

Radiate Protocol
S E C U R I T Y A S S E S S M E N T

October 27th 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Radiate Protocol is a yield enhancing protocol built on top of Radiant Capital. Radiate

allows Radiant depositors to earn $RDNT emissions without locking any of their own

dLP. On the other hand, Radiant allows liquidity providers earn boosted yields on dLP

with no lockups.

Stakers can do single sided staking for DLP and earn WETH denominated yields. No

need to worry about claiming multiple tokens or worrying about locking for certain

durations.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Supply

Radiate Protocol

RADT Token

0x7ca0b5ca80291b1feb2d45702ffe56a7a53e7a97

Mainnet

Smart Contract

EVM

Solidity

Arbitrium

Private GitHub Repository

200,000

-

https://discord.gg/Ahg3hDGPCQ

https://twitter.com/RadiateProtocol

https://github.com/RadiateProtocol

https://www.radiateprotocol.com/

https://docs.radiateprotocol.com/

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

79
Score
A U D I T

Critical 2

Major 0

Medium 1

Minor 1

Informational 2

Discussion 2

Issues 8

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

RadiateProtocol/dlp-vaults/blob/update/audit_09_01/src/policies/Leverager_Audit.sol GitHub Repository

ScopeA U D I T

G I T H U B R E P O S I T O R Y L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Radiate Protocol to discover issues and

vulnerabilities in the source code of the Radiate Protocol project as well as any

contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Dynamic, Static Analysis

and Manual Review techniques.

The auditing process pays special attention to the following considerationsY

W Testing the smart contracts against both common and uncommon attack

vectors^

W Assessing the codebase to ensure compliance with current best practices and

industry standards^

W Ensuring contract logic meets the specifications and intentions of the client^

W Cross referencing contract structure and implementation against similar smart

contracts producedby industry leaders^

W Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2023/10/27

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Potential Protocol Fund Drain Criticial Pending

Funds Drained Due to Bypass of Unstakeable Amount Validation Criticial Pending

Outdated Pragma Version Minor Pending

Missing NatSpec Comments Informational Pending

Require with Empty Message Informational Pending

Public Constants can be Private Gas Pending

Gas Optimization for State Variables Gas Pending

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

Unrecoverable Locked Rewards in claimVested() Medium Pending

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The smart contract exhibits a vulnerability related to funds draining from the

protocol. This issue arises from the interaction between the claim() and

claimVested() functions. When a user first calls claim(), it sets info.pending to zero.

However, when the same user later calls claimVested(), they can effectively

withdraw the previously claimed amount again. Afterward, the user can call claim()

again, which internally calls _update(), resetting info.pending to the same value as

during the first withdrawal. This situation allows a user to drain funds from the

protocol.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Potential Protocol Fund Drain

 : Critical

 : Fund Drain

 : To mitigate this vulnerability, it is recommended to add stricter checks

within the claim() and claimVested() functions to prevent multiple claims of the

same rewards by the same user. A user should not be able to make multiple claims

of the same reward, thus safeguarding the protocol's funds. Additionally, careful

review and testing are essential to ensure the correctness of the proposed changes.

 :
> Leverager.claim() - Leverager_Audit.sol

> Leverager.claimVested() - Leverager_Audit.sol

> Leverager._update() - Leverager_Audit.sol

L708-L73S

L749-L79S

L416-L456

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract includes an unstake() function that allows users to withdraw their staked

tokens, with a validation check to ensure that the amount to be withdrawn does not

exceed the "unstakeable" amount. However, there is a vulnerability in the contract that

allows an attacker to bypass this validation and drain funds from the contract.

The vulnerability arises from the _unloop() function, which is called within unstake(). In

_unloop(), a flash loan is initiated through Aave's AAVE_LENDING_POOL to repay the debt,

withdraw funds, and perform other operations. When the Aave flash loan is executed, it

calls the executeOperation() function. In this callback, the contract repays the debt and

withdraws the amount to be paid back to Aave.

An attacker can exploit this flow by directly calling the Aave flash loan function and

providing the address of the contract (dlpVault) to be called back. The attacker can also

supply a loan amount greater than the "unstakeable" amount. This way, they can bypass

the unstakeable amount validation within the unstake() function. As a result, the attacker

can drain more funds from the contract than unstakeableamoungt , causing a potential

financial loss to the protocol.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Funds Drained Due to Bypass of Unstakeable Amount Validation

 : Critical

 : Fund Drain

 : To mitigate this vulnerability, it's essential to ensure that the unstakeable

amount validation is enforced for all fund withdrawals. Additionally, it is recommended to

review and modify the flash loan mechanism to prevent unauthorized withdrawals and

protect the contract from potential exploits.

 :

m Leverager.unstake() - Leverager_Audit.sol

m Leverager.unloop() - Leverager_Audit.sol

m dlpVault.executeOperation() - DLPVault_Audit.sol

L646-L66v

L547-L58o

L517-L575

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract allows users to make claims for their rewards using the claim()

function. This function sets the expireAt timestamp for the claim, info.pending to zero

and after this time, the claim can no longer be processed. However, the

claimVested() function has a condition that checks if info.expireAt is greater than or

equal to the current block's timestamp. If this condition is not meet, the

claimVested() function does not allow the withdrawal of rewards, which is

reasonable in preventing claims for which the expiration period has passed.

The issue arises when the expireAt timestamp has been set and the user misses the

claim or decides not to claim the rewards immediately. In such cases, if the expireAt

timestamp has passed, there is no way to recover or restart the claim. The user's

rewards will be effectively stuck in the contract forever.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Unrecoverable Locked Rewards in claimVested()

 : Medium

 : Locked Funds

 : To address this issue, consider implementing a mechanism that

allows users to restart the claim process or recover their rewards if the expireAt

timestamp has passed. This can be achieved through a time-lock mechanism that

allows users to unlock their rewards after the initial expiration, with a penalty or time

delay.

 :

@ Leverager.claim() - Leverager_Audit.sol

@ Leverager.claimVested() - Leverager_Audit.sol

L708-L73Q

L749-L791

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Using an outdated compiler version can be problematic, especially if there are

publicly disclosed bugs and issues that affect the current compiler version.

The contracts found in the repository were allowing an old compiler version to be

used, i.e., 0.8.15.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Outdated Pragma Version

 : Minor

 : Outdated Pragma

 : Keep the compiler versions updated in all the smart contract files. Do

not allow floating pragmas anywhere. It is suggested to use the 0.8.20 or 0.8.21

pragma version which is stable and not too recent.

Reference: https://swcregistry.io/docs/SWC-103

 :

Q Leverager_Audit.sol L02

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity contracts use a special form of comments to document code. This special

form is named the Ethereum Natural Language Specification Format (NatSpec).

The document is divided into descriptions for developers and end-users along with

the title and the author.

The contracts in the scope were missing these comments

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing NatSpec Comments

 : Informational

 : Missing Best Practices

 : Developers should review their codebase and add Natspec

comments to all relevant functions, variables, and events. Natspec comments

should include a description of the function or event, its parameters, and its return

values.

 :

5 Leverager_Audit.sol L02

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During analysis; multiple require statements were detected with empty messages.

The statement takes two parameters, and the message part is optional. This is

shown to the user when and if the require statement evaluates to false. This

message gives more information about the conditional and why it gave a false

response.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Require with Empty Message

 : Informational

 : Code Optimization

 : It is recommended to add a descriptive message, no longer than 32

bytes, inside the require statement to give more detail to the user about why the

condition failed.

 :

8 Leverager_Audit.sol L528

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public constant variables cost more gas because the EVM automatically creates

getter functions for them and adds entries to the method ID table. The values can be

read from the source code instead.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Public Constants can be Private

 : Gas

 : Gas Optimization

 : If reading the values for the constants is not necessary, consider

changing the public visibility to private.

 :

3 Leverager_Audit.sol L40-L63

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In Solidity, the compound assignment operators ‘+=’ and ‘-=’ tend to consume more

gas compared to the basic addition and subtraction operators (‘+’ and ‘-’,

respectively). As a result, when you use ‘x += y’, it typically incurs a higher gas cost

than using ‘x = x + y’.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization for State Variables

 : Gas

 : Gas Optimization

 : Replace += and -= with the basic + and - operators whenever feasible.

This can help reduce gas consumption, especially when working with large-scale

operations.

 :

9 Leverager_Audit.sol L513-L514, L583-L587, L836-L840

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

G i t H u b R e p o s i t o r y

RadiateProtocol/dlp-vaults/blob/update/audit_09_01/src/policies/Leverager_Audit.sol

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Radiate Protocol project using the above

techniques to examine and discover vulnerabilities and safe coding practices in

Radiate Protocol’s smart contract including the libraries used by the contract that

are not officially recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

