
Ebook

The Business Value
of Reliability-Driven
Software Delivery
Creating an Action Plan for Implementing
Shift-Left Reliability

2 |

Introduction to
Shift-Left Reliability
As companies strive to gain a competitive advantage by delivering new software features faster, reliability of application
services often suffers. These reliability issues manifest themselves in the form of SLA (Service Level Agreement) violations,
customer complaints, low app store ratings, fewer customer purchases, and even loss of customers completely. To combat
these negative consequences, businesses are grappling with the following question: “How do we deliver software at high
velocity while making sure we achieve the best reliability?”

Many companies have realized that the answer to their question lies in Site Reliability
Engineering practices–more specifically, with Service Level Objective (SLO) driven software
delivery. SLOs can act as an early warning system, so application issues can be fixed before SLA
violations occur and reputation or monetary damage is incurred.

SLOs are not a magic bullet, and the reality is that most companies are using SLOs in a reactive
manner today. It’s natural that in the early stages of adopting new processes, there will be
opportunities for improvement as new ideas come about and new technologies are developed in
support of those ideas.

Introduction to Shift-Left Reliability © Harness Inc. 2022

3 |

Here are some characteristics of reactive SLO management:

Developers are not working on reliability improvements during build and test
phases of the SDLC (Software Delivery Lifecycle). Instead, they are re-tasked to
perform reliability improvements after customers are impacted.

Developers do not have access to SLO and error budget metrics to see how they
are trending and take corrective action if needed. They only find out about SLO
violations after they have become excessive.

SREs or operations personnel manually reach out to developers when there are
too many SLO violations or error budgets are drained. At this point, they instruct
the developers to focus on reliability improvements instead of building new
software features.

Lack of automated guardrails in software delivery pipelines to automatically act
upon SLO and error budget data. All actions resulting from SLO violations are
manually initiated.

Companies don’t have to live with this reactive methodology of SLO management.
Taking a shift-left approach to reliability will amplify the benefits of SLO management
practices by transitioning from reactive to proactive.

The principle of shift-left is to take

a task that’s traditionally done at a

later stage of the software delivery

process and perform that task at

earlier stages.

Introduction to Shift-Left Reliability © Harness Inc. 2022

4 |

The Business Consequences of Poor Reliability
Since the early days of IT, companies have searched for ways to proactively identify problems with their application services to avoid impact on customers. This led
to the proliferation of observability, monitoring, and logging tools. These tools are good at detecting issues as they occur, but on their own, they cannot be used to
determine how to make adjustments to the velocity of the software delivery practice to ensure that SLA violations don’t occur.

Here are some examples of potential business impacts determined through various studies:

The Business Consequences of Poor Reliability

Revenue Loss
ITIC’s 2022 Global Server Hardware Security survey
indicates that the Hourly Cost of Downtime exceeds
$300,000 for 91% of SME and large enterprises. “Overall,
44% of mid-sized and large enterprise survey respondents
reported that a single hour of downtime can potentially
cost their businesses over one million ($1 million).”

SLA Penalties
Every software services company
provides a list of penalties associated
with SLA breaches. Typically the
penalties increase as the severity of the
SLA breach increases.

Customer Churn
A study conducted by Profitwell, a BI solutions
provider, found that the cost of customer acquisition
grew by 60% between 2014 and 2019. There are
numerous other studies that support the idea
that returning customers spend more than new
customers and that retaining customers costs less
than attracting new ones.

© Harness Inc. 2022

https://itic-corp.com/tag/hourly-cost-of-downtime/
https://www.upcounsel.com/service-level-agreement-penalty-examples#service-level-agreement-penalties
https://www.upcounsel.com/service-level-agreement-penalty-examples#service-level-agreement-penalties
https://www.profitwell.com/recur/all/how-is-cac-changing-over-time
https://blog.fivestars.com/26-statistics-that-prove-repeat-business-is-where-its-at/

5 |

Defining Some Common Reliability Terms
There’s a lot of jargon that comes with reliability. For one, people often confuse reliability with quality, when in fact, they are two very
different challenges with different solutions. Here is a quick explainer of the terms you’re likely to encounter around reliability.

Quality
Every company aims to build and deliver best-in-class software solutions that
resonate with customer requirements. Whenever a software solution is ready
to be shipped, the ultimate expectation criteria is quality. Software quality
tells you how well a service performs its intended function. In other words,
it’s the conformance measure to the stated or implied product specification.
Furthermore, you must define the right quality controls at each stage of the
application delivery lifecycle to make sure that the product meets quality
goals. Eventually, software quality will decrease bugs and errors while
preventing costly rework.

Reliability
In simple terms, reliability is how well a product or service maintains its
original quality over time and in various conditions. This is the fundamental
feature of any product, and it’s measured during or after a customer uses

the product. For example, consider a scenario where a service has 90%
reliability for a month. This means that under normal usage conditions during
this month, there will be a 90% chance that the service won’t experience
any critical failures. This service attribute specifies how likely it will function
without a failure for a given timeframe under predefined conditions.

In other words, reliability simply reflects how well a service behaves, and it is
a means of measuring whether a service meets the expected behavior over
time.

Service Level Objectives
A Service Level Objective (SLO) is a reliability target that is set to define the
expected behavior of a service. In other words, an SLO is a target measure
of how reliable a service is expected to be. For example, it could help you

Breaking Down Quality, Reliability, SLOs © Harness Inc. 2022

https://harness.io/blog/slo-error-budgets

6 |

determine the downtime, error rate, or service request response time that’s
acceptable for your service. But to understand what an SLO is, one must
know what an Service Level Indicator is.

Service Level Indicators
A Service Level Indicator (SLI) is a metric that provides insights into the health
of a service. It is the core metric used to indicate if an SLO is met. SLOs play
a crucial role in shaping reliability goals that SREs must meet. They help ‌site
reliability engineers measure their success when accomplishing those goals
by figuring out what and how to measure.

Service Level Agreements
Service Level Agreements (SLAs) are legal agreements that explain the
implications if the service fails to meet the promised targets. For example,
when a service has too many outages, driving availability below the promised
level, the service provider may be subject to paying fines or penalties.

Error Budgets
An error budget is essentially an allowance for SLO violations that can
accumulate over a certain timeframe for your service. It is the acceptable
limit of unreliability before your customers are overly impacted. Failures are
inevitable when you constantly change your systems. Therefore, normalizing

failure as a part of the process helps teams balance innovation with the risk of
SLA violation.

To improve the reliability and performance of your service, you must be
capable of making important decisions, such as when and how much teams
should prioritize new feature development work versus system stabilization
efforts.

An error budget is a tool that helps teams take calculated risks and avoid
obsessing over reliability. This tool helps the SRE and development teams
work in tandem and control ‌release velocity by ensuring that SLOs are met.
Plenty of error budget remaining indicates that developers can work on
new features without significant risk. Once the error budget is exhausted,
teams should cease deploying new features and focus on service quality and
reliability. Keeping tabs on the error budget consumption helps you determine
the appropriate deployment rate for each engineering team.

Note: When calculating your Error Budget, you will need to decide if you want
to filter out planned failure events (maintenance windows). If you want to
get rid of planned maintenance windows then it might make sense to deduct
that downtime from your error budget as a catalyst to achieve your goal. If no
change to planned maintenance is desired then there is probably no point in
docking the Error Budget during that time.

Breaking Down Quality, Reliability, SLOs © Harness Inc. 2022

7 |

The Current State
of Reliability-
Driven Software
Delivery
Most companies today are in 1 of 2 states when it
comes to adopting SLO-driven software delivery:

They have not started yet, but are interested in
improving software reliability while maintaining
or increasing software delivery velocity.

They have already started down the path of
SLO-driven software delivery, but they are
bumping into challenges.

The Current State of Reliability-Driven Software Delivery

What State is Your Organization In?
Here are a few questions that can help you determine which state your company is in today:

You’ve probably already started down the path of SLOs.

Congratulations! Keep reading to discover how

to advance your practice and overcome common

challenges.

You haven’t started down the SLO path just yet.

But that’s okay—it’s never too late to start. Take

what you’ve learned to begin your SLO journey.

Do you have anyone in the company with the title SRE
(Site Reliability Engineer)?

Are people talking about the Google SRE Handbook?

Are there teams in your company using the terms or
reporting on SLIs (Service Level Indicators), SLOs, or

error budgets?

YES NO

YES

YES

NO

NO

F LOWC H A R T

A
N

D
A

N
D

© Harness Inc. 2022

https://sre.google/sre-book/service-level-objectives/

8 |

Overcoming Common
Challenges of
Reliability-Driven
Software Delivery
Regardless of which state your company is currently in, it’s important
to understand the pitfalls that may be encountered while adopting
SLO management practices. With the right combination of people,
process, and technology, all of these challenges can be overcome.

Here’s a checklist of the most common challenges to set strategy in
place to overcome when adopting reliability-driven software delivery.

Overcoming Common Challenges of Reliability-Driven Software Delivery

It’s important to note
that all of these
challenges can be
avoided or overcome.

C H E C K L I S T

© Harness Inc. 2022

9 |

Building an SLO management practice takes time – It takes a
combination of the right people, with the right knowledge to build the
practice of SLO management. This often requires hiring new employees
and giving them time to change the processes, tools, and culture within
the organization.

The reliability and engineering teams might not be working from
the same data – The reliability team keeps an eye on SLOs while the
engineering team is heads-down building software. When reliability
issues occur, the engineering team is surprised when they are asked to
slow down.

Reliability teams burn valuable time manually managing, tracking,
and taking actions on SLOs – Not only does this cause extra work for
reliability engineers, but it leads to errors and inconsistent governance
of software delivery pipelines.

Determining what changes have impacted SLOs can be difficult and
slow – When SLOs are breached, it’s crucial to identify the root cause
and remediate it before SLAs are violated and penalties are incurred.
With frequent changes, this can be a difficult and time-consuming task.

Scaling SLO management beyond a handful of application services
can be cumbersome – With so much manual process, it becomes
difficult to adopt SLO management across all services that need it.

Overall reliability of applications might improve, but too slowly
– Even with manual processes, reliability could improve over time.
Without tooling designed to accelerate this process, improvements will
be slow.

Verifying the quality and reliability of individual deployments is often
a manual process – After each software deployment, engineers look
at logs and metrics for hours to determine the quality of the software.
Reliability engineers look at similar dashboards for days or even weeks
to determine the reliability of each deployment.

Keep reading to learn more about how all of these challenges can be overcome.

Overcoming Common Challenges of Reliability-Driven Software Delivery © Harness Inc. 2022

10 |

The Business Value
of Reliability-Driven
Software Delivery

There’s a reason companies either put up with or
overcome the challenges listed above when adopting
reliability-driven software delivery. It’s because the
potential business value is significant. SLOs and
error budgets will help your technical teams avoid
excessive customer impact.

Continuous reliability improvements will make your customers
even happier since the software will function as expected, when
needed. When the application services improve, your developers
can focus on delivering new business functionality and that
makes them happier too. All of this leads to:

The Business Value of Reliability-Driven Software Delivery

I M P R OV E M E N T S

© Harness Inc. 2022

11 |

Better customer
retention

Most companies agree that it costs more to attract new customers than to retain existing customers. There’s some
disagreement about how much the cost differential is but it’s generally agreed that it costs somewhere between 3-5 times
as much to attract those new customers as retaining your existing customers. Keeping the ones you already have is just
good business.

Higher revenue Happy customers spend more. A study by Harvard Business Review found that “customers who had the best past
experiences spend 140% more compared to those who had the poorest past experience”.

Faster innovation
cycles

When software is highly reliable, developers can focus on writing new business functionality instead of optimizing and
fixing pre-existing code. It has become commonly accepted that software innovation creates a competitive advantage.
Innovating rapidly and have highly reliable software is a “best of both worlds” scenario that is achievable using reliability-
driven software delivery.

Better employee
retention

Nobody likes to be in constant firefighting mode or woken up in the middle of the night to fix broken application services.
Developers want to create new features and functionality, but they can’t do that if they’re constantly prioritizing bug fixes.
When software is plagued with reliability issues, developers will only invest so much time and effort into stabilization before
they start looking for employment elsewhere. This situation can be avoided by promoting a culture where reliability practices
are part of the entire SDLC. When this occurs, application services encounter few reliability issues, developers are free to
work on creating new functionality, and employee churn rates are low.

The Business Value of Reliability-Driven Software Delivery © Harness Inc. 2022

https://hbr.org/2014/08/the-value-of-customer-experience-quantified

12 |

1 3 5 7 92 4 8 106

© Harness Inc. 2022

A Roadmap for Adopting Reliability-Driven Software Delivery
Getting started with reliability-driven software delivery doesn’t have to be painful and slow. You might choose to hire someone with the right experience or you
might want to run an experiment using your existing DevOps and engineering staff. Either way, here are suggested steps to help make your successful when
implementing reliability-driven software delivery.

Clearly define roles
and responsibilities

Define notification
thresholds and processes

 Introduce Continuous
Reliability concepts to the

development team

Periodically revisit SLIs,
SLOs, and error budgets to

adjust as needed

Expand the program
organically to teams that

show interest

Start small
Define SLIs, SLOs,
and error budgets

Define policies for responding to
SLOs and error budgets

Add reliability guardrails to
CI/CD pipelines

Evangelize the successes and
lessons learned from any failures

A Roadmap for Adopting Reliability-Driven Software Delivery

© Harness Inc. 202213 | A Roadmap for Adopting Reliability-Driven Software Delivery

Start small
Choose a single application service to focus on and gain experience.

Clearly define roles and responsibilities
Who will perform all of the various functions associated with the steps in this roadmap? Who will
act as the program manager to coordinate activities? Who will be responsible for reporting to
executive staff? Who wil provide budget for personnel and tooling? All of these questions need
to be answered and accounted for in order to successfully implement this roadmap for reliability-
driven software delivery.

Define SLIs, SLOs, and error budgets
This should be a collaborative effort between those responsible for reliability (SRE, DevOps, Ops)
and the development team responsible for the service. Start at the overall application boundary
before applying SLO management to individual application services.

Define notification thresholds and processes
When SLO’s are breached and error budgets are depleted, the proper teams need to know about it
so they can do something about it. Ideally, these notifications will provide some advanced warning
of impending doom so that the proper teams can take proactive steps to avoid negative customer
impacts like outages or excessive slowness.

1

2

3

4

The proper teams

should be able to

take proactive steps

to avoid negative

customer impacts,

like outages or

excessive slowness.

14 |

5

6

7

Define policies for responding to SLOs and error budgets
The team responsible for responding to SLO and error budget notifications MUST be granted authority to act
as required. Clearly define what actions this team can take to make a meaningful impact and make sure there
is an escalation process in place for any disputes that arise as a result. Ensure that all teams are aware of
these authorizations and processes.

Introduce Continuous Reliability concepts to the development team
Continuous Reliability concepts include activities like exception identification and debugging, automated
deployment verification, fault injection testing, and chaos engineering. All of these activities can, and should,
be performed at various stages of the software delivery process.

Add reliability guardrails to CI/CD pipelines
Reliability guardrails are a way to automatically control the software delivery process based upon the status
of SLOs and error budgets. These guardrails are programmatic steps within delivery pipelines that determine
whether or not deployments can proceed. The reliability engineers and developers can collaboratively
determine what guardrails to put in place at what thresholds.

A Roadmap for Adopting Reliability-Driven Software Delivery © Harness Inc. 2022

© Harness Inc. 202215 |

9

10

A Roadmap for Adapting Reliability-Driven Software Delivery

The more teams that

adopt reliability-driven

software delivery

processes, the larger

the potential benefit

to the business.

Periodically revisit SLIs, SLOs, and error budgets to adjust as needed
Since every application service can have different tolerances for risk and different
needs for feature velocity, it’s natural that the engineering and reliability teams will need
to revisit the metrics and thresholds used with SLIs, SLOs, and error budgets. Define
some periodic review timeframes at the outset of the project.

Evangelize the successes and lessons learned from any failures
In IT, we’ve learned that even our failures can be viewed as successes as long as we
are rapidly learning and adapting. Document every success and learn from every failure.
Document how you will turn past failures into future successes and spread the word
liberally when you have meaningful success.

Expand the program organically to teams that show interest
The goal of your evangelism effort is to help other teams gain the confidence to change
their culture (ultimately for the overall benefit of the business and consumer). The more
teams that adopt reliability-driven software delivery processes, the larger the potential
benefit to the business.

8

16 | © Harness Inc. 2022

Start Your Reliability-Driven
Software Delivery Initiative Today
As companies look to gain competitive advantage by delivering new
software features faster, they find that reliability is often compromised
by moving so quickly. As a result, they have started to adopt the SRE
practices of SLO management and chaos engineering, but they have faced
new challenges related to these practices. They’ve also realized that using
SLO management in a reactive manner does not meet their reliability needs,
leaving them open to SLA violations and other negative consequences.

Moving to a shift-left reliability model like reliability-driven software delivery
is proven to minimize the risk of SLA violations while maintaining the
competitive advantage of high velocity feature delivery. By using the right
processes and tooling, reliability-driven software delivery can consistently
scale to meet the demands of any size organization.

By using the right processes and

tooling, reliability-driven software

delivery can consistently scale to meet

the demands of any size organization.

Start Your Reliability-Driven Software Delivery Initiative Today

17 | © Harness Inc. 2022

How Harness Can Help
The Harness Platform enables businesses to manage deployment by tracking key software reliability metrics. Engineering organizations can accelerate or slow down software
releases based on leading indicators from the Harness Reliability Dashboard.

How Harness Can Help

Harness CE empowers enterprises to move fast while maturing the reliability of their systems
and team. Chaos Engineering steps beyond traditional testing by combining deployments with
the infrastructure they run on, and demonstrating how systems will respond to real-world
failure scenarios. With Harness CE, engineering organizations get the support, onboarding, and
expertise needed to quickly scale chaos engineering practices.

The Harness Platform’s Improve Reliability Solution encompasses two standalone product modules: Service Reliability Management (SRM) and Chaos Engineering (CE). While SRM enables businesses
to measure, understand, and improve the health of their application services, Harness CE helps businesses proactively address system failures that cause unplanned downtime before the failure
happens in production.

Ultimately, Leveraging SRM and CE for reliability-driven software delivery ensures systems maintain reliability through failures, contractual obligations are met, and resilience mechanisms are effective.

Explore how Harness can help your organization improve reliability with a
free discovery session to discuss your business, priorities, and challenges.

Schedule a Discovery Session

With Harness, you’re not just measuring reliability; you’re also improving it.

Harness SRM enables proactive reliability-driven software delivery for any
organization, whether just getting started down the path of SLO management or at
any experience level beyond that. SRM helps companies adopt, scale, and automate
SLO management, so they can reap the benefits of improved reliability without
suffering the common pain points.

https://harness.io/products/chaos-engineering
https://harness.io/demo/next-gen?utm_source=bus_val_reliability&utm_medium=ebook&utm_campaign=improve_reliability
https://harness.io/products/service-reliability-management

Follow us on Contact us on

www.harness.io/harnessio
/harnessinc

The Modern Software Delivery Platform™

https://www.harness.io/
https://twitter.com/harnessio
https://www.linkedin.com/company/harnessinc

