

Magpie Protocol
S E C U R I T Y A S S E S S M E N T

February 05th 2024

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Magpie protocol is a cross-chain liquidity aggregator that enables seamless cross-

chain swaps with near-instant finality and cost efficiency on many of the top

blockchains, all without the need to bridge any assets, making for an extremely fast,

secure, easy, and gas efficient solution.

Magpie protocol incorporates a unique technical implementation that allows

execution of cross-chain swaps without the need for the user to bridge assets from

any of the top bridges. This saves time and cost by reducing the complexity and risks

involved in using any of the bridging solutions to move assets across chains.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

Magpie Protocol

FLY Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

Ethereum (ERC20)

Private GitHub Repository

-

https://t.me/magpieprotocol

https://discord.gg/CwJuFeHp6f

https://twitter.com/magpieprotocol

https://github.com/magpieprotocol/

https://www.magpiefi.xyz/

https://medium.com/@Magpieprotocol

contact@magpiefi.xyz

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

96
Score
A U D I T

Critical 0

Major 1

Medium 1

Minor 1

Informational 1

Discussion 2

Issues 6

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

magpieprotocol/magpie-contracts/contracts/ Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Magpie Protocol to discover issues and

vulnerabilities in the source code of the Magpie Protocol project as well as any

contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Dynamic, Static Analysis

and Manual Review techniques.

The auditing process pays special attention to the following considerations_

Z Testing the smart contracts against both common and uncommon attack

vectorsV

Z Assessing the codebase to ensure compliance with current best practices and

industry standardsV

Z Ensuring contract logic meets the specifications and intentions of the clientV

Z Cross referencing contract structure and implementation against similar smart

contracts produced by industry leadersV

Z Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2024/01/30

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

Version

Date

Descrption

v1.1

2024/02/05

Re-audit applied fixes

 Final Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Lack of Sender Validation in uniswapV3SwapCallback Function Major Fixed

Lack of Consideration for Future Fee Implementation in wormhole’s publishMessage Medium Acknowledged

 Outdated Pragma version Minor Acknowledged

 Cheaper Conditional Operators Gas Fixed

 Missing NatSpec Comments Informational Fixed

 Cheaper Inequalities in if() Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In the provided contract, after executing a flash swap, the uniswapV3SwapCallback

function is called, allowing the contract to return tokens to the initiator. However,

there is no validation to ensure that the caller (msg.sender) is the Uniswap contract.

This lack of validation can lead to a fund drain vulnerability where an attacker may

impersonate the Uniswap contract and drain funds from the contract.

Issue

Level

Remediation

Alleviation / Retest

 : Lack of Sender Validation in uniswapV3SwapCallback

Function

 : Major

 : To mitigate the fund drain vulnerability, it is recommended to add a

validation check in the uniswapV3SwapCallback function to ensure that msg.sender is

the legitimate Uniswap contract. This can be achieved by checking the address of

msg.sender against the known Uniswap contract address.

 : There are no funds storing in the contract.

ª MagpieRouterV2.sol #L31-33, L35-37, L39-L41

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The dataTransfer function in the provided contract lacks consideration for potential

future fees. Currently, the function publishMessage() of wormhole checks whether

the msg.value matches the expected fee using require(msg.value == messageFee(),

"invalid fee"). However, if the Wormhole protocol decides to introduce fees in the

future, this condition would always fail, rendering the external calls within the

protocol unable to perform their critical tasks.

Reference: wormhole#publishMessage():

https://github.com/wormhole-foundation/wormhole/

blob/9bc408ca1912e7000c5c2085 215be9d44713028b/ethereum/contracts/

Implementation.sol#L21

Issue

Level

Remediation

Alleviation / Retest

 : Lack of Consideration for Future Fee Implementation in

wormhole’s publishMessage

 : Medium

 : To fix this issue it is recommended to pass msg.value while calling

external call publishMessage() if any fee is applied in the future oi user can pay.

 : Magpie team commented that they don’t consider this an issue

‘Wormhole isn't charging fees for data transfer when you deliver it yourself. If

Wormhole encounters issues in the future, they can simply disable it and use another

protocol for data transfer, therefor it is easy to mitigate a potential issue.’

Ä LibWormhole.sol #L40-L44

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Using an outdated compiler version can be problematic, especially if there are

publicly disclosed bugs and issues that affect the current compiler version. The

contracts found in the repository were allowing an old compiler version to be used,

i.e., 0.8.17.

Issue

Level

Remediation

Alleviation / Retest

 : Outdated Pragma version

 : Minor

 : Keep the compiler versions updated in all the smart contract files. Do

not allow floating pragmas anywhere. It is suggested to use the 0.8.22 pragma

version which is stable and not too recent.

Reference: https://swcregistry.io/docs/SWC-103

 : The issue has been acknowledged.

 All Contracts

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

Solidity contracts use a special form of comments to document code. This special

form is named the Ethereum Natural Language Specification Format (NatSpec).

The document is divided into descriptions for developers and end-users along with

the title and the author.

The contracts in the scope were missing these comments.

Issue

Level

Remediation

Alleviation / Retest

 : Missing NatSpec Comments

 : Informational

 : Developers should review their codebase and add Natspec

comments to all relevant functions, variables, and events. Natspec comments

should include a description of the function or event, its parameters, and its return

values.

 : The comments has been added.

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract was found to be doing comparisons using inequalities inside the “if”

statement. When inside the “if” statements, non-strict inequalities (>=, <=) are usually

cheaper than the strict equalities (>, <).

Issue

Level

Remediation

Alleviation / Retest

 : Cheaper Inequalities in if()

 : Gas

 : It is recommended to go through the code logic, and, if possible,

modify the strict inequalities with the non-strict ones to save gas as long as the logic

of the code is not affected.

 : The issue has been fixed.

¥ MagpieRouterV2.sol #L26, L117

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Upon reviewing the code, it has been observed that the contract uses conditional

statements involving comparisons with unsigned integer variables. Specifically, the

contract employs the conditional operators x != 0 and x > 0 interchangeably.

However, it's important to note that during compilation, x != 0 is generally more cost-

effective than x > 0for unsigned integers within conditional statements.

Issue

Level

Remediation

Alleviation / Retest

 : Cheaper Conditional Operators

 : Gas

 : Whenever possible, use the x != 0 conditional operator instead of x > 0

for unsigned integer variables in conditional statements.

 : The issue has been fixed.

� LibAssetV2.sol #L40

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Magpie Protocol project using the above

techniques to examine and discover vulnerabilities and safe coding practices in

Magpie Protocol’s smart contract including the libraries used by the contract that

are not officially recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

