
Modernizing
Continuous Integration
By: Ravi Lachmann . Tech Evangelist

© Harness Inc. 2021

03

04

04

05

06

Table of Contents

Summary

What Is Continuous Integration?

Why Use Continuous Integration?

Benefits of Continuous Integration

Repeatability

Consistency

Availability

Continuous Integration Best Practices

Keep the Automated Build Fast

Every Commit Should Be Built

Automatically

Small Pieces

Be Transparent With Results	

What Is the Difference Between Continuous

Integration and Continuous Delivery?

Challenges of Continuous Integration

Scaling Continuous Integration Platforms

Keeping Up With the Technology Velocity

Overstretching CI Platforms Into CD

Modernizing Continuous Integration

Platform Infrastructure Modernization

Engineering Efficiency Strategy

Test Optimization

Rapid Pipeline Development	

Modern Continuous Integration Architecture

Harness Continuous Integration

In Conclusion

Written By	

07

07

10

11

14

15

Modernizing Continuous Integration

P / 2© Harness Inc. 2021

Modernizing Continuous Integration

Summary

When talking to organizations, at first glance, Continuous Integration seems
to be a solved problem. The demand for increasingly distributed applications
has risen with the bloom of microservices, and development teams have the
expectation that every commit should be a build. Continuous Integration has
surprisingly become an unexpected bottleneck.

In this eBook, we will go through the pillars of Continuous Integration and
how to modernize your Continuous Integration practices and platforms.

P / 3© Harness Inc. 2021

Simply put, Continuous Integration is build automation. Though, more than just

the compiled source code can go into a build; the end product for Continuous

Integration is a release candidate. There could be quality steps taken to produce

the artifact, such as finding bugs and identifying their fix. Packaging, distribution,

and configuration all go into a release candidate. For example, a JAVA application

has a JAR, which is then packaged into a Docker Image, and has available all of

the environmental configurations the image needs to run. A release candidate is

the final form of an artifact to be deployed.

What Is Continuous Integration?

Modernizing Continuous Integration

P / 4© Harness Inc. 2021

Having an artifact that is ready to be deployed and/or continued to be vetted

(for example, from development to quality assurance environment) is prudent

in today’s software engineering organizations. The main output of a software

engineer’s work is iterative by nature. Several artifacts can be created before a

viable release candidate is made. The ability to build on-demand and start the

integration and quality journey begins with a build that can happen multiple

times per day. According to Paul Duvall, co-author of Continuous Integration,

in a nutshell, CI will improve quality and reduce risk.

Why Use Continuous Integration?

Test Build Package Publish

—

Typical Continuous Integration Process

Artifact Artifact Artifact

P / 5© Harness Inc. 2021

Modernizing Continuous Integration

Having an automated Continuous Integration approach frees teams from the

burden of manual builds and also makes builds more repeatable, consistent,

and available. Having the main work product of a software engineering team (the

deployable unit) ready to be deployed regularly is beneficial to the entire software

delivery life cycle and allows for consistent collaboration between engineers by

avoiding common bottlenecks.

Repeatability

Externalizing the build instead of being only executed locally by a developer puts

more eyes on the build steps. The Continuous Integration configuration starts to

have less of an individual snowflake approach and can be an asset the broader

team uses. Having a build executed by a system is repeatable and a march

towards having consistency.

Consistency

The ability to build consistently is one of the major pillars of Continuous Integration.

After having repeatable builds, efficiency and consistency start to step in as

Continuous Integration practices become more mature on the team. Having a

consistent build/artifact is key with maintaining dev-to-prod parity. An example

of this would be keeping the environments similar or having the changes between

them well-known. With consistency, there is also the ability to have builds more

readily available.

Benefits of Continuous Integration

—

Consistent Building & Packaging

P / 6© Harness Inc. 2021

Modernizing Continuous Integration

Availability

The ability to scale to match the demands of the concurrent builds needed by a

team, and the ability to recreate a build, is the availability of the build. Modern

containerized builds require more horsepower than just building the application

binary. Distributed build systems allow for those builds to be more available.

Since the builds are repeatable and consistent, a core tenet of modern software

development is to be repeatable at any step of the process. Old builds and

previous versions can be available by simply calling a recipe from the past.

With the emphasis on having a build available at any time, challenges can

arise supporting a wide swath of technology.

Benefits of Continuous Integration (Cont...)

1.2_SnapShot1

1.2_SnapShot2

1.2_SnapShot3

1.2_Release

1.0_Release

As Continuous Integration continues to evolve, certain practices lend

themselves to a more mature Continuous Integration approach. A mature

Continuous Integration practice should allow for speed, agility, simplicity,

and allowing for the dissemination of results in an automated fashion.

Keep the Automated Build Fast

Since builds will occur throughout the day, having a speedy and automated build

is core to engineering efficiency. Not tying up an engineer’s machine or local

environment for a build by having a build externalized can allow an engineer

to continue to make strides and adjustments as a build occurs.

Continuous Integration Best Practices

—

Ability to Create a Build of Any Version at Any Time

P / 7© Harness Inc. 2021

Modernizing Continuous Integration

Continuous Integration Best Practices (Cont...)

Keep the Automated Build Fast (cont...)

Simply put, the quicker the build, the quicker the feedback can be implemented—

or a release candidate created to be deployed—by a Continuous Delivery solution.

Every Commit Should Be Built Automatically

For a software engineer, a commit—or merge, for that matter—in a shared

repository signals moving forward in the software development life cycle. With

a commit, you are committing that you are ready to start trying out what you

developed. Core to Continuous Integration is to treat each commit as a potential

release candidate and start building the artifact. This will allow for less lead time

when a decision is made to deploy.

Small Pieces

In microservices and in Continuous Integration, smaller pieces can help reduce

complexity. By having smaller and functionally independent pieces such as build,

testing, packaging, and publishing, the identification of problems/bottlenecks

becomes much easier. If there are changes to any one of the functional areas, they

can be made and tweaked and the steps inside a Continuous Integration platform

can be updated. With smaller pieces, if certain pieces need to run on other

systems, finding the line in the sand to lift or migrate functionality is easier.

Be Transparent With Results

Feedback is crucial in the software development life cycle, and most likely, the

first time changes are leaving an engineer’s local environment is with a Continuous

Integration process/practice. Disseminating build and test results across the teams

in a clear, concise, and timely manner helps engineering teams adjust and march

towards a successful release candidate. Initial builds are expected to run more

than once as iteration occurs. Depending on the Continuous Integration platform,

implementations can vary, especially around sharing results.

Delivering software can be seen as continuous decision-making. Getting your

ideas to production in a safe manner requires confidence-building exercises

in the form of tests and approvals, and safe mechanisms to deploy, such as a

canary deployment. Continuous Delivery is the ability to deliver changes to your

users in an automated fashion. Continuous Delivery is interdisciplinary, bringing

in automation practices around monitoring, verification, change management,

and notifications/ChatOps. Without an artifact to deploy, there would be no

deployment; Continuous Integration provides the artifact to deploy. However,

Continuous Integration is not without its challenges.

What Is the Difference Between Continuous
Integration and Continuous Delivery?

Because builds and release candidates follow advancements in development

technology closely, such as new languages, packaging, and paradigms in testing

the artifact, expanding the capabilities in Continuous Integration implementations

can be challenging. With the introduction of containerization technology, the

firepower and velocity required to build increased.

Challenges of Continuous Integration

P / 8© Harness Inc. 2021

Modernizing Continuous Integration

Challenges of Continuous Integration (Cont...)

Scaling Continuous Integration Platforms

As the velocity of builds increases to match the mantra that “every commit should

trigger a build,” development teams could potentially be generating several builds

per day per team member, if not more. The firepower required to produce a modern

containerized build has increased over the years, versus traditional application

packaging.

The infrastructure required to run a distributed Continuous Integration platform

can be as complex as the applications they are building because of the heavy

compute requirements. Take a look at how much of your local machine’s resources

are tied up during a local build and test cycle. Now, multiply that by the number of

folks on a team or in an organization. Distributed build runners are one area that

can be complex; managing when new build nodes are spun up and spun down can

depend on the platform/end-user.

Keeping Up With the Technology Velocity

The adage “the only constant in technology is change” is true. New languages,

platforms, and paradigms are to be expected as technology pushes forward. The

ease of including new technologies in a heterogeneous build or accepting new

testing paradigms can be difficult for more rigid/legacy Continuous Integration

platforms that were designed for a small subset of technologies.

[Scale Decision]

—

Build Runners/Nodes With All Needed Dependencies

P / 9© Harness Inc. 2021

Modernizing Continuous Integration

—

The Technology Funnel

Challenges of Continuous Integration (Cont...)

Homegrown/legacy Continuous Integration platforms can be very prone to

rigidity, in terms of being designed for what was in the enterprise at the point in

time when the platform was built. New technologies and paradigms require new

dependencies for builds to occur or new testing methodologies to be implemented.

Adding new dependencies should be as easy as the developer experiences on

their local machine; e.g. simply declaring what is necessary and convention/

declarative-based tooling resolves the dependencies. With legacy or rigid

approaches/platforms, dependency management required to maintain technical

velocity is a significant burden.

Overstretching CI Platforms Into CD

As some of the first systems that automate parts of the development pipeline,

there would be a natural tendency to continue to build the automation that

takes software all the way to production. Though organizations quickly realize

that failing the build due to failing unit tests is different than handling multiple

deployments and release strategies; a failed deployment can leave a system

in a non-running state. This is why there should be a line in the sand between

Continuous Integration (build) and Continuous Delivery (safe production

deployments).

The rigor needed to create and test the infrastructure and application together, all

while having a safe release strategy, such as a canary release, requires codifying

tribal knowledge about applications to determine pass/failure scenarios. The

burden of adding additional applications can be substantial and can go against

best practices for Continuous Integration, such as keeping the build fast.

P / 10© Harness Inc. 2021

Modernizing Continuous Integration

Modernizing Continuous Integration practices and platforms can take a four-

pillar approach. Making strides in any of the pillars will put you on the path of

modernizing your Continuous Integration platforms and practices.

Platform Infrastructure Modernization

Because of the speed, velocity, and concurrent nature that Continuous Integration

solutions must be able to operate in, the platforms that run the external builds can

mimic the applications they are supporting. With elastic infrastructure much more

attainable today (for example, with autoscaling resources in the public cloud and/

or by leveraging modern distributed platforms like Kubernetes), having a distributed

and cloud-native infrastructure powering the CI platform is a necessity.

The location where the actual builds and packaging take place (e.g. build nodes/

runners) do most of the heavy lifting and have a fairly elastic workload nature.

Builds (e.g. a JAVA JAR build) and packaging (e.g. a Docker Image Compose) are a

compute-heavy task. Once the build and packaging are complete, the runners can

sit idle. This shows the importance of having an ephemeral build node. The build

node spins up during the task then spins down/is destroyed after the build task

is done, so as to not drain resources.

Even if the applications that are being built themselves are not headed to a

Kubernetes endpoint, running your Continuous Integration solution on Kubernetes

can provide learnings for the organization on how a distributed application

runs on Kubernetes. Modern Continuous Integration platforms are designed to

have ephemeral nodes/runners being deployed to elastic/Kubernetes-based

infrastructure. Running on modern infrastructure also has benefits in

engineering efficiency.

Engineering Efficiency Strategy

A core tenet of engineering efficiency is meeting your internal customers where

they are. For software engineers, this is being as close to their tools and projects

as possible. Like many modern pieces of application infrastructure, shifting left

to the developer means being included in the project structure in source code

management (SCM).

For local builds, checking in to source control language-specific build files, such

as Maven, Gradle, or NPM configurations, has been the convention for some time.

Though with additional packaging, confidence, and build steps (for example, more

than one language or artifact the distribution), Continuous Integration platform

steps are now being included in SCM-managed projects. Modern Continuous

Integration platforms support declarative instructions where goals are defined

and the CI solution will work to create the desired declarative state (e.g. the

output artifacts).

A common disconnect in Continuous Integration platforms is dependency

management. Over the past decade, for software engineers, this problem has

been solved with dependency/package/build tools such as Maven, Gradle, and

NPM. Simply define implicitly or explicitly what you need, and the dependencies

will be resolved. Continuous Integration tools suffer from a disconnect since

we are leveraging several tools that potentially don’t have a common syntax.

Modernizing Continuous Integration

P / 11© Harness Inc. 2021

Modernizing Continuous Integration

Modernizing Continuous Integration (Cont...)

Engineering Efficiency Strategy (Cont...)

Dependency management between the build nodes and runners is a common pain

point. For example, certain nodes have certain dependencies, and certain nodes

don’t. Modern solutions take a container-based approach (e.g. Docker-based) with

dependency management in the ephemeral build node/runner container. Declare

what you need, and similar to a Docker build/compose, it will be executed, giving

the node container everything it needs.

Test Optimization

Typically, an organization’s first forays in running automated tests in a repeatable

and consistent fashion end up in their Continuous Integration pipelines. Usually,

this is an easy lift; the same code/test coverage that a developer is subject to in

their local build makes its way into the build pipeline since those steps should

have been executed before the commit.

Though as the initial confidence of getting tests into the CI pipeline expands, more

tests and sometimes inappropriate test coverage is introduced due to the ease of

integration with the pipeline. An even harder problem to identify and rectify are flaky

tests. A flaky test is a test that both passes and fails periodically without any code

changes. A twofold problem of increasing execution time and lack of confidence with

flakiness requires optimization to avoid. A modern Continuous Integration solution

should be able to visualize order, timings, and overall execution to help identify and

eventually rectify excessive coverage and flakiness.

Rapid Pipeline Development

Software is an exercise in iteration. The lower the barrier of entry for iteration to

occur, gains in engineering efficiency and agility are achieved. Local builds happen

dozens of times before reaching a committable stage; moving forward to a dev-

integration environment. Having a local environment is key. Oddly, Continuous

Integration pipelines are designed to run externally from a local machine; that is

the entire point.

With a chicken-or-the-egg problem, a CI pipeline needs to be developed before

being run/accepted. Usually, CI pipelines are developed remotely since the CI

systems are remote to a user’s machine. The ability to have localized CI pipeline

development allows for the same iteration velocity that software engineers

have been achieving for a while. Also, locally-run CI pipelines allow the internal

customers (the software engineers) to run and debug pipelines before making a

commit that would trigger a build, therefore building confidence before a build.

Modern Continuous Integration architecture supports iteration and scale while

optimizing and building confidence, all while enabling proper feedback loops

that are in place for action and automation to take place.

With the following model/architecture, Harness Continuous Integration can easily

be deployed, and it supports modern Continuous Integration approaches.

Modern Continuous Integration Architecture

P / 12© Harness Inc. 2021

Modernizing Continuous Integration

Modern Continuous Integration Architecture (Cont...)

Harness Continuous Integration

Harness Continuous Integration, both Enterprise and Open-Source (based

on Drone), have modern user interfaces and are built to meet the scaling

requirements of cloud-native workloads.

Run 1 – JAVA

Run 2 – JAVA

Run 3 – JAVA

Run 1 – GO

Run 2 – GO

Local CI Remote CI

—

Modern CI Execution Diagram

Graphical breakdown of pipeline and decisions in the pipeline.

P / 13© Harness Inc. 2021

Modernizing Continuous Integration

Modern Continuous Integration Architecture (Cont...)

Sequential breakdown of progression of the pipeline.

Changes live in the project structure and have the ability to be triggered by the SCM.

Simple and declarative configuration which lives in the SCM.

P / 14© Harness Inc. 2021

Modernizing Continuous Integration

Modern Continuous Integration Architecture (Cont...)

Continuous Integration might seem like a solved problem for many organizations,

but as with any technology, there is always room for improvement and

modernization. With modern development processes allowing for more

rapid development, the platforms that support the agility and iteration that

organizations require are evolving. Legacy approaches are seen as brittle and

rigid, and incorporating modern practices and approaches into your Continuous

Integration platform will allow for future growth and agility in a lasting solution.

In Conclusion

The ability to locally or remotely debug a pipeline.

P / 15© Harness Inc. 2021

Modernizing Continuous Integration

Author Appendix

Written By:

Ravi Lachhman, Evangelist at Harness

Ravi Lachhman is an evangelist at Harness. Prior to Harness, Ravi was an

evangelist at AppDynamics. Ravi has held various sales and engineering roles

at Mesosphere, Red Hat, and IBM helping commercial and federal clients

build the next generation of distributed systems. Ravi enjoys traveling the

world with his stomach and is obsessed with Korean BBQ.

Reviewed By :

Bryan Feuling, Solutions Architect at Harness

Bryan began his tech career as a Help Desk Technician for a Fortune 200

company. His experience includes Database Administration, Application

Development, Automation Engineering, and more. He has worked with

hundreds of companies to help them avoid the same issues, pains, and

engineer burnout that he saw and still sees in the industry.

