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Abstract

Bayesian Optimisation (BO), refers to a suite of techniques for global optimisation of expensive
black box functions, which use introspective Bayesian models of the function to efficiently find
the optimum. While BO has been applied successfully in many applications, modern optimisa-
tion tasks usher in new challenges where conventional methods fail spectacularly. In this work,
we present Dragonfly, an open source Python library for scalable and robust BO. Dragonfly in-
corporates multiple recently developed methods that allow BO to be applied in challenging real
world settings; these include better methods for handling higher dimensional domains, methods
for handling multi-fidelity evaluations when cheap approximations of an expensive function are
available, methods for optimising over structured combinatorial spaces, such as the space of neural
network architectures, and methods for handling parallel evaluations. Additionally, we develop new
methodological improvements in BO for selecting the Bayesian model, selecting the acquisition
function, and optimising over complex domains with different variable types and additional con-
straints. We compare Dragonfly to a suite of other packages and algorithms for global optimisation
and demonstrate that when the above methods are integrated, they enable significant improvements
in the performance of BO. The Dragonfly library is available at dragonfly.github.io.

1. Introduction

Many scientific and engineering tasks can be cast as black box optimisation problems, where we
need to sequentially evaluate a noisy black box function with the goal of finding its optimum. A
common use case for black box optimisation, pervasive in many industrial and scientific applica-
tions, is hyperparameter tuning, where we need to find the optimal configuration of a black box
system by tuning the several knobs which affect the performance of the system. For example, in
scientific simulation studies, parameters in expensive simulations must be chosen to yield realistic
results (Parkinson et al., 2006); in materials design and drug discovery, parameters of a material
or drug should be chosen to optimise the various desired criteria (Griffiths and Hernández-Lobato,
2017). An application for hyperparameter tuning, most relevant to the machine learning community
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is model selection, where we cannot model the generalisation performance of a statistical model
analytically, and need to carry out expensive train and validation experiments to find the best model
for a given task. Common methods for hyperparameter tuning, in practice, are often inefficient or
based on heuristics. For example, parameters may be chosen via an exhaustive (i.e. “grid”) or random
search over the parameter space, or via manual tuning by domain experts. In academic circles, the
lore is that this work is often done manually via trial and error by graduate students.

Formally, given a black box function f : X → R over some domain X , we wish to find its optimum
using repeated evaluations to f . Typically, f is accessible only through noisy point evaluations, is
potentially non-convex, and has no gradient information. In many applications, each evaluation is
expensive, incurring a large computational or economic cost. Hence, the goal is to maximise f using
as few evaluations as possible. Methods for this task aim to determine the next point xt for evaluation
using knowledge of f acquired via previous query-observation pairs {(xi, yi)}t−1i=1.

Bayesian Optimisation (BO) refers to a suite methods for optimisation, which use a prior belief
distribution for f . To determine future evaluations, BO methods use the posterior given the current
evaluations to reason about where to evaluate next. Precisely, it uses the posterior to construct an
acquisition function ϕt : X → R and chooses its maximum xt ∈ argmaxx∈X ϕt(x) as the next point
for evaluation. BO usually consumes more computation to determine future points than alternative
methods for global optimisation, but this pays dividends when evaluating f is expensive, as it is
usually able to find the optimum in a fewer number of iterations than such methods. Bayesian
optimisation has shown success in a variety of hyperparameter tuning tasks including optimal policy
search, industrial design, scientific experimentation, and model selection.

That said, optimisation tasks in modern applications face new challenges which cannot be handled
by conventional approaches. This paper describes Dragonfly (dragonfly.github.io), a new open
source Python library for BO, with a primary focus of making BO scalable for modern settings, and
a secondary focus on making BO robust.

• Scalability: Over the last few years, our lab has published a line of work on scaling up BO to
address modern challenges. These include better methods for handling higher dimensional
domains, methods for handling multi-fidelity evaluations when cheap approximations of an
expensive function are available, methods for optimising over neural network architectures,
and methods for handling parallel evaluations. These methods have been incorporated into
Dragonfly. In addition, we use evolutionary algorithms to optimise the acquisition, which
enables BO over complex domains, including those with different variable types and with
fairly general constraints on these variables.

• Robustness: Conventional BO methods tend to be sensitive to the choice of the acquisition
and the parameters of the underlying Bayesian model—a common symptom of a bad choice
being that the algorithm “gets stuck”, and hence is not able to improve on a previously
found optimum value for a large number of iterations. Current approaches to handle these
settings tend to be very expensive, limiting their applicability in settings where evaluations
to f are only moderately expensive. We describe new randomised approaches implemented
in Dragonfly which stochastically sample among an available set of acquisition choices and
model parameters instead of relying on a single value for the entire optimisation routine. This
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approach adds much needed robustness to BO, at significantly lower computational overhead
than existing approaches.

We compare Dragonfly to several other packages and algorithms for black box optimisation and
demonstrate that we perform better or competitively in a variety of synthetic benchmarks and real
world tasks in computational astrophysics and model selection. Crucially, Dragonfly is able to
consistently perform well across a wide array of problems.

The remainder of this manuscript is organised as follows. In Section 2, we review Gaussian processes
and BO, in Section 3 we describe our previous efforts for scaling up BO, and in Section 4 we describe
techniques for improving robustness of BO. Section 5 describes our implementation and Section 6
compares Dragonfly to other popular methods and packages for global optimisation.

2. A Brief Review of Gaussian Processes and Bayesian Optimisation

A Review of Gaussian Processes: A Gaussian Process (GP) over a space X is a random process
from X to R. GPs are typically used as a prior for functions in Bayesian nonparametrics. A GP is
characterised by a mean function µ : X → R and a kernel (covariance function) κ : X 2 → R. If
f ∼ GP(µ, κ), then f(x) is distributed normally N (µ(x), κ(x, x)) for all x ∈ X . Some common
options for the prior kernel κ are the squared exponential and Matérn kernels. Suppose that we are
given n observations Dn = {(xi, yi)}ni=1 from this GP, where xi ∈ X , yi = f(xi) + εi ∈ R and
εi ∼ N (0, η2). Then the posterior f |Dn is also a GP with mean µn and covariance κn given by,

µn(x) = k>(K + η2In)−1Y, κn(x, x′) = κ(x, x′)− k>(K + η2In)−1k′. (1)

Here Y ∈ Rn is a vector with Yi = yi, and k, k′ ∈ Rn are such that ki = κ(x, xi), k
′
i = κ(x′, xi).

In is the n× n identity matrix. The Gram matrix K ∈ Rn×n is given by Ki,j = κ(xi, xj). We have
illustrated the prior and posterior GPs in Figure 1. We refer the reader to Chapter 2 of Rasmussen
and Williams (2006) for more on the basics of GPs and their use in regression.

A Review of Bayesian Optimisation: BO refers to a suite of methods for black box optimisation in
the Bayesian paradigm which use a prior belief distribution for f . BO methods have a common modus
operandi to determine the next point xt for evaluation: first use the posterior for f conditioned on the
past evaluations {(xi, yi)}t−1i=1 to construct an acquisition function ϕt : X → R; then maximise the
acquisition to determine the next point, xt ∈ argmaxx∈X ϕt(x). At time t, the posterior represents
our beliefs about f after t− 1 observations and ϕt(x) captures the utility of performing an evaluation
at x according to this posterior. Typically, optimising ϕt can be nontrivial. However, since ϕt is
analytically available, it is assumed that the effort for optimising ϕt is negligible when compared to
an evaluation of f . After n evaluations of f , the goal of an optimisation algorithm is to achieve small
simple regret Sn, defined below.

Sn = f(x?)− max
t=1,...,n

f(xt), (2)

While there are several options for the prior for f , such as neural networks (Snoek et al., 2015) and
random forests (Hutter et al., 2011), the most popular option is to use a GP. Similarly, while there are
several choices for the acquisition, for the purpose of this introduction, we focus on upper confidence
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Figure 1: An illustration of GPs and BO. The first figure shows the function of interest f (black line) before
any observations and illustrates a GP that represents the prior uncertainty. The shaded region represents a 99%
confidence region for f and the coloured lines are samples from the GP. The second figure shows some noisy
observations (black ×’s) of f and the posterior GP conditioned on the observations. The confidence region has
shrunk around the observations. In the third figure we illustrate GP-UCB when we have to pick the next point
xt given observations as shown in the second figure. The GP-UCB acquisition ϕt upper bounds f . At time t,
we choose the maximiser of ϕt for evaluation, i.e xt = argmaxx ϕt(x).

bound (GP-UCB) (Auer, 2003; Srinivas et al., 2010) and Thompson’s sampling (TS) (Thompson,
1933). The GP-UCB acquisition forms an upper confidence bound for f , and is defined as,

ϕt(x) = µt−1(x) + β
1/2
t σt−1(x). (3)

Here µt−1 is the posterior mean of the GP after t− 1 observations and is our current estimate of f .
The posterior standard deviation, σt−1, is the uncertainty associated with this estimate. The µt−1
term encourages an exploitative strategy—in that we want to query regions where we already believe
f is high—and σt−1 encourages an exploratory strategy—in that we want to query where we are
uncertain about f lest we miss high valued regions which have not been queried yet. βt controls the
trade-off between exploration and exploitation. We have illustrated GP-UCB in Figure 1.

Thompson sampling is another popular BO method, where at each time step, a random sample drawn
from the posterior serves as the acquisition ϕt. Precisely, at time t, the next evaluation point is
determined by drawing a sample h from the posterior and then choosing xt ∈ argmaxx∈X h(x). In
addition to GP-UCB and TS, other common acquisitions for BO include probability of improvement
(PI) (Kushner, 1964), expected improvement (GP-EI), top-two expected improvement TTEI (Qin
et al., 2017), and entropy based methods (Hernández-Lobato et al., 2014; Wang and Jegelka, 2017).

3. Scaling up Bayesian Optimisation

We now describe our prior work in scaling up BO to modern large scale problems. We provide only
a brief overview of each method and refer the reader to the original publication for more details.
Where necessary, we also provide some details on our implementation in Dragonfly.

3.1 Additive Models for High Dimensional Bayesian Optimisation

In this subsection we consider settings where X is a compact subset of Rd. While Bayesian optimisa-
tion has been successful in many low dimensional applications (typically d < 10), expensive high
dimensional functions occur in several fields such as computer vision, antenna design, computational
astrophysics and biology. Existing theoretical and empirical results suggest that BO is exponentially
difficult in high dimensions without further assumptions (Srinivas et al., 2010; Wang et al., 2013).
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In Kandasamy et al. (2015a), we identify two key challenges in scaling BO to high dimensions. The
first is the statistical challenge in estimating the function – nonparametric regression is inherently
difficult in high dimensions (Györfi et al., 2002). The second is the computational challenge
in maximising ϕt. Commonly used methods to maximise ϕt themselves require computation
exponential in dimension. We showed that we can overcome both challenges by modeling f as an
additive function. Prior to our work, most literature for BO in high dimensions are in the setting
where the function varies only along a very low dimensional subspace (Chen et al., 2012; Djolonga
et al., 2013; Wang et al., 2013). In these works, the authors do not encounter either the statistical
or computational challenge as they perform BO in either a random or carefully selected lower
dimensional subspace. However, these assumptions can be restrictive in many practical problems.
While our additive assumption is strong in its own right, it is considerably more expressive.

Key structural Assumption: In order to make progress in high dimensions, in Kandasamy et al.
(2015a), we assumed that f decomposes into the following additive form,

f(x) = f (1)(x(1)) + f (2)(x(2)) + · · ·+ f (M)(x(M)). (4)

Here each x(j) ∈ X (j) are lower dimensional groups of dimensionality pj . In this setting, we are
interested in cases where d is very large and the group dimensionality is bounded: pj ≤ p � d.
We will refer to the X (j)’s as groups and the grouping of different dimensions into these groups
{X (j)}Mj=1 as the decomposition. The groups are disjoint – i.e. if we treat the coordinates as a set,
x(i) ∩ x(j) = ∅. In keeping with the BO literature, we assume that each f (j) is sampled from a GP,
GP(0, κ(j)) where the f (j)’s are independent. Here, κ(j) : X (j) ×X (j) → R is the kernel for f (j).
This implies that f itself is sampled from a GP with an additive kernel κ(x, x′) =

∑
j κ

(j)(x(j), x(j)
′
).

While other additive GP models have been studied before (e.g. (Duvenaud et al., 2011)), the above
form will pave way to nice computational properties, as we will see shortly.

A natural first inclination given (4) is to try GP-UCB with an additive kernel. Since an additive
kernel is simpler than a dth order kernel, we can expect statistical gains—in Kandasamy et al. (2015a)
we showed that the regret improves from being exponential in d to linear in d. However, the main
challenge in directly using GP-UCB is that optimising ϕt in high dimensions can be computationally
prohibitive in practice. For example, using any grid search or branch and bound method, maximising
ϕt to within ζ accuracy, requires O(ζ−d) calls to ϕt. To circumvent this, we proposed Add-GP-UCB
which exploits the additive structure in f to construct an alternative acquisition function. For this, we
first describe inferring the individual f (j)’s using observations from f .

Inference in additive GPs: Suppose we are given observations Y = {y1, . . . , yn} at X =
{x1, . . . , xn}, where yi = f(xi) + ε and ε ∼ N (0, η2). For Add-GP-UCB, we will need the
distribution of f (j)(x(j)∗ ) conditioned on X,Y , which can be shown to be the following Gaussian.

f (j)(x
(j)
∗ )|x∗, X, Y ∼ N

(
k(j)

>
(K + η2In)−1Y , κ(j)(x

(j)
∗ , x

(j)
∗ )− k(j)>(K + η2In)−1k(j)

)
(5)

where k(j) ∈ Rn are such that k(j)i = κ(j)(x, xi). In is the n× n identity matrix. The Gram matrix
K ∈ Rn×n is given by Ki,j = κ(xi, xj) =

∑
j κ

(j)(xi, xj).
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The Add-GP-UCB acquisition: We now define the Add-GP-UCB acquisition ϕt as,

ϕt(x) =
M∑
j=1

µ
(j)
t−1(x

(j)) + β
1/2
t σ

(j)
t−1(x

(j)). (6)

ϕt can be maximised by maximising µ(j)t−1 + β
1/2
t σ

(j)
t−1 separately on X (j). As we need to solve M at

most p dimensional optimisation problems, it requires only O(Mp+1ζ−p) calls in total to optimise
within ζ accuracy—far more favourable than maximising ϕt.

We conclude this section with a couple of remarks. First, while our original work used a fixed group
dimensionality, in Dragonfly we treat this and the decomposition as kernel parameters. We describe
how they are chosen at the end of Section 5. Second, we note that several subsequent work have built
on our work and studied various additive models for high dimensional BO. For example, Gardner
et al. (2017); Wang et al. (2017) study methods for learning the additive structure, Furthermore,
the disjointedness in our model (4) can be restrictive in certain applications, and some BO work
have tried to generalise this. Li et al. (2016) use additive models with non-axis-aligned groups,
and (Rolland et al., 2018) study additive models with overlapping groups.

3.2 Multi-fidelity Bayesian Optimisation

Traditional methods for BO are studied in single fidelity settings; i.e. it is assumed that there
is just a single expensive function f . However, in practice, cheap approximations to f may be
available. These lower fidelity approximations can be used to discard regions in X with low function
value. We can then reserve the expensive evaluations for a small promising region. For example, in
hyperparameter tuning, the cross validation curve of an expensive machine learning algorithm can be
approximated via cheaper training routines using less data. and/or fewer training iterations. Similarly,
scientific experiments can be approximated to varying degrees using cheaper data collection and
computational techniques.

BO techniques have been used in developing multi-fidelity optimisation methods in various applica-
tions such as hyperparameter tuning and industrial design (Huang et al., 2006; Klein et al., 2015;
Poloczek et al., 2017; Swersky et al., 2013). However, these methods do not come with theoretical
underpinnings. There have been a line of work with theoretical guarantees developing multi-fidelity
methods for specific tasks such as active learning (Zhang and Chaudhuri, 2015), and model selec-
tion (Li et al., 2018); however, they do not apply to general optimisation problems. In a recent line of
work (Kandasamy et al., 2016a,b,c, 2017), we studied multi-fidelity optimisation and bandits under
various assumptions on the approximations. To the best of our knowledge, this is the first line of
work that theoretically formalises and analyses multi-fidelity optimisation. Of these, while our work
in Kandasamy et al. (2016a,b,c) requires stringent assumptions on the approximations, our follow
up work, BOCA (Kandasamy et al., 2017), uses assumptions of a more Bayesian flavour and can
be applied as long as we define a kernel on the approximations. We first describe the setting and
algorithm for BOCA and then discuss the various modifications in our implementation in Dragonfly.

Formalism for Multi-fidelity Optimisation: We will assume the existence of a fidelity space Z
and a function g : Z × X → R defined on the product space of the fidelity space and domain. The
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function f which we wish to maximise is related to g via f(·) = g(z•, ·), where z• ∈ Z . Our goal is
to find a maximiser x? ∈ argmaxx f(x) = argmaxx g(z•, x). In the rest of the manuscript, the term
“fidelities” will refer to points z in the fidelity space Z . The multi-fidelity framework is attractive
when the following two conditions are true.

1. The cheap g(z, ·) evaluation gives us information about g(z•, ·). As we will describe shortly, this
can be achieved by modelling g as a GP with an appropriate kernel for the fidelity space Z .

2. There exist fidelities z ∈ Z where evaluating g is cheaper than evaluating at z•. To this end,
we will associate a known cost function λ : Z → R+. It is helpful to think of z• as being the
most expensive fidelity, i.e. maximiser of λ, and that λ(z) decreases as we move away from z•.
However, this notion is strictly not necessary for our algorithm or results.

We will assume assume g ∼ GP(0, κ), and upon querying at (z, x) we observe y = g(z, x) + ε
where ε ∼ N (0, η2). κ : (Z × X )2 → R is the prior covariance defined on the product space. We
will exclusively study product kernels κ of the following form,

κ([z, x], [z′, x′]) = κ0 κZ(z, z′)κX (x, x′). (7)

Here, κ0 ∈ R+ is the scale of the kernel and κZ , κX are kernels defined on Z,X such that ‖κZ‖∞ =
‖κZ‖∞ = 1. This assumption implies that for any sample g draw from this GP, and for all z ∈ Z ,
g(z, ·) is a GP with kernel κX , and vice versa. This assumption is fairly expressive – for instance, if
we use an SE kernel on the joint space, it naturally partitions into a product kernel of the above form.

At time t, a multi-fidelity algorithm would choose a fidelity zt ∈ Z and a domain point xt ∈ X to
evaluate based on its previous fidelity, domain point, observation triples {(zi, xi, yi)}t−1i=1. Here yi
was observed when evaluating g(zi, xi). Let Dn = {(zi, xi, yi)}nt=1 be n such triples from the GP
g. We will denote the posterior mean and standard deviation of g conditioned on Dn by νn and τn
respectively (νn, τn can be computed from (1) by replacing x← [z, x]). Denoting, µn(·) = νn(z•, ·),
and σn(·) = τn(z•, ·), to be the posterior mean and standard deviation of g(z•, ·) = f(·), we have
that f |Dn is also a GP and satisfies f(x)|Dn ∼ N (µn(x), σ2n(x)) for all x ∈ X .

In Kandasamy et al. (2017), we defined both κZ and κX to be radial kernels, and proposed the
following two step procedure to determine the next evaluation. At time t, we will first construct
an upper confidence bound ϕt for the function f we wish to optimise. It takes the form, ϕt(x) =

µt−1(x) + β
1/2
t σt−1(x), where µt−1 and σt−1 are the posterior mean and standard deviation of f .

using the observations from the previous t− 1 time steps at all fidelities, i.e. the entire Z × X space.
Our next point xt in the domain X for evaluating g is a maximiser of ϕt, i.e.

xt ∈ argmax
x∈X

µt−1(x) + β
1/2
t σt−1(x) = argmax

x∈X
νt−1(z•, x) + β

1/2
t τt−1(z•, x). (8)

We then choose zt = argminz∈Zt(xt) λ(z) where,

Zt(xt) = {z•} ∪
{
z : λ(z) < λ(z•), τt−1(z, xt) >

√
κ0ξ(z)

√
λ(z)/λ(z•)

}
. (9)

Here ξ(z) is an information gap function. We refer the reader to Section 2 in Kandasamy et al. (2017)
for the definition and more details on ξ(z), but intuitively, it measures the price we have to pay,
in information, for querying away from z•. ξ(z) is a well defined quantity for radial kernels; for
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Figure 2: An illustration of GP sample paths drawn from the exponen-
tial decay kernel (Swersky et al., 2014) conditioned on being positive.
They are suitable for representing the validation accuracy along a fi-
delity dimension in model selection where, for e.g. validation accuracy
tends to increase as we use more data and/or train for more iterations.

e.g. for kernels of the form κ(z, z′) = exp(‖z − z′‖2γ), one can show that ξ(z) is approximately
proportional to ‖z − z•‖γ . The second step in BOCA says that we will only consider fidelities where
the posterior variance is larger than a threshold. This threshold captures the trade-off between cost
and information in the approximations available to us; cheaper fidelities cost less, but provide less
accurate information about the function f we wish to optimise.

Other acquisitions: A key property about the criterion (9) shown in Kandasamy et al. (2017), is that
is chooses a fidelity zt with good cost to information trade-off, given that we are going to evaluate g
at xt. In particular, it applies to xt chosen in an arbitrary fashion, and not necessarily via an upper
confidence bound criterion (8). Therefore in Dragonfly, we adopt the two step procedure described
above, but allow xt to be chosen also via other acquisitions as well.

Exponential decay kernels for monotonic approximations: In Kandasamy et al. (2017), we
choose the fidelity kernel κZ to be a radial kernel. This typically induces smoothness in g acros
Z , which can be useful in many applications. However, in model selection, the approximations are
obtained either by using less data and or less iterations in an iterative training procedure. In such
cases, as we move to the expensive fidelities, the validation performance tends to be monotonic—for
example, when the size of the training set increases, one expects the validation accuracy to keep
improving. Swersky et al. (2014) demonstrated that an exponential decay kernel κed(u, u′) =
1/(u+ u′ + 1)α, can strongly support such sample paths. We have illustrated such sample paths in
Figure 2. In a p dimensional fidelity space, one can use κZ(z, z′) =

∏p
i=1 κed(zi, z

′
i) as the kernel

for the fidelity space if all fidelity dimensions exhibit such behaviour. Unfortunately, the information
gain ξ(z) is not defined for non-radial kernels. In Dragonfly, we use ξ(z) = ‖z − z•‖ which is
similar to the approximation of the information gain for SE kernels. Intuitively, as z moves away
from z•, the information gap increases as g(z, ·) provides less information about g(z•, ·).

This concludes our description of multi-fidelity optimisation in Dragonfly. Following our work, there
have been a few papers on multi-fidelity optimisation with theoretical guarantees. Sen et al. (2018a,b)
develop an algorithm in frequentist settings which builds on the key intuitions here, i.e. query at low
fidelities and proceed higher only when the uncertainty has shrunk. In addition, Song et al. (2018)
develop a Bayesian algorithm which chooses fidelities based on the mutual information.

3.3 Bayesian Optimisation for Neural Architecture Search

In this section, we study using BO for neural architecture search (NAS), i.e. for finding the optimal
neural network architecture for a given prediction problem. The majority of the BO literature has
focused on settings where the domain X is either Euclidean and/or categorical. However, with the
recent successes of deep learning, neural networks are increasingly becoming the method of choice
for many machine learning applications. A number of recent work have demonstrated that novel
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architectures which deviate from traditional feed forward structures, can achieve good empirical
performance,(e.g. He et al. (2016); Huang et al. (2017)). This motivates studying model selection
methods which search the space of neural architectures and optimise for generalisation performance.
While there has been some work on BO for architecture search (Mendoza et al., 2016; Snoek
et al., 2012), they only optimise among feed forward architectures. Jenatton et al. (2017) study
methods for BO in tree structured spaces, and demonstrate an application in optimising feed forward
architectures. Besides BO, other techniques for NAS include reinforcement learning (Zoph and Le,
2017), evolutionary algorithms (Liu et al., 2017), and random search (Li and Talwalkar, 2019).

There are two main challenges for realising GP based BO for architecture search where each element
x ∈ X in our domain is now a neural network architecture. First, we must quantify the similarity
between two architectures x, x′ in the form of a kernel κ(x, x′). Secondly, we must maximise ϕt, the
acquisition function, in order to determine which point xt to test at time t. To tackle these issues,
in Kandasamy et al. (2018b) we develop a (pseudo-) distance for neural network architectures called
OTMANN (Optimal Transport Metrics for Architectures of Neural Networks) that can be computed
efficiently via an optimal transport program. Using this distance, we develop a BO framework for
optimising functions defined on neural architectures called NASBOT (Neural Architecture Search
with Bayesian Optimisation and Optimal Transport), which we describe next. We will only provide
high level details and refer the reader to Kandasamy et al. (2018b) for a more detailed exposition.

The OTMANN Distance and Kernel: Our first and primary contribution in Kandasamy et al.
(2018b) was to develop a distance metric d among neural networks; given a distance d of this form,
we may use e−βd as the kernel. This distance was designed taking into consideration the fact that the
performance of an architecture is determined by the amount of computation at each layer, the types of
these operations, and how the layers are connected. A meaningful distance should account for these
factors. To that end, OTMANN is defined as the minimum of a matching scheme which attempts
to match a notion of mass at the layers from one network to the layers of the other. The mass is
proportional to the amount of computation happening at each layer. We incur penalties for matching
layers with different types of operations or those at structurally different positions. The goal is to
find a matching that minimises these penalties, and the penalty at the minimum is a measure of
dissimilarity between two networks G1,G2. In Kandasamy et al. (2018b), we show that this matching
scheme can be formulated as an optimal transport program (Villani, 2003), and moreover the solution
induces a pseudo-distance d in the space of neural architectures.

The NASBOT Algorithm and its implementation in Dragonfly: Equipped with such a distance,
as explained previously, we use a sum of exponentiated distance terms as the kernel, where the
distances were obtained via different parameters of OTMANN and/or via normalised versions of the
original distance. To optimise the acquisition, we use an evolutionary algorithm. For this, we define
a library of modifiers which modify a given network by changing the number of units in a layer,
or make structural changes such as adding skip connections, removing/adding layers, and adding
branching (see Table 6 in Kandasamy et al. (2018b)). The modifiers allow us to navigate the search
space, and the evolutionary strategy allows us to choose good candidates to modify. In Dragonfly,
we also tune for the learning rate, and moreover, allow for multi-fidelity optimisation, allowing an
algorithm to train a model partially and observe its performance. We use the number of training
batch iterations as a fidelity parameter and use an exponential decay kernel across the fidelity space.
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3.4 Parallelisation

BO, as described in Section 2, is a sequential algorithm which determines the next query after
completing previous queries. However, in many applications, we may have access to multiple
workers and hence carry out several evaluations simultaneously. As we demonstrated theoretically
in Kandasamy et al. (2018a), when there is high variability in evaluation times, it is prudent for
BO to operate in the asynchronous setting, where a worker is re-deployed immediately with a new
evaluation once it completes an evaluation. In contrast, if all evaluations take roughly the same
amount of time, it is meaningful to wait for all workers to finish, and incorporate all their feedback
before issuing the next set of queries in batches.

In our implementations of all acquisitions except TS, we handle parallelisation using the hallucination
technique of Desautels et al. (2014); Ginsbourger et al. (2011). Here, we pick the next point exactly
like in the sequential setting, but the posterior is based on Dt ∪ {(x, µt−1(x))}x∈Ft , where Ft are
the points in evaluation by other workers at step t and µt−1 is the posterior mean conditioned on
just Dt; this preserves the mean of the GP, but shrinks the variance around the points in Ft. The
hallucination technique explicitly discourages the algorithm from picking points close to those
that are in evaluation. However, for TS, as we demonstrated in Kandasamy et al. (2018a), a naive
application would suffice, as the inherent randomness of TS ensures that the points chosen for
parallel evaluation are sufficiently diverse. Therefore, Dragonfly does not use hallucinations for
TS. While there are other techniques for parallelising BO, they either require choosing additional
parameters and/or are computationally expensive (González et al., 2016; Kathuria et al., 2016; Shah
and Ghahramani, 2015; Wang et al., 2018).

4. Robust Bayesian Optimisation in Dragonfly

We now describe our design principles for robust GP based BO in Dragonfly. We favour randomised
approaches which uses multiple acquisitions and GP hyperparameter values at different iterations
since we found them to be quite robust in our experiments.

4.1 Choice of Acquisition

Dragonfly implements several common acquisitions for BO such as GP-UCB, GP-EI, TTEI, TS,
Add-GP-UCB, and PI. The general practice in the BO literature has been for a practitioner to pick
their favourite acquisition, and use it for the entire optimisation process. However, the performance
of each acquisition can be very problem dependent, as demonstrated in Figure 3. Therefore, instead
of trying to pick the single best acquisition, we adopt an adaptive sampling strategy which chooses
different acquisitions at different iterations instead of attempting to pick a single best one.

Our sampling approach maintains a list of m acquisitions `acq along with a weight vector wacq
t =

{wacq
t [α]}α∈`acq ∈ Rm. We set wacq

0 [α] = ω
acq
0 for all α ∈ `acq. Suppose at time step t, we chose

acquisition θ and found a higher f value than the current best value. We then update wacq
t+1[α] ←

w
acq
t [α] + 1(θ = α); otherwise, wacq

t+1[α] ← w
acq
t [α]. At time t, we choose acquisition θ ∈ `acq

with probability wacq
t [θ]/

∑
αw

acq
t [α]. This strategy initially samples all acquisitions with equal

probability, but progressively favours those that perform better on the problem.

10



Dragonfly: SCALABLE & ROBUST BAYESIAN OPTIMISATION

0 20 40 60 80 100

Number of Evaluations

100

Si
m

pl
e R

eg
re

t
Hartmann6 (d=6)

RAND
GP-PI
GP-EI
TTEI
GP-UCB
Add-GP-UCB
TS
Combined

0 20 40 60 80 100

Number of E aluations

10−1

100

101

Si
m
pl
e R

eg
re
t

Park1×3 (d=12)

0 20 40 60 80 100

Number of Evaluations

103

4×102

6×102

Si
m
pl
e R

eg
re
t

Branin×20 (d=40)

Figure 3: Comparison of using individual acquisitions such as GP-UCB, GP-EI, TTEI, TS, PI, and Add-
GP-UCB versus the combined sampling method as described in Section 4.1. We have also shown random
sampling (RAND) for comparison. We plot the simple regret (2), so lower is better. Error bars indicate one
standard error. All curves were produced by averaging over 10 independent runs.

By default, we set `acq = {GP-UCB, GP-EI, TS, TTEI}; for entirely Euclidean domains, we also in-
clude Add-GP-UCB. We do not incorporate PI since it consistently underperformed other acquisitions
in our experiments. As Figure 3 indicates, the combined approach is robust across different problems,
and is competitive with the best acquisition on the given problem. Shahriari et al. (2014) use an
entropy based approach to select among multiple acquisitions; however, this requires optimising all
of them which can be expensive. We found that our approach, while heuristic in nature, performed
well in our experiments. Finally, we note that we do not implement entropy based acquisitions, since
their computation can, in general, be quite expensive.

4.2 GP Hyperparameters

One of the main challenges in GP based BO is that the selection of the GP hyperparameters1

themselves could be notoriously difficult. While a common approach is to choose them by maximising
the marginal likelihood, in some cases, this could also cause overfitting in the GP, especially in the
early iterations (Snoek et al., 2012). The most common strategy to overcome this issue is to maintain
a prior on the hyperparameters and integrate over the posterior (Hoffman and Shahriari, 2014;
Malkomes et al., 2016; Snoek et al., 2012). However, this can be very computationally burdensome,
and hence prohibitive in applications where function evaluations are only moderately expensive.
Instead, in this work, we focus on a different approach that uses posterior sampling. Precisely, at
each iteration, one may sample a set of GP hyperparameters from the posterior conditioned on the
data, and use them for the GP at that iteration. Intuitively, this is similar to a Thompson sampling
procedure where the prior on the hyperparameters specifies a prior on a meta-model, and once we
sample the hyperparameters, we use an acquisition of our choice. When this acquisition is TS, this
procedure is exactly Thompson sampling using the meta-prior.

Our experience suggested that maximising the marginal likelihood (ML) generally worked well in
settings where the function was smooth; for less smooth functions, sampling from the posterior (PS)
tended to work better. We speculate that this is because, with smooth functions, a few points are
sufficient to estimate the landscape of the function, and hence maximum likelihood does not overfit;

1. Here “hyperparameters” refer to those of the GP, such as kernel parameters, and should not be conflated with the title
of this paper, where “hyperparameter tuning” refers to the general practice of optimising a system’s performance.
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Figure 4: Comparison using only maximum likelihood (ML), only posterior sampling (PS) and the combined
sampling approach (ML+PS) as described in Section 4.2. We have also shown random sampling (RAND) for
comparison. We plot the simple regret (2), so lower is better. All curves were produced by averaging over 10
independent runs. Error bars indicate one standard error.

since it has already estimated the GP hyperparameters well, it does better than PS. On the other hand,
while ML is prone to overfit for non-smooth functions, the randomness in PS prevents us from getting
stuck at bad GP hyperparameters. As we demonstrate in Figure 4, either of these approaches may
perform better than the other depending on the problem.

Therefore, similar to how we handled the acquisitions, we adopt a sampling approach where we
choose either maximum likelihood or sampling from the posterior at every iteration. Our GP
hyperparameter tuning strategy proceeds as follows. After every ncyc evaluations of f , we fit a single
GP to it via maximum likelihood, and also sample ncyc hyperparameter values from the posterior.
At every iteration, the algorithm chooses either ML or PS in a randomised fashion. If it chooses the
former, it uses the single best GP, and if it chooses the latter, it uses one of the sampled values. For
the sampling strategy, we let whp

t = {whp
t [h]}h∈`hp ∈ R2 where `hp = {ML, PS} and choose strategy

h ∈ `hp with probability whp
t [h]/(w

hp
t [ML] + w

hp
t [PS]). We update whp

t in a manner similar to wacq
t .

Figure 4 demonstrates that this strategy performs as well as, if not better than the best of ML and PS.

By default, Dragonfly uses ncyc = 17. For maximum likelihood of continuous GP hyperparameters,
we use either DiRect (Jones et al., 1993) or PDOO (Grill et al., 2015). If discrete hyperparameters
are also present, we optimise the continuous parameters for all choices of discrete values; this is
feasible, since, in most cases, there are only a handful of discrete GP hyperparameter values. For
posterior sampling, we impose a uniform prior and use Gibbs sampling as follows. At every iteration,
we visit each hyperparameter in a randomised order; on each visit, we sample a new value for the
current hyperparameter, conditioned on the values of the rest of the hyperparameters. For continuous
hyperparameters, we do so via slice sampling (Neal, 2003) and for discrete hyperparameters we use
Metropolis-Hastings. We use a burn-in of 1000 samples and collect a sample every 100 samples
from thereon to avoid correlation. Next, we describe our BO implementation in Dragonfly.

5. BO Implementation in Dragonfly

Domains: Dragonfly allows optimising over domains with Euclidean, integral, and discrete variables.
We also define discrete numeric and discrete Euclidean variable types, where a variable can assume
one of a finite discrete set of real numbers and Euclidean vectors respectively. We also allow neural
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network variable types which permits us to optimise functions over neural network architectures. In
addition to specifying variables, one might wish to impose constraints on the allowable values of
these variables. These constraints can be specified via a Boolean function which takes a point and
returns True/False; the point exists in the domain if and only if it returns True. For example, if we
have a Euclidean variable x ∈ [−1, 1]2, the function 1{‖x‖2 ≤ 1} constrains the domain to the unit
ball. In Dragonfly, these constraints can be specified via a Python expression or a function.

Kernels: For Euclidean, integral, and discrete numeric variables, Dragonfly implements the squared
exponential and Matérn kernels. Following recommendations in Snoek et al. (2012), we use the
Matérn-2.5 kernel by default for above variable types. We also implement additive variants of
above kernels for the Add-GP-UCB acquisition. For discrete variables, we use the Hamming
kernel; precisely, given x, x′ ∈ ×ki=1Ai, where each Ai is a discrete domain, we use κσ,α(x, x′) =

σ
∑k

i=1 αi1(xi = x′i) as the kernel. Here σ > 0 and α ∈ Rk+,
∑

i αi = 1 are kernel hyperparameters
determining the scale and the relative importance of each discrete variable respectively. Dragonfly
also implements OTMANN and exponential decay kernels discussed previously.

Optimising the Acquisition: To maximise the acquisition ϕt in purely Euclidean spaces with no
constraints, we use DiRect (Jones et al., 1993) or PDOO (Grill et al., 2015), depending on the
dimensionality. In all other cases, we use an evolutionary algorithm. For this, we begin with an initial
pool of randomly chosen points in the domain and evaluate the acquisition at those points. We then
generate a set of Nmut mutations of this pool as follows; first, stochastically select Nmut candidates
from this set such that those with higher ϕt values are more likely to be selected; then apply a
mutation operator to each candidate. Then, we evaluate the acquisition on this Nmut mutations, add
it to the initial pool, and repeat for the prescribed number of steps. We choose an evolutionary
algorithm since it is simple to implement and works well for cheap functions, such as the acquisition
ϕt. However, as we demonstrate in Section 6, it is not ideally suited for expensive-to-evaluate
functions. Each time we generate a new candidate we test if they satisfy the constraints specified.
If they do not, we reject that sample and keep sampling until all constraints are satisfied. One
disadvantage to this rejection sampling procedure is that if the constrains only permit a small subset
of the entire domain, it could significantly slow down the optimisation of the acquisition.

Initialisation: We bootstrap our BO routine with ninit evaluations. For Euclidean and integral
variables, these points are chosen via latin hypercube sampling, while for discrete and discrete
numeric variables they are chosen uniformly at random. For neural network variables, we choose
ninit feed forward architectures. Once sampled, as we did when optimising the acquisition, we use
rejection sampling to test if the constraints on the domain are satisfied. By default, ninit is set to 5d
where d is the dimensionality of the domain but is capped off at 7.5% of the optimisation budget.

We have summarised the resulting procedure for BO in Dragonfly in Algorithm 1. q, q′ denote a
query. In usual BO settings, they simply refer to the next point x ∈ X , i.e. q = (x); in multi-fidelity
settings they also include the fidelity z ∈ Z , i.e. q = (z, x). acq(q), hp(q) refer to the acquisition and
the choice of {ML, PS} for GP parameter selection. multinomial-sample(`, w) samples an element
from a set ` from the multinomial distribution {wi/

∑
j wj}

|`|
i=1. Before concluding this section, we

take a look at two implementation details for Add-GP-UCB.

Choosing the decomposition for Add-GP-UCB: Recall from Section 3.1, the additive decompo-
sition and maximum group dimensionality for Add-GP-UCB are treated as kernel parameters. We
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conclude this section by describing the procedure for choosing these parameters, both for ML and PS.
For the former, since a complete maximisation can be computationally challenging, we perform a
partial maximisation by first choosing an upper bound pmax for the maximum group dimensionality.
For each group dimensionality p ∈ {1, . . . , pmax}, we select k different decompositions chosen at
random. For each such decomposition, we optimise the marginal likelihood over the remaining
hyperparameters, and choose the decomposition with the highest likelihood. For PS, we use the
following prior for Gibbs sampling. First, we pick the maximum group dimensionality p uniformly
from {1, . . . , pmax}. We then randomly shuffle the coordinates {1, . . . , d} to produce an ordering.
Given a maximum group dimensionality p and an ordering, one can uniquely identify a decomposi-
tion by iterating through the ordering and grouping them in groups of size at most p. For example,
in a d = 7 dimensional problem, p = 3 and the ordering 4, 7, 3, 6, 1, 5, 2 yields the decomposition
{(3, 4, 7), (1, 5, 6), (2)} of three groups having group dimensionalities 3, 3, and 1 respectively.

Since the set of possible decompositions is a large combinatorial space, we might not be able to
find the true maximiser of the marginal likelihood in ML or cover the entire space via sampling in
PS. However, we adopt a pragmatic view of the additive model (4) which views it as a sensible
approximation to f in the small sample regime, as opposed to truly believing that f is additive. Under
this view, we can hope to recover any existing marginal structure in f via a partial maximisation or a
few posterior samples. In contrast, an exhaustive search may not do much better when there is no
additive structure. By default, Dragonfly uses pmax = 6 and k = 25 for Add-GP-UCB.

Algorithm 1 Bayesian Optimisation in Dragonfly with M asynchronous workers

Require: ninit, ncyc, `acq, `hp.
1: D0 ← Evaluate f at ninit points.
2: ymax ← maximum y value in D0.
3: wacq = ω

acq
0 1|`acq|.

4: whp = ω
hp
0 12.

5: for j = 0, 1, 2 . . . do
6: Wait for a worker to finish.
7: Dj ← Dj−1 ∪ {(q, y)} where (q, y) are the worker’s previous query and observation.
8: if y > ymax, then # update weights if new max-value was found

9: wacq[acq(q)] = wacq[acq(q)] + 1.
10: whp[hp(q)] = whp[hp(q)] + 1.
11: end if
12: if mod (t, ncyc) = 0, then # updates for GP hyperparameters

13: ΘPS ← sample ncyc GP hyperparameter values.
14: θML ← maximise GP marginal likelihood to find best GP hyperparameter values.
15: end if
16: θ ← multinomail-sample([pop(Θ), θML], whp). # choose GP hyperparameters

17: α← multinomial-sample(`acq, wacq). # choose acquisition

18: µt−1 ← Compute posterior GP mean given Dj using θ.
19: Compute hallucinated posterior GP GPt−1 ← GP(µt−1, κt−1;Dj ∪ {(x, µt−1(x))}x∈Ft , θ).
20: q′ ← Determine next query for evaluation using acquisition α and GP GPt−1.
21: Re-deploy worker with an evaluation at q′.
22: end for
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Combining multi-fidelity with Add-GP-UCB: When using an additive kernel κX =
∑

j κ
(j)

for the domain X in multi-fidelity settings, the resulting product kernel also takes an additive
form, κ([z, x], [z′, x′]) =

∑
j κZ(z, z′)κ(x(j), x(j)

′
). When using Add-GP-UCB, in the first step

we choose x(j)t = argmaxx(j)∈X (j) ν
(j)
t−1(z•, x

(j)) + β
1/2
t τ

(j)
t−1(z•, x

(j)) for all j to obtain the next

evaluation xt. Here ν(j)t−1, τ
(j)
t−1 are the posterior GP mean and standard deviation of the j th function in

the above decomposition. Then we choose the fidelity zt as described in (9).

6. Experiments

We now compare Dragonfly to the following algorithms and packages. RAND: uniform random
search; EA: evolutionary algorithm; PDOO: parallel deterministic optimistic optimisation (Grill
et al., 2015); HyperOpt (Bergstra et al., 2013); SMAC (Hutter et al., 2011); Spearmint (Snoek et al.,
2012); GPyOpt (Authors, 2016). Of these PDOO is a deterministic non-Bayesian algorithm for
Euclidean domains. SMAC, Spearmint, and GPyOpt are model based BO procedures, where SMAC
uses random forests, while Spearmint and GPyOpt use GPs. For EA, we use the same procedure
used to optimise the acquisition in Section 5. We begin with experiments on some standard synthetic
benchmarks for zeroth order optimisation.

6.1 Experiments on Synthetic Benchmarks

Euclidean Domains: Our first set of experiments are on a series of synthetic benchmarks in
Euclidean domains. We use the Branin (d = 2), Hartmann3 (d = 3), Park1 (d = 4), Park2 (d = 4),
Hartmann6 (d = 6), and Borehole (d = 8) benchmarks, and additionally, construct high dimensional
versions of the above benchmarks. The high dimensional forms were obtained via an additive
model f(x) = f ′(x(1)) + f ′(x(2)) . . . where f ′ is a lower dimensional function and the x(i)’s are
coordinates forming a low dimensional subspace. For example, in the Hartmann3x6 problem, we
have an 18 dimensional function obtained by considering six Hartmann3 functions along coordinate
groups {1, 2, 3}, {4, 5, 6}, . . . , {16, 17, 18}. We compare all methods on their performance over
200 evaluations. The results are given in Figure 5, where we plot the simple regret (2) against the
number of evaluations (lower is better). As its performance was typically worse than all other BO
methods, we do not compare to EA to avoid clutter in the figures. Spearmint is not shown on the
higher dimensional problems since it was too slow beyond 25-30 dimensions. SMAC’s initialisation
procedure failed in dimensions larger than 40 and is not shown in the corresponding experiments.

Non-Euclidean Domains: Next, we compare Dragonfly to the above baselines on non-Euclidean
domains. For this, we modify the above benchmarks, originally defined on Euclidean domains,
so that they can take non-Euclidean arguments. Specifically, we use modified versions of the
Borehole, Hartmann6, Park1 and Park2 functions. We also construct a synthetic function defined
on CNN architectures, on a synthetic NAS problem. The results are given in Figure 6. Since
the true maximum of these functions are not known, we simply plot the maximum value found
against the number of evaluations (higher is better). In this set of experiments, in addition to vanilla
BO, we also construct variations of these function which can take a fidelity argument. Hence, a
strategy may use these approximations to speed up the optimisation process. The x-axis in all
cases refers to the expended capital, which was chosen so that a single fidelity algorithm would

15



KANDASAMY, VYSYRAJU, NEISWANGER, PARIA, COLLINS, SCHNEIDER, PÓCZOS, XING
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Figure 5: Comparison of Dragonfly with other algorithms and BO packages on functions with noiseless
evaluations defined on Euclidean domains. We plot the simple regret (2) so lower is better. The title states the
name of the function, and its dimensionality. All curves were produced by averaging over 20 independent
runs. Error bars indicate one standard error. The legend for all curves is available in the first figure. SMAC’s
initialisation procedure did not work in dimensions larger than 40 so it is not shown in the respective figures.
Spearmint is not shown on all figures since it was too slow to run on high dimensional problems.
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Figure 6: Comparison of Dragonfly with other algorithms and BO packages on synthetic functions defined
on non-Euclidean domains. We plot the maximum value, so higher is better. The x-axis shows the expended
capital and the y axis is the maximum value (higher is better). The title states the name of the function, and its
dimensionality (number of variables). We do not state the dimensionality for the synthetic CNN function since
the dimensionality of a space of CNN architectures is not defined. All curves were produced by averaging
over 20 independent runs. Error bars indicate one standard error. The legend for all curves is available in the
first figure. We do not compare Spearmint, HyperOpt, SMAC, and GPyOpt on the synthetic CNN function
since they do not support optimising over neural architectures.

perform exactly 200 evaluations. We compare a multi-fidelity version of Dragonfly, which uses the
BOCA strategy (Kandasamy et al., 2017), to choose the fidelities and points for evaluation. See
github.com/dragonfly/dragonfly/tree/master/demos synthetic for a description of these functions
and the approximations for the multi-fidelity curves.

Domains with Constraints: Next, we consider three optimisation tasks where we impose additional
constraints on the domain variables. Specifically, we consider versions of the Hartmann3, Park1 and
Borehole functions. As an example, the Hartmann3 function is usually defined on the domain [0, 1]3;
however, we consider a constrained domain X =

{
x ∈ [0, 1]3 ; x21 + x22 ≤ 1/2

}
. Descriptions of

the other functions and domains are available in the Dragonfly repository. In Figure 7, we compare
Dragonfly to RAND and EA. We do not compare to other methods and packages, since, to our
knowledge, they cannot handle arbitrary constraints of the above form.

Noisy Evaluations: Finally, we compare all methods when evaluations are noisy. We use 6 test
functions from above, but add Gaussian noise to each evaluation; the width of the Gaussian was
chosen based on the range of the function. We evaluate all methods on the maximum true function
value queried (as opposed to the observed maximum value). The results are given in Figure 8.

Take-aways: On Euclidean domains, Spearmint and Dragonfly perform consistently well across the
lower dimensional tasks, but Spearmint is prohibitively expensive in high dimensions. On the higher
dimensional tasks, Dragonfly is the most competitive. On non-Euclidean domains, once again we see
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Figure 7: Comparison of Dragonfly with RAND and EA on synthetic functions with constraints on the
domain. See caption under Figure 6 for more details.
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Figure 8: Experiments on synthetic functions when evaluations are noisy. In the top row, the domain is
Euclidean and we plot the number of evaluations vs simple regret (lower is better). In the bottom row, the
domain is non-Euclidean, and we plot the expended capital vs the maximum true value found (higher is better).
The legend for each row is given in the leftmost figure. See captions under Figures 5, 6, and 7 for more details.

that Dragonfly is able to do consistently well. GPyOpt and Dragonfly perform very well on some
problems, but also perform poorly on others. It is interesting to note that the improvements due to
multi-fidelity optimisation are modest in some cases. We believe this is due to two factors. First, the
multi-fidelity methods spends an initial fraction of its capital at the lower fidelities, and the simple
regret is∞ until it queries the highest fidelity. Second, there is an additional statistical difficulty in
estimating, what is now a more complicated GP model across the domain and fidelity space.

6.2 Experiments on Astrophysical Maximum Likelihood Problems

In this section, we consider two maximum likelihood problems in computational Astrophysics.

Luminous Red Galaxies: Here we used data on Luminous Red Galaxies (LRGs) for maximum
likelihood inference on 9 Euclidean cosmological parameters. The likelihood is computed via the
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Figure 9: Results on the maximum likelihood estimation problem on the luminous red galaxies dataset (left)
and the supernova dataset (right). In both figures, the y-axis is the highest log likelihood found (higher is
better). On the left figure, the x-axis is the number of evaluations and on the right figure it is wall clock time.
All curves were produced by averaging over 10 independent runs. Error bars indicate one standard error.

galaxy power spectrum. Software and data were taken from Kandasamy et al. (2015b); Tegmark et al
(2006). Each evaluation here is relatively cheap, and hence we compare all methods on the number
of evaluations in Figure 9. We do not compare a multi-fidelity version since cheap approximations
were not available for this problem. Spearmint, GPyOpt, and Dragonfly do well on this task.

Type Ia Supernova: We use data on Type Ia supernova for maximum likelihood inference on 3
cosmological parameters, the Hubble constant, the dark matter fraction, and the dark energy fraction.
We use data from Davis et al (2007), and the likelihood is computed using the method described
in Shchigolev (2017). This requires a one dimensional numerical integration for each point in the
dataset. We construct a p = 2 dimensional multi-fidelity problem where we can choose data set
size N ∈ [50, 192] and perform the integration on grids of size G ∈ [102, 106] via the trapezoidal
rule. As the cost function for fidelity selection, we used λ(N,G) = NG. Our goal is to maximise
the average log likelihood at z• = [192, 106]. Each method was given a budget of 4 hours on a 3.3
GHz Intel Xeon processor with 512GB memory. The results are given in Figure 9 where we plot the
maximum average log likelihood (higher is better) against wall clock time. The plot includes the
time taken by each method to determine the next point for evaluation. We do not compare Spearmint
and HyperOpt as they do not provide an API for optimisation on a time budget.

6.3 Experiments on Model Selection Problems

We begin with three experiments on tuning hyperparameters of regression methods, where we wish
to find the hyperparameters with the smallest validation error. We set up a one dimensional fidelity
space where a multi-fidelity algorithm may choose to use a subset of the dataset to approximate
the performance when training with the entire training set. For multi-fidelity optimisation with
Dragonfly, we use an exponential decay kernel for κZ (7). The results are presented in Figure 10,
where we plot wall clock time against the validation error (lower is better). We do not compare
Spearmint and HyperOpt since they do not provide an API for optimisation on a time budget.

Random forest regression, News popularity: In this experiment, we tune random forest regression
(RFR) on the news popularity dataset (Fernandes et al., 2015). We tune 6 integral, discrete and
Euclidean parameters available in the Scikit-Learn implementation of RFR. The training set had
20000 points, but could be approximated via a subset of size z ∈ (5000, 20000) by a multi-fidelity
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Figure 10: Results on the model selection problems in Section 6.3. The title states the method and data set
used. In all figures, the y-axis is the validation error (loer is better), and the x-axis is wall clock time. All
curves were produced by averaging over 10 independent runs. Error bars indicate one standard error.

Dataset Dragonfly Dragonfly
(lowest)

Dragonfly
+MF GPyOpt SMAC RAND RAND

(lowest) Hyperband

RFR (News)
0.6456
±0.08044

.6631
±0.0110

0.5203
±0.0805

0.5904
±0.0635

0.9802
±0.0291

0.9314
±0.0371

0.8501
±0.0563

0.6812
±0.0412

GBR (Naval)
5.82e−5
±1.52e−5

1.14e−5
±7.3e−7

3.00e−5
±1.00e−5

3.26e−4
±1.46e−5

1.97e−5
±5.27e−6

1.04e−3
±1.10e−5

1.31e−5
±2.34e−6

1.13e−5
±6.4e−7

SALSA (Energy)
0.0097
±0.0015

0.9950
±0.0033

0.0095
±0.0031

0.0105
±0.0022

0.0084
±0.0003

0.0634
±0.0019

0.9974
±0.0032

0.3217
±0.1032

Table 1: Final least squared errors in the regression problems of Section 6.3. In addition to the methods in
Figure 10, we also compare to Dragonfly and random search at the lowest fidelity, as well as Hyperband.

method. As the cost function, we use λ(z) = z, since training time is linear in the training set size.
Each method was given a budget of 6 hours on a 3.3 GHz Intel Xeon processor with 512GB memory.

Gradient Boosted Regression, Naval Propulsion: In this experiment, we tune gradient boosted
regression (GBR) on the naval propulsion dataset (Coraddu et al., 2016). We tune 7 integral, discrete
and Euclidean parameters available in the Scikit-Learn implementation of GBR. The training set
had 9000 points, but could be approximated via a subset of size z ∈ (2000, 9000) by a multi-fidelity
method. As the cost function, we use λ(z) = z, since training time is linear in the training set size.
Each method was given a budget of 3 hours on a 2.6 GHz Intel Xeon processor with 384GB memory.

SALSA, Energy Appliances: We use the SALSA regression method (Kandasamy and Yu, 2016) on
the energy appliances dataset (Candanedo et al., 2017) to tune 30 integral, discrete, and Euclidean
parameters of the model. The training set had 8000 points, but could be approximated via a subset
of size z ∈ (2000, 8000) by a multi-fidelity method. As the cost function, we use λ(z) = z3, since
training time is cubic in the training set size. Each method was given a budget of 8 hours on a 2.6
GHz Intel Xeon processor with 384GB memory. In this example, SMAC does very well because its
(deterministically chosen) initial value luckily landed at a good configuration.

Table 1 compares the final error achieved by all methods on the above three datasets at the end of the
respective optimisation budgets. In addition to the methods in Figure 10, we also show the results for
BO (with Dragonfly) at the lowest fidelity, random search at the lowest fidelity and Hyperband (Li
et al., 2018), which is a multi-fidelity method which uses random search and successive halving. For
example, for BO and random search at the lowest fidelity on the RFR problem, we performed the
same procedure as RAND and Dragonfly, but only using 5000 points at each evaluation. Interestingly,
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Figure 11: Results on the neural architecture search experiments. In all figures, the x-axis is wall clock time.
The y axis is the mean squared validation error (lower is better). In all cases, we used a parallel set up of two
asynchronous workers, where each worker is a single GPU training a single model. We used a one dimensional
fidelity space where we chose the number of batch iterations from 4000 to 20,000 (z• = 20, 000). All figures
were averaged over 5 independent runs. Error bars indicate one standard error.

we see that for the GBR experiment, BO using only a fraction of the training data, outperforms BO
using the entire training set. This is because, in this problem, one can get good predictions even with
2000 points, and the lower fidelity versions are able to do better since they are able to perform more
evaluations within the specified time budget than the versions which query the higher fidelity.

Experiments on Neural Architecture Search: Our next set of model selection experiments demon-
strate the NAS features in Dragonfly. Here, we tune tune for the architecture of the network using
the OTMANN kernel (Kandasamy et al., 2018b) and the learning rate. Each function evaluation,
trains an architecture with stochastic gradient descent (SGD) with a fixed batch size of 256. We
used the number of batch iterations in a one dimensional fidelity space, i.e. Z = [4000, 20000] for
Dragonfly while NASBOT always queried with z• = 20, 000 iterations. We test both methods in
an asynchronously parallel set up of two GeForce GTX 970 (4GB) GPU workers with a computa-
tional budget of 8 hours. Additionally, we also impose the following constraints on the space of
architectures: maximum number of layers: 60, maximum mass: 108, maximum in/out degree: 5,
maximum number of edges: 200, maximum number of units per layer: 1024, minimum number of
units per layer: 8. We present the results of our experiments on the blog feedback (Buza, 2014),
indoor location (Torres-Sospedra et al., 2014), and slice localisation (Graf et al., 2011), datasets in
Figure 11. For reference, we also show the corresponding results for a vanilla implementation of
NASBOT (Kandasamy et al., 2018b). Dragonfly outperforms NASBOT primarily because it is able
to use cheaper evaluations to approximate fully trained models, and additionally since it tunes the
learning rate and uses more robust techniques for selecting the acquisition and GP hyperparameters.

7. Conclusion

Bayesian optimisation is a powerful framework for optimising expensive blackbox functions. How-
ever, with increasingly expensive function evaluations and demands to optimise over complex input
spaces, BO methods face new challenges today. In this work, we describe our multiple efforts
to scale up BO to address the demands of modern large scale applications and techniques for
improving robustness of BO methods. We implement them in an integrated fashion in an open
source platform, Dragonfly, and demonstrate that they outperform naive techniques for BO in a
variety of hyperparameter tuning applications. Going forward, we wish to integrate techniques for
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multi-objective optimisation (Paria et al., 2018) and for using customised models via probabilistic
programming (Neiswanger et al., 2019).

Acknowledgements: This work was funded by DOE grant DESC0011114, NSF grant IIS1563887,
and the DARPA D3M program. KK is supported by a Facebook fellowship and a Siebel scholarship.
We thank Shuli Jiang and Shalom Yiblet for assisting with the initial development of the code base.

References
Peter Auer. Using Confidence Bounds for Exploitation-Exploration Trade-offs. Journal of Machine Learning Research,

2003.
TG Authors. GPyOpt: A Bayesian Optimization Framework in Python, 2016.
James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A Python Library for Optimizing the Hyperparameters of

Machine Learning Algorithms. In 12th Python in Science Conference, 2013.
Krisztian Buza. Feedback Prediction for Blogs. In Data analysis, machine learning and knowledge discovery. 2014.
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Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger. Bayesian Optimization with Tree-structured
Dependencies. In International Conference on Machine Learning, 2017.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian Optimization Without the Lipschitz Constant. Journal of
Optimization Theory and Applications, 1993.

Kirthevasan Kandasamy and Yaoliang Yu. Additive Approximations in High Dimensional Nonparametric Regression via
the SALSA. In International Conference on Machine Learning, 2016.
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Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A Flexible Multi-Objective Bayesian Optimization

Approach using Random Scalarizations. arXiv preprint arXiv:1805.12168, 2018.
David Parkinson, Pia Mukherjee, and Andrew R Liddle. A Bayesian Model Selection Analysis of WMAP3. Physical

Review, 2006.

23



KANDASAMY, VYSYRAJU, NEISWANGER, PARIA, COLLINS, SCHNEIDER, PÓCZOS, XING
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