

WarpGate
S E C U R I T Y A S S E S S M E N T

February 09th 2024

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

WarpGate stands at the forefront of the Immutable zkEVM chain, a catalyst for the

flourishing gaming ecosystem and decentralized economy. Their mission is to

redefine the gaming experience, empower the community, and pave the way for a

seamless fusion of gaming and decentralized finance.

A brief overview of WarpGate’s product offering: Decentralized Exchange (DEX);

Liquidity Pools; Launchpad with Decentralized Auctions; Initial Farm Offering (IFO);

Yield Farming; Inter-Game Exchange (IGE).

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

WarpGate X

WARP Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

ImmutableX

Private GitHub Repository

-

https://t.me/WarpGateCommunity

https://discord.gg/warpgate

https://twitter.com/WarpGateX

https://github.com/WarpGate-Labs/

https://warpgate.pro/

https://medium.com/@warpgate2024

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

91
Score
A U D I T

Critical 0

Major 1

Medium 1

Minor 4

Informational 0

Discussion 7

Issues 13

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

WarpGate-Labs/warpgate-contracts/projects/v3-core Private Repository

WarpGate-Labs/warpgate-contracts/projects/v3-lm-pool Private Repository

WarpGate-Labs/warpgate-contracts/projects/v3-periphery Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for WarpGate to discover issues and vulnerabilities in

the source code of the WarpGate project as well as any contract dependencies that

were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerationsb

a Testing the smart contracts against both common and uncommon attack

vectorsU

a Assessing the codebase to ensure compliance with current best practices and

industry standardsU

a Ensuring contract logic meets the specifications and intentions of the clientU

a Cross referencing contract structure and implementation against similar smart

contracts produced by industry leadersU

a Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2024/02/07

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

Version

Date

Descrption

v1.1

2023/02/09

Re-audit applied fixes

 Final Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Initiating a front-running attack during pool initialization may result in

depleting initial deposits made by liquidity providers

Major Acknowledged

 Incomplete contract verification may lead to unnoticed transfer failures Medium Acknowledged

 Missing Two-Step Validation in Critical Address Change Minor Acknowledged

Floating and Outdated Pragma Minor Acknowledged

Public Constants can be Private Gas Acknowledged

Large Number Literals Gas Acknowledged

Multiplication/Division by 2 should use Bit-Shifting Gas Acknowledged

Missing Zero Address Validations Minor Acknowledged

Missing Same Address Validation in setOwner Function Minor Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Code Optimization by using max and min Gas Acknowledged

Gas Optimization in Increments Gas Acknowledged

Gas Optimization in Require Statements Gas Acknowledged

Use of SafeMath Gas Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

PancakeV3Pool.initialize is vulnerable to front-running, allowing attackers to

manipulate prices unfairly and drain assets from initial deposits.

The absence of access controls on this function allows any entity to call it on a

deployed pool. Initialization with an incorrect price enables attackers to generate

profits from the initial liquidity provider's deposits.

Issue

Level

Remediation

Alleviation / Retest

 : Initiating a front-running attack during pool initialization

may result in depleting initial deposits made by liquidity providers

 : Major

 : Introduce access controls to the initialize function. Transfer price

operations from initialize to the constructor.

 : The issue has been acknowledged.
¥ PancakeV3Pool.sol #L278-L306

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Due to the absence of contract existence verification in the pool, failed transactions

involving tokens that have been destroyed may be incorrectly perceived as

successful. The TransferHelper.safeTransfer function executes transfers through a

low-level call without validating the existence of the contract. Consequently, if

tokens are either not deployed or have been destroyed, the safeTransfer function

might falsely indicate success without actually executing any transfer.

In scenarios where the token is not deployed, liquidity addition becomes impossible.

On the other hand, if the token has been destroyed, the pool will incorrectly assume

assets were sent even though no actual transfer occurred.

Issue

Level

Remediation

Alleviation / Retest

 : Incomplete contract verification may lead to unnoticed

transfer failures

 : Medium

 : Add acontract existence check before the low-level call in

TransferHelper.safeTransfer. This prevents the pool from accepting the sale of a

token that no longer exists without returning any tokens in exchange.

 : The issue has been acknowledged.

¨ v3-core/contracts/libraries/TransferHelper.sol #L1 4-L23

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Changing critical addresses in contracts should be a two-step process where the

first transaction (from the old/current address) registers the new address (i.e. grants

ownership) and the second transaction (from the new address) replaces the old

address with the new one (i.e. claims ownership). This gives an opportunity to

recover from incorrect addresses mistakenly used in the first step. If not, contract

functionality might become inaccessible. The contract did not implement two-step

validation when changing the owner address in the function “transferOwnership()”

Issue

Level

Remediation

Alleviation / Retest

 : Missing Two-Step Validation in Critical Address Change

 : Minor

 : Enable a two-step process for critical address changes.

 : The issue has been acknowledged.

® v3-core/contracts/PancakeV3Factory.sol : constructor(�

® v3-core/contracts/PancakeV3Factory.sol : setOwner()

#L36-L60

#L82-L85

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contracts were found to be setting new addresses without proper validations for

zero addresses.

Address type parameters should include a zero-address check otherwise contract

functionality may become inaccessible or tokens burned forever.

Depending on the logic of the contract, this could prove fatal and the users or the

contracts could lose their funds, or the ownership of the contract could be lost

forever.

Issue

Level

Remediation

Alleviation / Retest

 : Missing Zero Address Validations

 : Minor

 : Add azero address validation to all the functions where addresses are

being set.

 : The issue has been acknowledged.

¨ v3-core/contracts/PancakeV3Factory.sol : constructor(�

¨ v3-core/contracts/PancakeV3Factory.sol : setOwner()

#L36-L60

#L82-L85

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 A function named setOwner allows the contract owner to be changed. However, it

lacks a validation check to verify whether the newly specified owner (_owner) is the

same as the current owner.

This omission raises a potential security concern, as it does not prevent unnecessary

emissions of the OwnerChanged event when the new owner is identical to the

existing one.

Issue

Level

Remediation

Alleviation / Retest

 : Missing Same Address Validation in setOwner Function

 : Minor

 : Add a zero address validation to all the functions where addresses

are being set.

 : The issue has been acknowledged.

­ v3-core/contracts/PancakeV3Factory.sol : setOwner()#L82-L85

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Locking the pragma helps ensure that the contracts do not accidentally get

deployed using an older version of the Solidity compiler affected by vulnerabilities.

The contract allowed floating or unlocked pragma to be used.

This allows the contracts to be compiled with all the solidity compiler versions above

the limit specified.

Issue

Level

Remediation

Alleviation / Retest

 : Floating and Outdated Pragma

 : Minor

 : Keep the compiler versions consistent in all the smart contract files.

Do not allow floating pragmas anywhere. It is suggested to use the 0.8.22 pragma

version. Since most of the code is developed for older versions, it is highly

recommended to carefully consider this remediation because it may break the code

or introduce other inconsistencies.

Reference: https://swcregistry.io/docs/SWC-103

 : The issue has been acknowledged.

± All the contract files

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public constant variables cost more gas because the EVM automatically creates

getter functions for them and adds entries to the method ID table. The values can be

read from the source code instead.

Issue

Level

Remediation

Alleviation / Retest

 : Public Constants can be Private

 : Gas

 : If reading the values for the constants is not necessary, consider changing

the public visibility to private.

 : The issue has been acknowledged.
¡ v3-lm-pool/contracts/PancakeV3LmPool.sol #L22

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 Solidity supports multiple rational and integer literals, including decimal fractions

and scientific notations. The use of very large numbers with too many digits was

detected in the code that could have been optimized using a different notation also

supported by Solidity.

Issue

Level

Remediation

Alleviation / Retest

 : Large Number Literals

 : Gas

 : Scientific notation in the form of 2e10 is also supported, where the

mantissa can be fractional, but the exponent has to be an integer. The literal MeE is

equivalent to M * 10**E. Examples include 2e10, 2e10, 2e-10, 2.5e1, as suggested in official

solidity documentation.

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

It is recommended to use numbers in the form “35 * 1e7 * 1e18” or “35 * 1e25”.

The numbers can also be represented by using underscores between them to make

them more readable such as “35_00_00_000”

 : The issue has been acknowledged.

½ v3-core/contracts/PancakeV3Factory.sol

½ v3-periphery/contracts/libraries/NFTDescriptor.sol

½ v3-periphery/contracts/NFTDescriptorEx.sol

#L8Ê

#L26Æ

#L288

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 In Solidity, the EVM (Ethereum Virtual Machine) executes operations in terms of gas

consumption, where gas represents the computational cost of executing smart

contract functions. Multiplication and division by two can be achieved using either

traditional multiplication and division operations or bitwise left shift (<<) and right

shift (>>) operations, respectively. However, using bit-shifting operations is more gas-

efficient than using traditional multiplication and division operations.b

C x * 2 can be replaced with x << 1E

C x / 2 can be replaced with x >> 1.

Issue

Level

Remediation

Alleviation / Retest

 : Multiplication/Division by 2 should use Bit-Shifting

 : Gas

 : It is recommended to use left and right shift instead of multiplying

and dividing by 2 to save some gas.

 : The issue has been acknowledged.

C v3-core/contracts/libraries/Oracle.sol

C v3-periphery/contracts/libraries/NFTSVG.sol

#L16Å

#L362

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In Solidity contract code, optimizing expressions involving powers of 2, such as 2**32,

by using the built-in type(uint32).max and type(uint32).min constants can lead to

improved code readability and gas efficiency. The original code utilizes 2**32 to

calculate the maximum storage capacity of a uint32 data type, but this expression

can be replaced with more expressive and gas-efficient alternatives.

Issue

Level

Remediation

Alleviation / Retest

 : Code Optimization by using max and min

 : Gas

 : To optimize code involving powers of 2, developers should replace

expressions like 2**32 with type(uint32).max for maximum values and

type(uint32).min for minimum values. It is essential to note that type(uint32).max is

equivalent to 2**32- 1.

 : The issue has been acknowledged.
¾ v3-core/contracts/libraries/Oracle.sol

¾ v3-core/contracts/libraries/SafeCast.sol

¾ v3-periphery/contracts/NFTDescriptorEx.sol

¾ v3-periphery/contracts/libraries/NFTDescriptor.sol

#L136-L13Å

#L2Ä

#L33Ë

#L308

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 The contract uses two for loops, which use post increments for the variable “i”. The

contract can save some gas by changing this to ++i.

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler

has to create a temporary variable to store the initial value. This is not the case with

++i in which the value is directly incremented and returned, thus, making it a cheaper

alternative.

Issue

Level

Remediation

Alleviation / Retest

 : Gas Optimization in Increments

 : Gas

 : It is recommended to switch to ++i and change the code accordingly

so the function logic remains the same and meanwhile saves some gas.

 : The issue has been acknowledged.

³ v3-core/contracts/libraries/Oracle.sol

³ v3-core/contracts/libraries/Oracle.sol

³ v3-periphery/contracts/NonfungibleTokenPositio nDescriptor.sol

³ v3-periphery/contracts/NFTDescriptorEx.sol

³ v3-periphery/contracts/NFTDescriptorEx.sol

³ v3-periphery/contracts/lens/PancakeInterfaceMul ticall.sol

³ v3-periphery/contracts/lens/TickLens.sol

³ v3-periphery/contracts/lens/TickLens.sol

³ v3-periphery/contracts/base/Multicall.sol

³ v3-periphery/contracts/libraries/OracleLibrary.sol

³ v3-periphery/contracts/libraries/OracleLibrary.sol

³ v3-periphery/contracts/libraries/NFTDescriptor.sol

³ v3-periphery/contracts/libraries/NFTDescriptor.sol

#L11Ä

#L32¾

#L4Á

#L11Ç

#L24À

#L3¾

#L2À

#L3¾

#L1À

#L15Ç

#L17É

#L8Ä

#L219

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The require() statement takes an input string to show errors if the validation fails.

The strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset

and other parameters. For this purpose, having strings lesser than 32 bytes saves a

significant amount of gas. Once such example is given below:

Issue

Level

Remediation

Alleviation / Retest

 : Gas Optimization in Require Statements

 : Gas

 : It is recommended to go through all the require() statements present

in the contract and shorten the strings passed inside them to fit under 32 bytes. This

will decrease the gas usage at the time of deployment and at runtime when the

validation condition is met.

 : The issue has been acknowledged.
Ä v3-periphery/contracts/NonfungiblePositionMana ger.sol

Ä v3-periphery/contracts/base/ERC721Permit.sol

#L39È

#L74

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

 SafeMath library is found to be used in the contract. This increases gas consumption

more than traditional methods and validations if done manually.

Also, Solidity 0.8.0 and above includes checked arithmetic operations by default, and

this renders SafeMath unnecessary.

Issue

Level

Remediation

Alleviation / Retest

 : Use of SafeMath

 : Gas

 : We do not recommend using the SafeMath library for all arithmetic

operations. It is good practice to use explicit checks where it is really needed and to

avoid extra checks where overflow/underflow is impossible.

It is recommended to upgrade to the latest compiler because versions above 0.8.0+

automatically check for overflows and underflows

 : The issue has been acknowledged.

µ v3-periphery/contracts/NFTDescriptorEx.sol

µ v3-periphery/contracts/libraries/NFTDescriptor.sol

#L1º

#L10

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for WarpGate project using the above techniques to

examine and discover vulnerabilities and safe coding practices in WarpGate’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

