
AUDIT

GEMPAD
April 17th, 2022.

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. MSG-3 : Too long error message

B. UINT-1 : Wrong uint size

C. COMP-1 : Unfixed version of compiler

D. BLOC-1 : Use of block.timestamp

E. BLOC-2 : Use of block.number

F. TX-1 : Use of tx.origin

G. THRE-1a : Missing threshold for minor func.

H. THRE-1b : Missing threshold for minor func.

I. THRE-1c : Missing threshold for minor func.

J. THRE-3 : Insufficient threshold

K. CENT-1 : Centralization of major privileges

L. EXT-1 : External protocol dependance

IV. DISCLAIMER

2

AUDIT SUMMARY

This report was written for Gempad (GEMS) in order to find flaws and

vulnerabilities in the Gempad project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and Gempad Deployment techniques. The

auditing process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3

AUDIT OVERVIEW

PROJECT SUMMARY

Project name Gempad

Description Gempad is a frontline protocol for users and
project-owners designed to help to launch
their projects and tokens in the easiest way
possible. The Gempad token is the ERC20
which powers the project.

Platform BNB Chain

Language Solidity

Codebase https://pastebin.com/42KXmjXN

FINDINGS SUMMARY

Vulnerability Total Resolved

● Critical 0 0

● Major 0 0

● Medium 2 1

● Minor 8 5

● Informational 2 2

4

EXECUTIVE SUMMARY

Gempad is the first launchpad to offer raising funds in any crypto token.

The project is powered by an ERC20 token, the Gempad (GEMS).

Gempad holders have access to events like seed rounds, private sales,

partial sales and more. Transactions are taxed as follows (updatable

taxes below a certain threshold):

● Sales are taxed at less than 30%, distributed between reward fee,

liquidity fee and marketing fee.

● Purchases are taxed at less than 30%, distributed between reward

fee, liquidity fee and marketing fee.

● Transfers are taxed at less than 30%, distributed between reward

fee, liquidity fee and marketing fee.

There have been no major or critical issues related to the codebase and

all findings listed here are minor or informational. The major security

problems are the dependence on a decentralized exchange platform

and the centralization of privileges

5

AUDIT FINDINGS

Code Title Severity

CENT-1 Centralization of major privileges ● Medium

EXT-1 External protocol dependencies ● Medium

BLOC-1 Usage of block.timestamp ● Minor

BLOC-2 Usage of block.number ● Minor

COMP-1 Unfixed version of compiler ● Minor

TX-1 Use of tx.origin ● Minor

THRE-1a Missing threshold for minor func ● Minor

6

THRE-1b Missing threshold for minor func ● Minor

THRE-1c Missing threshold for minor func ● Minor

THRE-3 Insufficient threshold ● Minor

UINT-1 Unoptimized uint size ● Informational

MSG-3 Too long error message ● Informational

7

MSG-3 | Too long error messages

Description

The smart contract has some error messages that are too

long. The industry standards specify error messages must have a

maximal length of 32 bytes. We recommend having the shortest

possible error messages to optimize gas costs (see

github.com/ethereum/solidity/issues/4588) and improve error handling.

4 issues of this type have been found in the smart contract.

Recommendation

We recommend shortening these error messages :

//Line references with edited error messages

//line 570 :

"The pair cannot be removed from

automatedMarketMakerPairs" -> "The pair cannot be

removed"

//line 731 :

"_transfer:: Transfer Delay enabled. Only one purchase

per block allowed." -> "Only one purchase per block"

//line 744 :

"Buy transfer amount exceeds the maxTransactionAmount."

-> "buy transfer over max amount"

//line 758 :

"Sell transfer amount exceeds the maxTransactionAmount."

-> "Sell transfer over max amount"

8

UINT-1 | Unoptimized uint size

Description

Some variables in the contract are of type uint, but not of the right size.

In order to optimize gas costs when deploying and using the contract,

we recommend to assign the right size uint to each variable.

44 errors of this type have been found in the smart contract.

Recommendation

We recommend changing these uint sizes. We listed all the changes

needed on this gist.

9

https://gist.github.com/NBMSacha/86a7293da1f31b1521c9ca42fae782fe

COMP-1 | Unfixed version of compiler

Description

Gempad token’s contract does not have locked compiler versions,

meaning a range of compiler versions can be used. This can lead to

differing bytecodes being produced depending on the compiler version,

which can create confusion when debugging as bugs may be specific to

a specific compiler version(s).

To rectify this, we recommend setting the compiler to a single version,

the lowest version tested to be compatible with the code. An example of

this change can be seen below.

Recommendation

We recommend fixing the compiler version to the most recent one :

//Edited code containing fixed compiler version

//l2

pragma solidity 0.8.13;

10

BLOC-1 | Use of block.timestamp

Description

The use of block.timestamp can be problematic. The timestamp can be

partially manipulated by the miner (see https://cryptomarketpool.com/

block-timestamp-manipulation-attack/).

Recommendation

We fully understand the smart contract’s logic of the Gempad token. The

use of block.timestamp is required to power swapping and trading

mechanisms and we cannot replace it. Nevertheless, it is still useful to

point out this kind of potential security problem.

11

https://cryptomarketpool.com/

BLOC-2 | Use of block.number

Description

The use of block.number can be problematic. The timestamp can be

partially manipulated by the miner (see https://cryptomarketpool.com/

block-timestamp-manipulation-attack/). Since the timestamp of a block

cannot be fully trusted, the exact block counting at an exact timestamp

cannot be fully trusted.

Recommendation

We fully understand the smart contract’s logic of the Gempad token. The

use of block.number is required to power transfer and trading

mechanisms and we cannot replace it. Nevertheless, it is still useful to

point out this kind of potential security problem.

12

https://cryptomarketpool.com/

TX-1 | Use of tx.origin

Description

The use of tx.origin is strongly deprecated by the industry. It can lead to

phishing attacks by falsifying the identity of the original caller of the

function. Read more about it here.

Recommendation

In the case of this smart contract, we recommend using msg.sender

instead of tx.origin.

13

https://blockchain-academy.hs-mittweida.de/courses/solidity-coding-beginners-to-intermediate/lessons/solidity-5-calling-other-contracts-visibility-state-access/topic/tx-origin-and-msg-sender/

THRE-1a | Missing threshold for max sell amount

Description

The maximum transaction amount change function does not have a

safety threshold. Even though this function is protected by the

onlyOwner modifier, it is important to add a threshold to prevent an

attacker from setting max transaction amount as 0 as easily.

3 errors of this type have been found in the smart contract.

Recommendation

We recommend adding a threshold to the concerned function. We leave

it to you to decide which threshold best fits the logic of the project :

//Edited code containing threshold

//l 535

function updateMaxTransactionAmount(uint256

_maxTransactionAmount)

external

onlyOwner

{

require(_maxTransactionAmount*(10**decimals()) > XXX,

“Cannot set max amount under XXX”);

maxTransactionAmount =

_maxTransactionAmount*(10**decimals());

emit

UpdateMaxTransactionAmount(_maxTransactionAmount);

}

14

THRE-1b | Missing threshold for max wallet size

Description

The maximum wallet size change function does not have a safety

threshold. Even though this function is protected by the onlyOwner

modifier, it is important to add a threshold to prevent an attacker from

setting max wallet size as 0 as easily.

3 errors of this type have been found in the smart contract.

Recommendation

We recommend adding a threshold to the concerned function. We leave

it to you to decide which threshold best fits the logic of the project :

//Edited code containing a threshold

//l 543

function updateMaxWallet(uint256 _maxWallet) external

onlyOwner {

require(_maxWallet*(10**decimals()) > XXX, "Cannot

set max wallet under XXX");

maxWallet = _maxWallet*(10**decimals());

emit UpdateMaxWallet(_maxWallet);

}

15

THRE-1c | Missing threshold for gas price limit

Description

The gas price limit setting function does not have a safety threshold.

Even though this function is protected by the onlyOwner modifier, it is

important to add a threshold to prevent an attacker from setting max

transaction price as 0 as easily.

3 errors of this type have been found in the smart contract.

Recommendation

We recommend adding a threshold to the concerned function. We leave

it to you to decide which threshold best fits the logic of the project :

//Edited code containing threshold

//l 585

function updateGasPriceLimit(uint256 gas) external

onlyOwner {

require(gas > XXX, "Cannot set gas price limit <

XXX"); //here the threshold could be 2*the average

transaction gas cost

_gasPriceLimit = gas * 1 gwei;

}

16

THRE-3 | Insufficient threshold

Description

The protect-block fee setting function does have a safety threshold, but

it is set to 100%. Of course, we don't want the fees to be set above

100%. However, it is problematic that they can be set to a value close to

that (like 99.99% for example). Even though this function is protected by

the onlyOwner modifier, it is important to add a threshold to prevent an

attacker from setting the protect-block fee as a very high value as easily.

1 error of this type has been found in the smart contract.

Recommendation

We recommend changing this threshold. As an example, a 50%

threshold could be a flexible and safe threshold. However, we leave it to

you to decide which threshold best fits the logic of the project :

//Edited code containing 50% threshold

//l 658

function setProtectBlockFee(

uint256 protectBlockRewardFee,

uint256 protectBlockLiquidityFee,

uint256 protectBlockMarketingFee

) external onlyOwner {

_protectBlockRewardFee = protectBlockRewardFee;

_protectBlockLiquidityFee = protectBlockLiquidityFee;

_protectBlockMarketingFee = protectBlockMarketingFee;

require(

17

_protectBlockRewardFee +

_protectBlockLiquidityFee +

_protectBlockMarketingFee <

500,

"Must keep fees below 50%"

);

}

18

CENT-1 | Centralization of major privileges

Description

The onlyOwner modifier of the smart contract gives major privileges

over it (changing the staking address, lock the trade)*. This can be a

problem, in the case of a hack, an attacker who has taken possession of

this privileged account could damage the project and the investors.

*This list is not exhaustive but presents the most sensitive points

Recommendation

We recommend at least to use a multi-sig wallet as the owner address,

and at best to establish a community governance protocol to avoid such

centralization. For more information, see https://solidity-by-example.org

/app/multi-sig-wallet/

19

https://solidity-by-example.org/app/multi-sig-wallet/
https://solidity-by-example.org/app/multi-sig-wallet/

EXT-1 | Dependence to an external protocol

Description

The contract interacts with PancakeSwap protocols. The scope of the

audit would treat this third party entity as black box and assume it is fully

functional. However in the real world, third parties may be compromised

and may have led to assets lost or stolen. We fully understand that the

business logic of the Gempad token is designed to work with

PancakeSwap.

Recommendation

We encourage the team to constantly monitor the security level of the

entire PancakeSwap project, as the security of the token is highly

dependent on the security of the decentralized exchange platform.

20

Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

CENT-1 | Global SPOF (Single Point Of Failure)

The project's smart contracts often have a problem of centralized
privileges. The owner and authorization system in particular can be
subject to attack. To address this security issue we recommend using a
multi-sig wallet, establishing secure project administration protocols and
strengthening the security of project administrators.

Compliance with industry standards

The way the contract is developed and its compliance with industry
standards are part of the project. In order to increase the optimization of
the latter, we recommend refining the code to best fit industry best
practices, in particular the use of error messages and uint types.

21

DISCLAIMER

This report is subject to the terms and conditions (including without limitation,

description of services, confidentiality, disclaimer and limitation of liability) set

forth in the Services Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with the Agreement.

This report provided in connection with the Services set forth in the

Agreement shall be used by the Company only to the extent permitted under

the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by

any person for any purposes without Safetin's prior written consent.This

report is not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor should be considered,

an indication of the economics or value of any “product” or “asset” created

by any team or project that contracts Safetin to perform a security

assessment.

This report does not provide any warranty or guarantee regarding the

absolute bug-free nature of the technology analyzed, nor do they provide any

indication of the technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

22

Safetin security assessment to make decisions around investment or

involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing

process intending to help our customers increase the quality of their code

while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of

ongoing risk. Safetin's position is that each company and individual are

responsible for their own due diligence and continuous security. Safetin's goal

is to help reduce the attack vectors and the high level of variance associated

with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or fun.

23

