
AUDIT

Frak
November 7th, 2022.



TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. EXT-1 Depends to an external protocol

B. COMP-1 Unfixed version of compiler

C. SUPPL-1 Checking cap when depositing

D. HOOK-1 Specify WhenNotPaused on the entry-level

E. MINT-2 Improve Consistency in usage of WhenNotPaused

F. VAR-1 The cap state variable can be initialised as a constant

variable

G. VAR-2 Fetch the cap from the constant variable

H. OPCODE-1 Save gas checking less than instead of less than

or equal in mint function

I. UINT-1 Unusual usage of decoding to access uint

J. PAUSE-1It will impact the ability for tokens being bridged

across chains

IV. GLOBAL SECURITY WARNINGS

V. DISCLAIMER

2



AUDIT SUMMARY

This report was written for Frak in order to find flaws and vulnerabilities

in the Frak project's source code, as well as any contract dependencies

that weren't part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and Frak Deployment techniques. The auditing

process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3



AUDIT OVERVIEW

PROJECT SUMMARY

Project name Frak

Description The Frak Ecosystem is built to align interests of Creators
and their Community in order to share the value of the
content more fairly, that revolutionize the monetization
of culture.

Platform Polygon

Language Solidity

Codebase FrakTokenL2.sol

4



FINDINGS SUMMARY

Vulnerability Total Resolved

● Critical 0 0

● Major 1 1

● Medium 3 3

● Minor 2 2

● Informational 4 4

5



AUDIT FINDINGS

Code Title Severity

EXT-1 Depends to an external
protocol

● Minor

COMP-1 Unfixed version of compiler ● Minor

SUPPL-1 Checking cap when

depositing

● Major

HOOK-1 Specify WhenNotPaused on

the entry-level

● Medium

MINT-2 Improve Consistency in

usage of WhenNotPaused

● Medium

VAR-1 The cap state variable can

be initialised as a constant

variable

● Informational

VAR-2 Fetch the cap from the

constant variable

● Informational

OPCODE-1 Save gas checking less than

instead of less than or equal

● Informational

6



in mint function

UINT-1 Unusual usage of decoding

to access uint

● Informational

PAUSE-1 it will impact the ability for

tokens being bridged across

chains

● Medium

7



EXT-1 | Dependence to an external protocol

Description

The contract interacts with the third party Polygon Bridge mechanism.

The scope of the audit would treat this third party entity as a black box

and assume it is fully functional. However, this protocol contains several

entities that should be verified before they are assigned roles. For

example the DEPOSITOR_ROLE.

Recommendation

Monitor the functionality of the bridge and Validate that the correct

addresses are being assigned to the used roles: DEPOSITOR_ROLE.

8



COMP-1 | Unfixed version of compiler

Description

contract does not have locked compiler versions, meaning a range of

compiler versions can be used. This can lead to differing bytecodes

being produced depending on the compiler version, which can create

confusion when debugging as bugs may be specific to a specific

compiler version(s).

Recommendation

To rectify this, we recommend setting the compiler to a single version,

the version tested the most to be compatible with the code, an example

of this change can be seen below.

pragma solidity 0.8.7;

9



SUPPL-1 | Checking cap when depositing

Description

There is no check when calling deposit that the new tokens being

minted should be less than the totalSupply plus the mint amount. If a

restriction should be imposed on both minting functions then this

require check should be handled before the mint function is called.

Recommendation

Should add the following as the first line of code in deposit() function

require(totalSupply() + amount < cap, “CAP_REACHED”);

10



HOOK-1 | Specify WhenNotPaused on the entry-level

Description

WhenNotPaused is used on the beforeTokenTransfer hook, which will be

checked on all mint, burn, and transfer functions for an ERC20 token. If

the purpose of the pause check is to limit these functions under specific

conditions then use whenNotPaused on the highest level i.e. when mint,

burn, or transfer are being called.

WhenNotPaused is used on the deposit function to prevent tokens from

being minted if the contract is paused. However, it will be checked twice

as it is called again in the beforeTokenTransfer hook when the mint

action is called.

Recommendation

Use whenNotPaused on external/ public function level rather than on the

hook

11



MINT-2 | Improve Consistency in usage of

WhenNotPaused

Description

WhenNotPaused is used to prevent minting of new tokens via deposit

but minting remains available through the mint function. If the use of

paused is to prevent adversarial minting of tokens then protecting all

entry points to minting makes sense.

Recommendation

Add whenNotPaused check to mint function

12



VAR-1 | The cap state variable can be initialised as a

constant variable

Description

The cap variable being used to limit supply remains constant for the life

of the contract and this means it can be set as a constant variable and

does not need to be initialised through the initialize function.

Recommendation

Add the cap in supply to the state variable declaration

uint256 private constant _cap = 3_000_000_000 ether

13



VAR-2 | Fetch the cap from the constant variable

Description

When fetching the value for _cap, a call to cap() is made which can be

simplified to directly fetching the data from the constant variable _cap.

Recommendation

Fetch the cap from the constant variable

require(totalSupply() + amount < _cap, “CAP_EXCEEDED”);

14



OPCODE-1 | Save gas checking less than instead of

less than or equal in mint function

Description

Checking less than in solidity uses a single opcode whereas checking

less than or equal to uses the LT/GT opcode and afterwards it executes

an ISZERO opcode to check the result of the previous comparison is

zero. If saving gas is important then changing this check to a less-than

check will help.

Recommendation

Change check to less than

require(totalSupply() + amount < _cap, “CAP_EXCEEDED”);

15



UINT-1 | Unusual usage of decoding to access uint

Description

In the deposit function, a bytes parameter is passed in and the value is

decoded into a uint before being used to mint. This is an unusual

pattern unless there is cross-contract communication where the input

value will be of bytes type or for another specific reason. If this is not the

case, pass the uint in as a uint256 input directly to the function.

Recommendation

Pass the uint256 in as a function input function deposit(address user,

bytes calldata depositData) external whenNotPaused

16



PAUSE-1 | It will impact the ability for tokens being

bridged across chains

Description

If the contract has been paused it will impact the ability for tokens being

bridged across chains. As the bridge normally takes 15-30 mins for settle

transactions, there are examples where tokens could be in the process of

being bridged and when the validators try to call deposit to complete

the bridge it will not be possible.

Recommendation

Remove the pause functionality from the deposit and

beforeTokenTransfer function to resolve bridging issue. Specifically, add

pause to the functions they do not want to be called in the case they

need to pause.

17



Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

18



DISCLAIMER

This report is subject to the terms and conditions (including without limitation,

description of services, confidentiality, disclaimer and limitation of liability) set

forth in the Services Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with the Agreement.

This report provided in connection with the Services set forth in the

Agreement shall be used by the Company only to the extent permitted under

the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by

any person for any purposes without Safetin's prior written consent.This

report is not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor should be considered,

an indication of the economics or value of any “product” or “asset” created

by any team or project that contracts Safetin to perform a security

assessment.

This report does not provide any warranty or guarantee regarding the

absolute bug-free nature of the technology analyzed, nor do they provide any

indication of the technologies proprietors, business, business model or

19



legal compliance. This report should not be used in any way

Safetin security assessment to make decisions around investment or

involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing

process intending to help our customers increase the quality of their code

while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of

ongoing risk. Safetin's position is that each company and individual are

responsible for their own due diligence and continuous security. Safetin's goal

is to help reduce the attack vectors and the high level of variance associated

with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or fun.

20


