

Fluid
S E C U R I T Y A S S E S S M E N T

January 30th 2024

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Fluid is a fintech innovator offering advanced crypto trading software that integrates with

platforms like Telegram and Discord.

With a focus on scalability and a strong development pipeline, we're set for rapid

growth. Our edge comes from industry expertise, strategic partnerships, and a

commitment to transparency. We're not just following the market, we're leading it.

Imagine executing a market order in under 15 seconds within Telegram, bypassing the

tedious steps of logging in, connecting wallets, and manually inputting order details.

With Fluid, you can swiftly trade top cryptocurrencies like BTC, ETH, and AVAX with up to

50x leverage, view real-time PnL stats, bridge assets, and even swap tokens seamlessly.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Max Supply

Fluid

FLUID Token

0x4E47951508Fd4A4126F8ff9CF5E6Fa3b7cC8E073

Mainnet

Smart Contract

EVM

Solidity

Ethereum (ERC20), Arbitrum

Private GitHub Repository

10,000,000

https://t.me/FluidTradingPortal

https://fluidtrade.gitbook.io/docs/

https://twitter.com/FluidToken

https://github.com/FluidTrade

https://fluid.trade/

https://medium.com/@fluidtrade

support@fluid.trade

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

89
Score
A U D I T

Critical 0

Major 2

Medium 3

Minor 3

Informational 1

Discussion 4

Issues 13

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

FluidOFTV1.sol Solidity Files

LiquidityManagerV3.sol Solidity Files

RevShareStakingV5.sol Solidity Files

ScopeA U D I T

R A W S O L I D I T Y F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Fluid to discover issues and vulnerabilities in the

source code of the Fluid project as well as any contract dependencies that were not

part of an officially recognized library. A comprehensive examination has been

performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations_

b Testing the smart contracts against both common and uncommon attack

vectorsj

b Assessing the codebase to ensure compliance with current best practices and

industry standardsj

b Ensuring contract logic meets the specifications and intentions of the clientj

b Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersj

b Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2024/01/30

Reaudit addressed vulnerabilities

 Final Summary

Version

Date

Descrption

v1.0

2024/01/25

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Front-Running Vulnerability in createThePool Function Major Fixed

Zero Slippage Value Medium Acknowledged

Uniswap Swap Function with Insecure Deadline Medium Acknowledged

Lack of Reversibility in removeLimits Function Medium Acknowledged

Missing Return Value Validation Minor Partially Fixed

Floating and Outdated Pragma Minor Fixed

Use Ownable2Step Minor Acknowledged

Missing NatSpec Comments Informational Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

Rounding Error in depositETH Function Major Fixed

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Gas Optimization in Increments Gas Acknowledged

Custom Error to Save Gas Gas Acknowledged

Gas Optimization in Require Statements Gas Acknowledged

Large Number Literals Gas Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

The createThePool function in the provided smart contract creates a Uniswap pair

for the token. However, it lacks protection against front-running attacks. An attacker

could potentially front-run this transaction and create the Uniswap pair before the

admin, by calling directly createPair() from Uniswap, causing the admin's

transaction to revert when attempting to create the pair again. As a result, the

launched state variable will remain false, and the owner won't be able to launch the

token.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Front-Running Vulnerability in createThePool Function

 : Major

 : Front-Running

 : To mitigate the front-running vulnerability, it is recommended to check

whether the Uniswap pair already exists before attempting to create it. If the pair already

exists, the function should handle the situation gracefully without reverting the

transaction.

 : The team deployed the following fixes to mitigate this issue:$

� MadecreateThePool a private function$

� RemovedtheLaunchedbool(not needed in this case)$

� AddedcreateThePool() to the constructor

1

A F F E C T E D C O D E

� FluidOFTV1.sol #createThePool()

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The depositETH function in the provided smart contract performs a calculation to

determine sharePerTokenAtDeposit using the formula (msg.value * 1e18) /

totalShareWithBonus. However, if msg.value is less than totalShareWithBonus, due to

the rounding behavior in Solidity, the result of this calculation could be zero.

Consequently, sharePerTokenAtDeposit will be zero, and the subsequent addition to

sharePerTokenCurrent will not have any effect.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Rounding Error in depositETH Function

 : Major

 : Rounding Error

 : To address the rounding issue and ensure accurate calculations, it is

recommended to Check whether msg.value is greater than totalShareWithBonus

before doing this calculation.

 : A validation is now added that checks “sharePerTokenAtDeposit

> 0” when depositing ETH.

T RevShareStakingV5.sol #depositETH()

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In swapBack() function, a token swap operation and adding liquidity is performed

with a hardcoded minAmt (slippage) value set to zero. Slippage refers to the

maximum acceptable difference between the expected price of an asset and the

actual executed price during a swap. A slippage of zero means that the code

expects the swap to return

Issue

Level

Type

Remediation

Alleviation / Retest

 : Zero Slippage Value

 : Medium

 : Slippage Risk

 : To make the token swap function more robust and adaptable to

market conditions, it is recommended to set a non-zero slippage tolerance (e.g., a

small percentage) rather than a hardcoded zero value. This will allow the code to

accommodate minor price fluctuations and ensure that the swap is more likely to

succeed. Or take input from the user to set minAmt.

 : Comments fromtheteam:“Slippage risk isn't a concern since the

transaction happens along with a users swap and is typically a very small amount

anyway. Adding slippage to this function could result in the original users swap to fail

and cost them gas.”

C FluidOFTV1.sol #swapBack()

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The provided Contracts FluidOFTV1.sol#swapBack() function contains a vulnerability

related to the use of the block.timestamp as the deadline for Uniswap swaps. This

allows a malicious miner or sequencer to manipulate the execution of the swap,

potentially profiting from front-running or arbitrage opportunities.

In Ethereum, the block.timestamp represents the current block's timestamp, and it

can be manipulated to a certain extent by miners or sequencers. This means that an

attacker with control over when to mine or include transactions in a block can delay

or reorder transactions to their advantage.

By setting the deadline to block.timestamp, the function makes it possible for a miner

or sequencer to control when the swap transaction is actually executed, potentially

gaining an advantage in price movements.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Uniswap Swap Function with Insecure Deadline

 : Medium

 : Front-Running

 : To mitigate this front-running risk, it's recommended to use a more

secure and deterministic deadline in your Uniswap swaps. One common approach is

to set the deadline to a fixed point in the future, allowing for a reasonable execution

window.

For example: Uniswap sets it to 10 minutes on the Etehreum mainnet and to 5

minutes on L2 networks 

https://github.com/Uniswap/interface/blob/main/src/constants/misc.ts#L7-L8

 : Comments from the team: “Deadline is set to the same time as

when the function is being executed, this is set to assume the tx will go through at

the time of users tx that calls the swapBack function. Adding a future swap deadline

could result in the tx failing or receiving 0 ETH due to the Zero Slippage value.”

� FluidOFTV1.sol #swapBack()

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The removeLimits function in the smart contract lacks a mechanism for reversibility,

as it directly sets the limitsInEffect global variable to false without providing any

means to revert or reinstate its original value (true). This irreversible action can have

significant implications for the functioning of the smart contract.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Lack of Reversibility in removeLimits Function

 : Medium

 : Irreversible Action

 : To address this issue and introduce reversibility, consider implementing a

more comprehensive approach in the removeLimits function. Instead of directly setting

limitsInEffect to false, implement a solution that allows the owner to toggle the limits on and

off as needed. For example:

function toggleLimits(bool _limitsInEffect) external onlyOwner {

 limitsInEffect = _limitsInEffect;  

}

 : Fluid team commented that this is a feature, not a bug.

R FluidOFTV1.sol L300

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

In Solidity, call() and send() functions are used to interact with other contracts or

send Ether. They return a boolean value indicating success (true) or failure (false).

If the return value isn't explicitly checked, execution continues even if the call fails.

This can lead to unexpected behavior and potential vulnerabilities.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing Return Value Validation

 : Minor

 : Missing Validation

 : It is recommended to have input validation on the return values of the

call functions mentioned above to make sure invalid data is not returned and that

the calls are successful.

 : Comments from the team: “If the transfer fails then ETH will be

left within the token contract, and the tx will still be executed.

The withdrawStuckETH function was added to the contract in case such an issue

arose, at which point the ETH can be withdrawn manually.”

6

A F F E C T E D C O D E

O FluidOFTV1.sol

(success,) = address(teamWallet).call{value: ethForTeam}("");  

(success,) = address(treasuryWallet).call{value: ethForTreasury}("");  

(success,) = address(revWallet).call{value: ethForRev}("");

L425-L427 

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Locking the pragma helps ensure that the contracts do not accidentally get

deployed using an older version of the Solidity compiler affected by vulnerabilities.

The contract allowed floating or unlocked pragma to be used, i.e., >= 0.8.19. This allows

the contracts to be compiled with all the solidity compiler versions above the limit

specified. The following contracts were found to be affected -

Issue

Level

Type

Remediation

Alleviation / Retest

 : Floating and Outdated Pragma

 : Minor

 : Floating Pragma (SWC-103)

 : Keep the compiler versions consistent in all the smart contract files.

Do not allow floating pragmas anywhere. It is suggested to use the 0.8.22 pragma

version.

Reference: https://swcregistry.io/docs/SWC-103

 : The pragma has been fixed and updated to 0.8.21.

Q LiquidityManagerV3.sol L02

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The "Ownable2Step" pattern is an improvement over the traditional "Ownable"

pattern, designed to enhance the security of ownership transfer functionality in a

smart contract. Unlike the original "Ownable" pattern, where ownership can be

transferred directly to a specified address, the "Ownable2Step" pattern introduces an

additional step in the ownership transfer process. Ownership transfer only

completes when the proposed new owner explicitly accepts the ownership,

mitigating the risk of accidental or unintended ownership transfers to mistyped

addresses.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Use Ownable2Step

 : Minor

 : Missing Best Practices

 : It is recommended to use either Ownable2Step or

Ownable2StepUpgradeable depending on the smart contract.

 : Fluid team acknowledged the issue.

+ LiquidityManagerV3.sol

+ FluidOFTV1.sol

L1@

L26

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity contracts use a special form of comments to document code. This special

form is named the Ethereum Natural Language Specification Format (NatSpec).

The document is divided into descriptions for developers and end-users along with

the title and the author.

The contracts in the scope were missing these comments.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing NatSpec Comments

 : Informational

 : Missing Best Practices

 : Developers should review their codebase and add Natspec

comments to all relevant functions, variables, and events. Natspec comments

should include a description of the function or event, its parameters, and its return

values.

 : Fluid team acknowledged the issue.

� FluidOFTV1.so�

� LiquidityManagerV3.so�

� RevShareStakingV5.sol

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

The contract uses for loops that use post increments for the variable “i”. The contract can

save some gas by changing this to ++i.

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler has to

create a temporary variable to store the initial value. This is not the case with ++i in which

the value is directly incremented and returned, thus, making it a cheaper alternative.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization in Increments

 : Gas

 : Gas Optimization

 : It is recommended to switch to ++i and change the code accordingly

so the function logic remains the same and saves some gas.

 : Fluid team acknowledged the issue.
. FluidOFTV1.sol L328

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During code analysis, it was observed that the smart contract is using the revert() statements

for error handling. However, since Solidity version 0.8.4, custom errors have been introduced,

providing a better alternative to the traditional revert(). Custom errors allow developers to

pass dynamic data along with the revert, making error handling more informative and

efficient. Furthermore, using custom errors can result in lower gas costs compared to the

revert() statements.

Issue

Level

Type

Remediation

Alleviation / Retest :

 : Custom Error to Save Gas

 : Gas

 : Gas Optimization

 : It is recommended to replace all the instances of revert() statements with

error() to save gas.

Fluid team acknowledged the issue.
Q FluidOFTV1.sol L234

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

The require() statement takes an input string to show errors if the validation fails.

The strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset and

other parameters. For this purpose, having strings lesser than 32 bytes saves a significant

amount of gas.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization in Require Statements

 : Gas

 : Gas Optimization

 : It is recommended to shorten the strings passed inside require()

statements to fit under 32 bytes. This will decrease the gas usage at the time of

deployment and at runtime when the validation condition is met.

 : Fluid team acknowledged the issue.

L FluidOFTV1.sol L18

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity supports multiple rational and integer literals, including decimal fractions and

scientific notations. The use of very large numbers with too many digits was detected in

the code that could have been optimized using a different notation also supported by

Solidity.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Large Number Literals

 : Gas

 : Gas & Missing Best Practices

 : Scientific notation in the form of 2e10 is also supported, where the

mantissa can be fractional, but the exponent has to be an integer. The literal MeE is

equivalent to M * 10**E. Examples include 2e10, 2e10, 2e-10, 2.5e1, as suggested in

official solidity documentation.

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

It is recommended to use numbers in the form “35 * 1e7 * 1e18” or “35 * 1e25”. The

numbers can also be represented by using underscores between them to make

them more readable such as “35_00_00_000”

 : Fluid team acknowledged the issue.

Y FluidOFTV1.sol L40, L359

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

R a w S o l i d i t y F i l e s

C FluidOFTV1.soL

C LiquidityManagerV3.soL

C RevShareStakingV5.sol

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Fluid project using the above techniques to

examine and discover vulnerabilities and safe coding practices in Fluid’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

