

WarpGate
S E C U R I T Y A S S E S S M E N T

March 19th 2024

Launchpad

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

WarpGate stands at the forefront of the Immutable zkEVM chain, a catalyst for the

flourishing gaming ecosystem and decentralized economy. Their mission is to

redefine the gaming experience, empower the community, and pave the way for a

seamless fusion of gaming and decentralized finance.

A brief overview of WarpGate’s product offering: Decentralized Exchange (DEX);

Liquidity Pools; Launchpad with Decentralized Auctions; Initial Farm Offering (IFO);

Yield Farming; Inter-Game Exchange (IGE).

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

WarpGate X

WARP Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

ImmutableX

Private GitHub Repository

-

https://t.me/WarpGateCommunity

https://discord.gg/warpgate

https://twitter.com/WarpGateX

https://github.com/WarpGate-Labs/

https://warpgate.pro/

https://medium.com/@warpgate2024

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

92
Score
A U D I T

Critical 0

Major 3

Medium 2

Minor 4

Informational 2

Discussion 4

Issues 15

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

WarpGate-Labs/warp-gate-launchpad Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for WarpGate to discover issues and vulnerabilities in

the source code of the WarpGate project as well as any contract dependencies that

were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations[

\ Testing the smart contracts against both common and uncommon attack

vectorsV

\ Assessing the codebase to ensure compliance with current best practices and

industry standardsV

\ Ensuring contract logic meets the specifications and intentions of the clientV

\ Cross referencing contract structure and implementation against similar smart

contracts produced by industry leadersV

\ Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2024/02/28

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

Version

Date

Descrption

v1.1

2023/03/19

Re-audit applied fixes

 Final Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

 Double Claiming Vulnerability in userClaim() Function Major Fixed

Rounding Error Allows Buyer Fee Bypass in calculateBuyerFee() Function Major Fixed

 Missing Handling of Fees on Transfer in ERC20 Token Transfers Major Fixed

 Use Ownable2Step Minor Acknowledged

 Missing Events in Important Functions Minor Fixed

 Floating and Outdated Pragma Minor Acknowledged

Use safeTransfer/safeTransferFrom instead of transfer/transferFrom Minor Fixed

 DOSDuetoLackofHandling Fees on Token Transfer in transferAndCheck() Medium Fixed

Lack of Excess Ether Refund Vulnerability in createV2() Function Medium Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

 Use Call instead of Transfer Informational Fixed

 Functions should be declared External Informational Fixed

 Public Constants can be Private Gas Fixed

 Custom Errors instead of Revert Gas Fixed

 Gas Optimization in Require/Revert Statements Gas Fixed

 Dead Code Gas Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 If the pool type is Instant, the user can swap the tokens immediately. Whereas the

userClaim() function allows users to claim swapped tokens from a pool if the type is

not instant. However, when the pool type is instant, users can claim the swapped

amount twice. This occurs because the function does not enforce a check to

prevent users from claiming tokens if they have already received them through

_swap().

Issue

Level

Remediation

Alleviation / Retest

 : Double Claiming Vulnerability in userClaim() Function

 : Major

 : It is recommended to implement a check in the userClaim() function to

verify whether the user has already claimed tokens from a _swap(). If so, prevent them

from claiming tokens again through the userClaim function.

 : This is fixed by setting an already claimed variable to true

preventing double claims.
® FixedSwap.sol #L386-L392

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 The calculateBuyerFee() function is intended to calculate the buyer fee for

swapping tokens from a pool. However, due to a rounding error caused by the use of

integer division, the fee calculation can be bypassed if the totalAmount input is

sufficiently low. This occurs because the division operation truncates any fractional

remainder, resulting in an inaccurate fee calculation.

Issue

Level

Remediation

Alleviation / Retest

 : Rounding Error Allows Buyer Fee Bypass in

calculateBuyerFee() Function

 : Major

 : It is recommended that while calculating the fees apply validations

to avoid rounding error.

 : This is fixed. Now the function reverts if fee is 0.
¬ FixedSwap.sol #L306

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract contains a vulnerability related to transferring ERC20 tokens without

considering the possibility of fees charged on transfer. Some ERC20 tokens

implement a fee mechanism, where a certain percentage of tokens is deducted as

a fee during each transfer. However, the contract does not account for this

possibility when transferring tokens using the safeTransferFrom function.

Issue

Level

Remediation

Alleviation / Retest

 : Missing Handling of Fees on Transfer in ERC20 Token Transfers

 : Major

 : To address this vulnerability it is recommended to add a mechanism to

calculate the fees on every transfer while accounting.

 : The contract is now checking if the final and initial balance such that it

should increase by the transferred amount. This is fixed.
¬ FixedSwap.sol #L273-L276

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 The transferAndCheck() function in the given code transfers tokens from a specified

address(from) to the contract address and then checks if the transferred amount is

exactly equal to the specified amount. However, some tokens may charge fees on

token transfers, leading to a discrepancy between the transferred amount and the

expected amount. As a result, the function will always revert when dealing with

tokens that charge fees on transfer, potentially causing a denial of service (DoS)

scenario.

Issue

Level

Remediation

Alleviation / Retest

 : DOSDuetoLackofHandling Fees on Token Transfer in

transferAndCheck()

 : Medium

 : To address this vulnerability it is recommended to add a mechanism

to calculate the fees on every transfer while accounting.

 : The issue has been fixed.

¨ Base.sol #L226-L238

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 The createV2() function allows users to create a pool by paying a fee. However, it

fails to refund any excess ether sent by the user beyond the required fee. This

oversight results in the loss of any additional ether sent by the user.

Issue

Level

Remediation

Alleviation / Retest

 : Lack of Excess Ether Refund Vulnerability in createV2()

Function

 : Medium

 : It is recommended to implement a mechanism to refund any excess

ether sent by users when creating a pool by adding logic to check if the sent value

exceeds the required fee and returning the excess amount back to the sender

before completing the pool creation process.

 : Excess fee is not returned to the user.

« FixedSwap.sol #L107

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The "Ownable2Step" pattern is an improvement over the traditional "Ownable"

pattern, designed to enhance the security of ownership transfer functionality in a

smart contract. Unlike the original "Ownable" pattern, where ownership can be

transferred directly to a specified address, the "Ownable2Step" pattern introduces

an additional step in the ownership transfer process. Ownership transfer only

completes when the proposed new owner explicitly accepts the ownership,

mitigating the risk of accidental or unintended ownership transfers to mistyped

addresses.

Issue

Level

Remediation

Alleviation / Retest

 : Use Ownable2Step

 : Minor

 : It is recommended to use either Ownable2Step or

Ownable2StepUpgradeable depending on the smart contract.

 : The issue has been acknowledged.

� Base.sol #L21

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Events are inheritable members of contracts. When you call them, they cause the

arguments to be stored in the transaction’s log — a special data structure in the

blockchain. These logs are associated with the address of the contract which can

then be used by developers and auditors to keep track of the transactions.

The contract was found to be missing these events on certain critical functions

which would make it difficult or impossible to track these transactions off-chain.

Issue

Level

Remediation

Alleviation / Retest

 : Missing Events in Important Functions

 : Minor

 : Consider emitting events for important functions to keep track of them.

 : Important functions are not emitting events

� Base.sol #L176-L183, L185-L187, L189-L191, L193-L197, L304-L306

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Locking the pragma helps ensure that the contracts do not accidentally get

deployed using an older version of the Solidity compiler affected by vulnerabilities.

The contract allowed floating or unlocked pragma to be used, i.e., 0.8.20. This allows

the contracts to be compiled with all the solidity compiler versions above the limit

specified.

Issue

Level

Remediation

Alleviation / Retest

 : Floating and Outdated Pragma

 : Minor

 : Keep the compiler versions consistent in all the smart contract files. Do

not allow floating pragmas anywhere. It is suggested to use the 0.8.23 pragma version

Reference: https://swcregistry.io/docs/SWC-103

 : The pragma should be hardcoded and updated to 0.8.23.
¾ Base.sol

¾ FixedSwap.sol

¾ FixedSwapV2.sol

¾ IFixedSwap.sol

#L0É

#L0É

#L0È

#L01

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 The transfer() and transferFrom() method is used instead of safeTransfer() and

safeTransferFrom(), presumably to save gas however OpenZeppelin’s

documentation discourages the use of transferFrom(), use safeTransferFrom()

whenever possible because safeTransferFrom auto-handles boolean return values

whenever there’s an error.

Issue

Level

Remediation

Alleviation / Retest

 : Use safeTransfer/safeTransferFrom instead of transfer/

transferFrom

 : Minor

 : Consider using safeTransfer() and safeTransferFrom() instead of

transfer() and transferFrom(). Also, add a nonReentrant modifier to prevent

reentrancy attacks and unintentional results.

 : The contract is now using safeTransfer and safeTransferFrom

for transferring tokens.

ª FixedSwap.sol #L273-L283, L288, L296, L329, L342, L348,  

 L369-L372, L388-L391, L427-L431, L438

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Using Solidity's transfer function has some notable shortcomings when the

withdrawer is a smart contract, which can render ETH deposits impossible to

withdraw. Specifically, the withdrawal will inevitably fail when:P

E Thewithdrawer smart contract does not implement a payable fallback function.P

E The withdrawer smart contract implements a payable fallback function which

uses more than 2300 gas unitsG

E Thewithdrawer smart contract implements a payable fallback function which

needs less than 2300 gas units but is called through a proxy that raises the call’s

gas usage above 2300.

Issue

Level

Remediation

Alleviation / Retest

 : Use Call instead of Transfer

 : Informational

 : It is recommended to transfer ETH using the call() function, handle the

return value using require statement, and use the nonreentrant modifier wherever

necessary to prevent reentrancy.  

Ref: https://solidity-by-example.org/sending-ether/

 : The contract is now using .call instead of transfer for sending ETH.

E FixedSwap.sol #L294, L327, L436

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public functions that are never called by a contract should be declared external in

order to conserve gas.

The following functions were declared as public but were not called anywhere in the

contract, making public visibility useless.

Issue

Level

Remediation

Alleviation / Retest

 : Functions should be declared External

 : Informational

 : Use the “external” state visibility for functions that are never called

from inside the contract.

 : The function has been set to external.¢ FixedSwapV2.sol #L06-L08

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Public constant variables cost more gas because the EVM automatically creates

getter functions for them and adds entries to the method ID table. The values can

be read from the source code instead.

Issue

Level

Remediation

Alleviation / Retest

 : Public Constants can be Private

 : Gas

 : If reading the values for the constants is not necessary, consider

changing the public visibility to private.

 : This is fixed. The variable is no longer public.
� Base.sol #L29

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract was found to be using a revert() statement. Since Solidity v0.8.4, custom

errors have been introduced which are a better alternative to the revert.

This allows the developers to pass custom errors with dynamic data while reverting

the transaction and also makes the whole implementation a bit cheaper than using

revert.

Issue

Level

Remediation

Alleviation / Retest

 : Custom Errors instead of Revert

 : Gas

 : It is recommended to replace the instances of revert() statements

with error() to save gas.

 : Custom errors are now being used.

¥ FixedSwap.sol #L108, L270, L339

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The require() statement takes an input string to show errors if the validation fails. The

strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset

and other parameters. For this purpose, having strings lesser than 32 bytes saves a

significant amount of gas.

Issue

Level

Remediation

Alleviation / Retest

 : Gas Optimization in Require/Revert Statements

 : Gas

 : It is recommended to shorten the strings passed inside require()

statements to fit under 32 bytes. This will decrease the gas usage at the time of

deployment and at runtime when the validation condition is met.

 : The issue has been fixed.
« Base.sol #L129-L132, L142-L145, L148-L150

14

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 It is recommended to keep the production repository clean to prevent confusion

and the introduction of vulnerabilities. The functions and parameters, contracts, and

interfaces that are never used or called externally or from inside the contracts

should be removed when the contract is deployed on the mainnet.

The contracts were found to be defining some variables that are not used anywhere

in the code.

Issue

Level

Remediation

Alleviation / Retest

 : Dead Code

 : Gas

 : If the variables are not supposed to be used anywhere, consider

removing them from the contract.

 : The issue has been acknowledged.

� Base.sol #L346-L349

15

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for WarpGate project using the above techniques to

examine and discover vulnerabilities and safe coding practices in WarpGate’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

