

Fluid
S E C U R I T Y A S S E S S M E N T

February 20th 2024

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Fluid is a fintech innovator offering advanced crypto trading software that integrates with

platforms like Telegram and Discord.

With a focus on scalability and a strong development pipeline, we're set for rapid

growth. Our edge comes from industry expertise, strategic partnerships, and a

commitment to transparency. We're not just following the market, we're leading it.

Imagine executing a market order in under 15 seconds within Telegram, bypassing the

tedious steps of logging in, connecting wallets, and manually inputting order details.

With Fluid, you can swiftly trade top cryptocurrencies like BTC, ETH, and AVAX with up to

50x leverage, view real-time PnL stats, bridge assets, and even swap tokens seamlessly.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Max Supply

Fluid

FLUID Token

0x4E47951508Fd4A4126F8ff9CF5E6Fa3b7cC8E073

Mainnet

Smart Contract

EVM

Solidity

Ethereum (ERC20), Arbitrum

Private GitHub Repository

10,000,000

https://t.me/FluidTradingPortal

https://fluidtrade.gitbook.io/docs/

https://twitter.com/FluidToken

https://github.com/FluidTrade

https://fluid.trade/

https://medium.com/@fluidtrade

support@fluid.trade

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

93
Score
A U D I T

Critical 0

Major 0

Medium 0

Minor 6

Informational 4

Discussion 0

Issues 10

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

V3AdaptedForCamelot/FluidOFT.sol Solidity Files

V3AdaptedForCamelot/LiquidityManager.sol Solidity Files

V3AdaptedForCamelot/RevShareStaking.sol Solidity Files

ScopeA U D I T

R A W S O L I D I T Y F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Fluid to discover issues and vulnerabilities in the

source code of the Fluid project as well as any contract dependencies that were not

part of an officially recognized library. A comprehensive examination has been

performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerationso

Z Testing the smart contracts against both common and uncommon attack

vectorsV

Z Assessing the codebase to ensure compliance with current best practices and

industry standardsV

Z Ensuring contract logic meets the specifications and intentions of the clientV

Z Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersV

Z Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2024/02/20

Reaudit addressed vulnerabilities

 Final Summary

Version

Date

Descrption

v1.0

2024/02/15

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

APPROVING MAXIMUM VALUE Minor

AcknowledgedLONG NUMBER LITERALS Minor

FixedMISSING EVENTS Minor

AcknowledgedOUTDATED COMPILER VERSION Minor

AcknowledgedUSE OWNABLE2STEP Minor

FixedBOOLEAN EQUALITY Informational

AcknowledgedMISSING UNDERSCORE IN NAMING VARIABLES Informational

AcknowledgedUNUSED RECEIVE FALLBACK Informational

Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

MISSING ZERO ADDRESS VALIDATION Minor

Acknowledged

Partially Fixed

VARIABLES SHOULD BE IMMUTABLE Informational

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contracts were found to be setting new addresses without proper validations for

zero addresses. Address typeparameters should include a zero-address check

otherwise contract functionality may become inaccessible or tokensburned forever.

Depending on the logic of the contract, this could prove fatal and the users or the

contracts could losetheir funds, or the ownership of the contract could be lost

forever

Issue

Level

Remediation

Alleviation / Retest

 : MISSING ZERO ADDRESS VALIDATION

 : Minor

 : Add a zero address validation to all the functions where addresses are

being set.

 : The bug has been partially fixed.

< FluidOFT.sol

< LiquidityManager.sol

< RevShareStaking.sol

L397 - L39L

L305 - L30K

L315 - L317

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The function createThePool was detected to be using the maximum value for the

approval amount. This is a malicious behavior and should be discouraged.

Issue

Level

Remediation

Alleviation / Retest

 : APPROVING MAXIMUM VALUE

 : Minor

 : Modify the function call to approve only the required amount or use

safeIncreaseAllowance and safeDecreaseAllowance.

 : The Fluid team has acknowledged the issue.

, FluidOFT.sol L345; L355

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity supports multiple rational and integer literals, including decimal fractions

and scientific notations. The use of very large numbers with too many digits was

detected in the code that could have been optimized using a different notation also

supported by Solidity.

The value 100000 was detected on the below mentioned lines.

Issue

Level

Remediation

Alleviation / Retest

 : LONG NUMBER LITERALS

 : Minor

 : Scientific notation in the form of 2e10 is also supported, where the

mantissa can be fractional but the exponent has tobe an integer. The literal MeE is

equivalent to M * 10**E . Examples include 2e10 , 2e10 , 2e-10 , 2.5e1 , as suggested in

official solidity documentation https://docs.soliditylang.org/en/latest/

types.html#rationaland-integer-literals

 : The Fluid team has acknowledged the issue and will not apply

changes as it is not exploitable.

I FluidOFT.sol L43; L367

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Events are inheritable members of contracts. When you call them, they cause the

arguments to be stored in the transaction’s log—a special data structure in the

blockchain.These logs are associated with the address of the contract which can

then be used by developers and auditors to keep track of the transactions.

The contracts were found to be missing these events on the function

setBaseBonusPercent which would make it difficult or impossible to track these

transactions off-chain.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING EVENTS

 : Minor

 : Consider emitting events for the functions mentioned above. It is also

recommended to have the addresses indexed.

 : Fixed.

5 FluidOFT.sol

5 LiquidityManager.sol

5 RevShareStaking.sol

L300 - L41H

L164 - L17H

L254 - L257; L301 - L348

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.
loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

Using an outdated compiler version can be problematic especially if there are

publicly disclosed bugs and issues that affect the current compiler version.The

following outdated versions were detected:

Issue

Level

Remediation

Alleviation / Retest

 : OUTDATED COMPILER VERSION

 : Minor

 : It is recommended to use a recent version of the Solidity compiler that

should not be the most recent version, and it should not be an outdated version as

well. Using very old versions of Solidity prevents the benefits of bug fixes and

newersecurity checks. Consider using the solidity version v0.8.23 , which patches

most solidity vulnerabilities.

 : The Fluid team has acknowledged the issue and will not apply

changes as it is not exploitable.

5

A F F E C T E D C O D E

� FluidOFT.sol

� LiquidityManager.sol

� RevShareStaking.sol

L0$

L0$

L03

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Ownable2Step is safer than Ownable for smart contracts because the owner cannot

accidentally transfer the ownership to a mistyped address. Rather than directly

transferring to the new owner, the transfer only completes when the new owner

accepts ownership.

Issue

Level

Remediation

Alleviation / Retest

 : USE OWNABLE2STEP

 : Minor

 : It is recommended to use either Ownable2Step or Ownable2StepUpgradeable

depending on the smart contract.

 : The Fluid team has acknowledged the issue and will not apply changes

as it is not exploitable.
< FluidOFT.sol

< LiquidityManager.sol

< RevShareStaking.sol

L39 - L47N

L16 - L17J

L29 - L364

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In Solidity, and many other languages, boolean constants can be used directly in

conditionals like if and else statements.

The contract was found to be equating constants in conditionals which is

unnecessary.

Issue

Level

Remediation

Alleviation / Retest

 : BOOLEAN EQUALITY

 : Informational

 : It is recommended to directly use boolean constants. It is not required

to equate them to true or false.

 : Fixed
0 RevShareStaking.sol L260; L335

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity style guide suggests using underscores as the prefix for non-external

functions and state variables (private or internal) but the contract was not found to

be following the same

Issue

Level

Remediation

Alleviation / Retest

 : MISSING UNDERSCORE IN NAMING VARIABLES

 : Informational

 : It is recommended to use an underscore for internal and private

variables and functions to be in accordance with the Solidity style guide which will

also make the code much easier to read.

 : The Fluid team has acknowledged the issue.

� FluidOFT.sol

� LiquidityManager.sol

� RevShareStaking.sol

L18 - L21; L43; L53; L62; L69; L417 - L44

L164 - L16#

L66; L245 - L252; L278 - L299

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

The contract was found to be defining an empty receive function.

It is not recommended to leave them empty unless there’s a specific use case such as to

receive Ether via an empty receive() function.

Issue

Level

Remediation

Alleviation / Retest

 : UNUSED RECEIVE FALLBACK

 : Informational

 : It is recommended to go through the code to make sure these

functions are properly implemented and are not missing any validations in the

definition.

 : The Fluid team has acknowledged the issue and will not apply

changes as it is not exploitable.

4 FluidOFT.sol

4 LiquidityManager.sol

L10D

L162

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Constants and Immutables should be used in their appropriate contexts.

constant should only be used for literal values written into the code. immutable variables

should be used for expressions, or values calculated in, or passed into the constructor.

Issue

Level

Remediation

Alleviation / Retest :

 : VARIABLES SHOULD BE IMMUTABLE

 : Informational

 : It is recommended to use immutable instead of constant.

Fixed
5 FluidOFT.sol

5 LiquidityManager.sol

5 RevShareStaking.sol

L5F

L19; L2?

L32; L63

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

R a w S o l i d i t y F i l e s

E FluidOFT.so=

E LiquidityManager.so=

E RevShareStaking.sol

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Fluid project using the above techniques to

examine and discover vulnerabilities and safe coding practices in Fluid’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

