:

address(this).balance)(“”);

require(success, “Transfer Failed.”);

12



MESS-1 | Message value could be used to send funds in mint function

Description

Currently, the address balance is sent through the call function in the

mint function. However, as there are no receive() or fallback() functions,

the contract would never have more Ether than the msg.value amount

that is being sent in the mint function - due to the lack of a receive() or

fallback() function. Therefore, the value field could use msg.value for the

amount being sent.

Recommendation

Change the value field to the msg.value in the mint function:

(bool success, ) = payable(MAIN_WALLET).call{value: msg.value)(“”);

require(success, “Transfer Failed.”);

13



Supporting Comments

Assuming the logic, which handles the assignment of the random prizes

will be handled off-chain as there is no reference to this in the contract.

To ensure that NFTs can not be sniped in an advantageous way by

buyers, the project can handle reward assignment off-chain via a web2

platform, release the metadata for all NFTs are the whole collection is

minted (a provenance hash approach can be used to prove there is no

tampering), or offset the starting index for the metadata linked to each

token ID.

If the reward functionality is off-chain then most of the points above

should be ignored, as assignment would be through a web2 platform.

However, if prizes were going to be assigned on-chain then different

approaches for using provenance hashes and offset starting indexes can

be found in projects such as Crypto Coven or Bored Ape Yacht Club.

14



DISCLAIMER

This report is subject to the terms and conditions (including without limitation,

description of services, confidentiality, disclaimer and limitation of liability) set

forth in the Services Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with the Agreement.

This report provided in connection with the Services set forth in the

Agreement shall be used by the Company only to the extent permitted under

the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by

any person for any purposes without Safetin's prior written consent.This

report is not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor should be considered,

an indication of the economics or value of any “product” or “asset” created

by any team or project that contracts Safetin to perform a security

assessment.

This report does not provide any warranty or guarantee regarding the

absolute bug-free nature of the technology analyzed, nor do they provide any

indication of the technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

15



Safetin security assessment to make decisions around investment or

involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing

process intending to help our customers increase the quality of their code

while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of

ongoing risk. Safetin's position is that each company and individual are

responsible for their own due diligence and continuous security. Safetin's goal

is to help reduce the attack vectors and the high level of variance associated

with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or fun.

16


